Properties

Label 819.2.n.e.172.3
Level $819$
Weight $2$
Character 819.172
Analytic conductor $6.540$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [819,2,Mod(100,819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(819, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("819.100"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.n (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-6,0,0,1,-12,0,8,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 11 x^{14} - 4 x^{13} + 87 x^{12} - 35 x^{11} + 326 x^{10} - 205 x^{9} + 895 x^{8} - 481 x^{7} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 172.3
Root \(0.415625 - 0.719884i\) of defining polynomial
Character \(\chi\) \(=\) 819.172
Dual form 819.2.n.e.100.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.415625 + 0.719884i) q^{2} +(0.654511 + 1.13365i) q^{4} +(1.30847 + 2.26634i) q^{5} +(0.801591 - 2.52140i) q^{7} -2.75063 q^{8} -2.17533 q^{10} +1.84837 q^{11} +(2.74506 - 2.33765i) q^{13} +(1.48195 + 1.62501i) q^{14} +(-0.165791 + 0.287158i) q^{16} +(3.41564 + 5.91607i) q^{17} +5.06988 q^{19} +(-1.71281 + 2.96668i) q^{20} +(-0.768228 + 1.33061i) q^{22} +(-0.636428 + 1.10233i) q^{23} +(-0.924183 + 1.60073i) q^{25} +(0.541921 + 2.94772i) q^{26} +(3.38302 - 0.741562i) q^{28} +(-0.724496 - 1.25486i) q^{29} +(-3.09878 + 5.36725i) q^{31} +(-2.88844 - 5.00293i) q^{32} -5.67851 q^{34} +(6.76319 - 1.48250i) q^{35} +(-3.93922 + 6.82292i) q^{37} +(-2.10717 + 3.64973i) q^{38} +(-3.59911 - 6.23384i) q^{40} +(-4.41239 - 7.64248i) q^{41} +(0.109598 - 0.189830i) q^{43} +(1.20978 + 2.09539i) q^{44} +(-0.529032 - 0.916310i) q^{46} +(-0.624016 - 1.08083i) q^{47} +(-5.71490 - 4.04226i) q^{49} +(-0.768228 - 1.33061i) q^{50} +(4.44675 + 1.58191i) q^{52} +(-1.33947 + 2.32004i) q^{53} +(2.41853 + 4.18902i) q^{55} +(-2.20488 + 6.93543i) q^{56} +1.20448 q^{58} +(-6.01804 - 10.4236i) q^{59} -8.72218 q^{61} +(-2.57586 - 4.46153i) q^{62} +4.13888 q^{64} +(8.88974 + 3.16249i) q^{65} +13.8331 q^{67} +(-4.47115 + 7.74426i) q^{68} +(-1.74373 + 5.48488i) q^{70} +(-1.78833 + 3.09749i) q^{71} +(-3.26733 + 5.65918i) q^{73} +(-3.27448 - 5.67156i) q^{74} +(3.31829 + 5.74745i) q^{76} +(1.48163 - 4.66047i) q^{77} +(3.08084 + 5.33616i) q^{79} -0.867729 q^{80} +7.33560 q^{82} +8.67738 q^{83} +(-8.93852 + 15.4820i) q^{85} +(0.0911037 + 0.157796i) q^{86} -5.08417 q^{88} +(-7.57751 + 13.1246i) q^{89} +(-3.69373 - 8.79524i) q^{91} -1.66620 q^{92} +1.03743 q^{94} +(6.63379 + 11.4901i) q^{95} +(6.08221 - 10.5347i) q^{97} +(5.28522 - 2.43400i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} + q^{7} - 12 q^{8} + 8 q^{10} - 4 q^{11} + 5 q^{13} + 7 q^{14} - 6 q^{16} + 2 q^{17} + 22 q^{19} + 20 q^{20} + 7 q^{22} - 4 q^{23} + 2 q^{25} + 6 q^{26} - 7 q^{28} - 15 q^{29} + 3 q^{31}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.415625 + 0.719884i −0.293892 + 0.509035i −0.974726 0.223402i \(-0.928284\pi\)
0.680835 + 0.732437i \(0.261617\pi\)
\(3\) 0 0
\(4\) 0.654511 + 1.13365i 0.327255 + 0.566823i
\(5\) 1.30847 + 2.26634i 0.585165 + 1.01354i 0.994855 + 0.101311i \(0.0323037\pi\)
−0.409690 + 0.912225i \(0.634363\pi\)
\(6\) 0 0
\(7\) 0.801591 2.52140i 0.302973 0.952999i
\(8\) −2.75063 −0.972494
\(9\) 0 0
\(10\) −2.17533 −0.687901
\(11\) 1.84837 0.557303 0.278652 0.960392i \(-0.410113\pi\)
0.278652 + 0.960392i \(0.410113\pi\)
\(12\) 0 0
\(13\) 2.74506 2.33765i 0.761344 0.648348i
\(14\) 1.48195 + 1.62501i 0.396069 + 0.434302i
\(15\) 0 0
\(16\) −0.165791 + 0.287158i −0.0414477 + 0.0717896i
\(17\) 3.41564 + 5.91607i 0.828415 + 1.43486i 0.899281 + 0.437371i \(0.144090\pi\)
−0.0708664 + 0.997486i \(0.522576\pi\)
\(18\) 0 0
\(19\) 5.06988 1.16311 0.581556 0.813507i \(-0.302444\pi\)
0.581556 + 0.813507i \(0.302444\pi\)
\(20\) −1.71281 + 2.96668i −0.382997 + 0.663370i
\(21\) 0 0
\(22\) −0.768228 + 1.33061i −0.163787 + 0.283687i
\(23\) −0.636428 + 1.10233i −0.132704 + 0.229851i −0.924718 0.380652i \(-0.875699\pi\)
0.792014 + 0.610503i \(0.209033\pi\)
\(24\) 0 0
\(25\) −0.924183 + 1.60073i −0.184837 + 0.320146i
\(26\) 0.541921 + 2.94772i 0.106279 + 0.578095i
\(27\) 0 0
\(28\) 3.38302 0.741562i 0.639331 0.140142i
\(29\) −0.724496 1.25486i −0.134536 0.233022i 0.790884 0.611966i \(-0.209621\pi\)
−0.925420 + 0.378943i \(0.876288\pi\)
\(30\) 0 0
\(31\) −3.09878 + 5.36725i −0.556557 + 0.963986i 0.441223 + 0.897397i \(0.354545\pi\)
−0.997781 + 0.0665883i \(0.978789\pi\)
\(32\) −2.88844 5.00293i −0.510609 0.884401i
\(33\) 0 0
\(34\) −5.67851 −0.973857
\(35\) 6.76319 1.48250i 1.14319 0.250588i
\(36\) 0 0
\(37\) −3.93922 + 6.82292i −0.647603 + 1.12168i 0.336090 + 0.941830i \(0.390895\pi\)
−0.983694 + 0.179852i \(0.942438\pi\)
\(38\) −2.10717 + 3.64973i −0.341829 + 0.592064i
\(39\) 0 0
\(40\) −3.59911 6.23384i −0.569069 0.985657i
\(41\) −4.41239 7.64248i −0.689099 1.19355i −0.972130 0.234444i \(-0.924673\pi\)
0.283031 0.959111i \(-0.408660\pi\)
\(42\) 0 0
\(43\) 0.109598 0.189830i 0.0167136 0.0289488i −0.857548 0.514405i \(-0.828013\pi\)
0.874261 + 0.485456i \(0.161346\pi\)
\(44\) 1.20978 + 2.09539i 0.182381 + 0.315892i
\(45\) 0 0
\(46\) −0.529032 0.916310i −0.0780015 0.135103i
\(47\) −0.624016 1.08083i −0.0910220 0.157655i 0.816919 0.576752i \(-0.195680\pi\)
−0.907941 + 0.419097i \(0.862347\pi\)
\(48\) 0 0
\(49\) −5.71490 4.04226i −0.816415 0.577466i
\(50\) −0.768228 1.33061i −0.108644 0.188177i
\(51\) 0 0
\(52\) 4.44675 + 1.58191i 0.616653 + 0.219372i
\(53\) −1.33947 + 2.32004i −0.183991 + 0.318682i −0.943236 0.332123i \(-0.892235\pi\)
0.759245 + 0.650805i \(0.225568\pi\)
\(54\) 0 0
\(55\) 2.41853 + 4.18902i 0.326114 + 0.564847i
\(56\) −2.20488 + 6.93543i −0.294639 + 0.926786i
\(57\) 0 0
\(58\) 1.20448 0.158155
\(59\) −6.01804 10.4236i −0.783483 1.35703i −0.929901 0.367809i \(-0.880108\pi\)
0.146419 0.989223i \(-0.453225\pi\)
\(60\) 0 0
\(61\) −8.72218 −1.11676 −0.558381 0.829585i \(-0.688577\pi\)
−0.558381 + 0.829585i \(0.688577\pi\)
\(62\) −2.57586 4.46153i −0.327135 0.566615i
\(63\) 0 0
\(64\) 4.13888 0.517359
\(65\) 8.88974 + 3.16249i 1.10264 + 0.392259i
\(66\) 0 0
\(67\) 13.8331 1.68998 0.844992 0.534779i \(-0.179605\pi\)
0.844992 + 0.534779i \(0.179605\pi\)
\(68\) −4.47115 + 7.74426i −0.542207 + 0.939129i
\(69\) 0 0
\(70\) −1.74373 + 5.48488i −0.208415 + 0.655569i
\(71\) −1.78833 + 3.09749i −0.212236 + 0.367604i −0.952414 0.304807i \(-0.901408\pi\)
0.740178 + 0.672411i \(0.234741\pi\)
\(72\) 0 0
\(73\) −3.26733 + 5.65918i −0.382412 + 0.662357i −0.991406 0.130817i \(-0.958240\pi\)
0.608994 + 0.793175i \(0.291573\pi\)
\(74\) −3.27448 5.67156i −0.380650 0.659306i
\(75\) 0 0
\(76\) 3.31829 + 5.74745i 0.380634 + 0.659278i
\(77\) 1.48163 4.66047i 0.168848 0.531110i
\(78\) 0 0
\(79\) 3.08084 + 5.33616i 0.346621 + 0.600365i 0.985647 0.168820i \(-0.0539956\pi\)
−0.639026 + 0.769185i \(0.720662\pi\)
\(80\) −0.867729 −0.0970151
\(81\) 0 0
\(82\) 7.33560 0.810082
\(83\) 8.67738 0.952467 0.476233 0.879319i \(-0.342002\pi\)
0.476233 + 0.879319i \(0.342002\pi\)
\(84\) 0 0
\(85\) −8.93852 + 15.4820i −0.969519 + 1.67926i
\(86\) 0.0911037 + 0.157796i 0.00982396 + 0.0170156i
\(87\) 0 0
\(88\) −5.08417 −0.541974
\(89\) −7.57751 + 13.1246i −0.803215 + 1.39121i 0.114275 + 0.993449i \(0.463546\pi\)
−0.917490 + 0.397760i \(0.869788\pi\)
\(90\) 0 0
\(91\) −3.69373 8.79524i −0.387209 0.921992i
\(92\) −1.66620 −0.173713
\(93\) 0 0
\(94\) 1.03743 0.107002
\(95\) 6.63379 + 11.4901i 0.680612 + 1.17885i
\(96\) 0 0
\(97\) 6.08221 10.5347i 0.617554 1.06964i −0.372376 0.928082i \(-0.621457\pi\)
0.989931 0.141554i \(-0.0452098\pi\)
\(98\) 5.28522 2.43400i 0.533888 0.245871i
\(99\) 0 0
\(100\) −2.41955 −0.241955
\(101\) 4.59607 0.457326 0.228663 0.973506i \(-0.426565\pi\)
0.228663 + 0.973506i \(0.426565\pi\)
\(102\) 0 0
\(103\) −2.22609 3.85570i −0.219343 0.379914i 0.735264 0.677781i \(-0.237058\pi\)
−0.954607 + 0.297867i \(0.903725\pi\)
\(104\) −7.55065 + 6.43001i −0.740402 + 0.630515i
\(105\) 0 0
\(106\) −1.11344 1.92853i −0.108147 0.187316i
\(107\) 3.60694 6.24740i 0.348696 0.603959i −0.637322 0.770597i \(-0.719958\pi\)
0.986018 + 0.166639i \(0.0532913\pi\)
\(108\) 0 0
\(109\) 4.34979 7.53406i 0.416635 0.721632i −0.578964 0.815353i \(-0.696543\pi\)
0.995599 + 0.0937209i \(0.0298761\pi\)
\(110\) −4.02081 −0.383369
\(111\) 0 0
\(112\) 0.591144 + 0.648208i 0.0558578 + 0.0612499i
\(113\) −1.82527 + 3.16146i −0.171707 + 0.297405i −0.939017 0.343871i \(-0.888262\pi\)
0.767310 + 0.641277i \(0.221595\pi\)
\(114\) 0 0
\(115\) −3.33099 −0.310616
\(116\) 0.948381 1.64264i 0.0880550 0.152516i
\(117\) 0 0
\(118\) 10.0050 0.921036
\(119\) 17.6547 3.86993i 1.61840 0.354756i
\(120\) 0 0
\(121\) −7.58354 −0.689413
\(122\) 3.62516 6.27896i 0.328207 0.568471i
\(123\) 0 0
\(124\) −8.11274 −0.728546
\(125\) 8.24763 0.737691
\(126\) 0 0
\(127\) 4.80639 + 8.32491i 0.426498 + 0.738716i 0.996559 0.0828862i \(-0.0264138\pi\)
−0.570061 + 0.821602i \(0.693080\pi\)
\(128\) 4.05666 7.02634i 0.358562 0.621047i
\(129\) 0 0
\(130\) −5.97143 + 5.08517i −0.523729 + 0.445999i
\(131\) −8.28016 14.3417i −0.723441 1.25304i −0.959613 0.281325i \(-0.909226\pi\)
0.236172 0.971711i \(-0.424107\pi\)
\(132\) 0 0
\(133\) 4.06397 12.7832i 0.352391 1.10844i
\(134\) −5.74940 + 9.95825i −0.496672 + 0.860261i
\(135\) 0 0
\(136\) −9.39516 16.2729i −0.805628 1.39539i
\(137\) −5.27844 9.14252i −0.450967 0.781098i 0.547479 0.836819i \(-0.315588\pi\)
−0.998446 + 0.0557212i \(0.982254\pi\)
\(138\) 0 0
\(139\) −4.57749 + 7.92845i −0.388258 + 0.672482i −0.992215 0.124534i \(-0.960256\pi\)
0.603958 + 0.797016i \(0.293590\pi\)
\(140\) 6.10721 + 6.69676i 0.516154 + 0.565979i
\(141\) 0 0
\(142\) −1.48655 2.57479i −0.124749 0.216071i
\(143\) 5.07388 4.32084i 0.424299 0.361327i
\(144\) 0 0
\(145\) 1.89596 3.28390i 0.157451 0.272713i
\(146\) −2.71597 4.70420i −0.224775 0.389322i
\(147\) 0 0
\(148\) −10.3130 −0.847727
\(149\) 10.9073 0.893565 0.446782 0.894643i \(-0.352570\pi\)
0.446782 + 0.894643i \(0.352570\pi\)
\(150\) 0 0
\(151\) 11.1702 19.3474i 0.909018 1.57447i 0.0935880 0.995611i \(-0.470166\pi\)
0.815430 0.578855i \(-0.196500\pi\)
\(152\) −13.9454 −1.13112
\(153\) 0 0
\(154\) 2.73919 + 3.00361i 0.220730 + 0.242038i
\(155\) −16.2186 −1.30271
\(156\) 0 0
\(157\) −0.329586 + 0.570859i −0.0263038 + 0.0455595i −0.878878 0.477047i \(-0.841707\pi\)
0.852574 + 0.522607i \(0.175040\pi\)
\(158\) −5.12190 −0.407476
\(159\) 0 0
\(160\) 7.55887 13.0924i 0.597581 1.03504i
\(161\) 2.26925 + 2.48830i 0.178842 + 0.196106i
\(162\) 0 0
\(163\) 18.1851 1.42436 0.712182 0.701995i \(-0.247707\pi\)
0.712182 + 0.701995i \(0.247707\pi\)
\(164\) 5.77591 10.0042i 0.451023 0.781194i
\(165\) 0 0
\(166\) −3.60654 + 6.24671i −0.279922 + 0.484839i
\(167\) 2.21154 + 3.83050i 0.171134 + 0.296413i 0.938817 0.344417i \(-0.111924\pi\)
−0.767683 + 0.640830i \(0.778590\pi\)
\(168\) 0 0
\(169\) 2.07076 12.8340i 0.159289 0.987232i
\(170\) −7.43016 12.8694i −0.569867 0.987039i
\(171\) 0 0
\(172\) 0.286933 0.0218784
\(173\) −3.52044 −0.267654 −0.133827 0.991005i \(-0.542727\pi\)
−0.133827 + 0.991005i \(0.542727\pi\)
\(174\) 0 0
\(175\) 3.29527 + 3.61337i 0.249099 + 0.273145i
\(176\) −0.306442 + 0.530773i −0.0230990 + 0.0400086i
\(177\) 0 0
\(178\) −6.29881 10.9099i −0.472116 0.817729i
\(179\) −10.8203 −0.808746 −0.404373 0.914594i \(-0.632510\pi\)
−0.404373 + 0.914594i \(0.632510\pi\)
\(180\) 0 0
\(181\) −23.0651 −1.71441 −0.857207 0.514973i \(-0.827802\pi\)
−0.857207 + 0.514973i \(0.827802\pi\)
\(182\) 7.86677 + 0.996466i 0.583124 + 0.0738630i
\(183\) 0 0
\(184\) 1.75058 3.03209i 0.129054 0.223529i
\(185\) −20.6174 −1.51582
\(186\) 0 0
\(187\) 6.31336 + 10.9351i 0.461678 + 0.799650i
\(188\) 0.816850 1.41483i 0.0595749 0.103187i
\(189\) 0 0
\(190\) −11.0287 −0.800105
\(191\) 1.82966 0.132389 0.0661947 0.997807i \(-0.478914\pi\)
0.0661947 + 0.997807i \(0.478914\pi\)
\(192\) 0 0
\(193\) 3.15951 0.227427 0.113713 0.993514i \(-0.463725\pi\)
0.113713 + 0.993514i \(0.463725\pi\)
\(194\) 5.05584 + 8.75697i 0.362988 + 0.628714i
\(195\) 0 0
\(196\) 0.842029 9.12438i 0.0601450 0.651742i
\(197\) −5.57597 9.65786i −0.397271 0.688094i 0.596117 0.802898i \(-0.296709\pi\)
−0.993388 + 0.114804i \(0.963376\pi\)
\(198\) 0 0
\(199\) −10.3748 17.9697i −0.735452 1.27384i −0.954525 0.298132i \(-0.903636\pi\)
0.219072 0.975709i \(-0.429697\pi\)
\(200\) 2.54208 4.40302i 0.179752 0.311340i
\(201\) 0 0
\(202\) −1.91024 + 3.30864i −0.134404 + 0.232795i
\(203\) −3.74476 + 0.820855i −0.262831 + 0.0576127i
\(204\) 0 0
\(205\) 11.5469 19.9999i 0.806474 1.39685i
\(206\) 3.70088 0.257853
\(207\) 0 0
\(208\) 0.216169 + 1.17583i 0.0149887 + 0.0815291i
\(209\) 9.37100 0.648206
\(210\) 0 0
\(211\) 8.16773 + 14.1469i 0.562289 + 0.973914i 0.997296 + 0.0734866i \(0.0234126\pi\)
−0.435007 + 0.900427i \(0.643254\pi\)
\(212\) −3.50680 −0.240848
\(213\) 0 0
\(214\) 2.99827 + 5.19316i 0.204957 + 0.354997i
\(215\) 0.573624 0.0391208
\(216\) 0 0
\(217\) 11.0490 + 12.1156i 0.750056 + 0.822460i
\(218\) 3.61577 + 6.26270i 0.244891 + 0.424163i
\(219\) 0 0
\(220\) −3.16591 + 5.48351i −0.213445 + 0.369698i
\(221\) 23.2059 + 8.25540i 1.56100 + 0.555318i
\(222\) 0 0
\(223\) 9.30867 + 16.1231i 0.623355 + 1.07968i 0.988857 + 0.148871i \(0.0475640\pi\)
−0.365502 + 0.930811i \(0.619103\pi\)
\(224\) −14.9297 + 3.27261i −0.997534 + 0.218660i
\(225\) 0 0
\(226\) −1.51726 2.62797i −0.100926 0.174810i
\(227\) −11.2727 19.5249i −0.748197 1.29592i −0.948686 0.316220i \(-0.897586\pi\)
0.200489 0.979696i \(-0.435747\pi\)
\(228\) 0 0
\(229\) 9.62713 + 16.6747i 0.636179 + 1.10189i 0.986264 + 0.165176i \(0.0528193\pi\)
−0.350085 + 0.936718i \(0.613847\pi\)
\(230\) 1.38444 2.39793i 0.0912875 0.158115i
\(231\) 0 0
\(232\) 1.99282 + 3.45166i 0.130835 + 0.226613i
\(233\) 11.4276 + 19.7933i 0.748650 + 1.29670i 0.948470 + 0.316867i \(0.102631\pi\)
−0.199820 + 0.979833i \(0.564036\pi\)
\(234\) 0 0
\(235\) 1.63301 2.82846i 0.106526 0.184508i
\(236\) 7.87775 13.6447i 0.512798 0.888192i
\(237\) 0 0
\(238\) −4.55185 + 14.3178i −0.295052 + 0.928085i
\(239\) 11.2501 0.727705 0.363853 0.931457i \(-0.381461\pi\)
0.363853 + 0.931457i \(0.381461\pi\)
\(240\) 0 0
\(241\) −9.72305 16.8408i −0.626316 1.08481i −0.988285 0.152621i \(-0.951228\pi\)
0.361968 0.932190i \(-0.382105\pi\)
\(242\) 3.15191 5.45928i 0.202613 0.350936i
\(243\) 0 0
\(244\) −5.70876 9.88787i −0.365466 0.633006i
\(245\) 1.68335 18.2411i 0.107545 1.16538i
\(246\) 0 0
\(247\) 13.9172 11.8516i 0.885528 0.754101i
\(248\) 8.52359 14.7633i 0.541249 0.937470i
\(249\) 0 0
\(250\) −3.42793 + 5.93734i −0.216801 + 0.375510i
\(251\) 8.79293 15.2298i 0.555005 0.961297i −0.442898 0.896572i \(-0.646050\pi\)
0.997903 0.0647248i \(-0.0206170\pi\)
\(252\) 0 0
\(253\) −1.17635 + 2.03750i −0.0739566 + 0.128097i
\(254\) −7.99063 −0.501377
\(255\) 0 0
\(256\) 7.51098 + 13.0094i 0.469436 + 0.813087i
\(257\) 7.59362 13.1525i 0.473677 0.820432i −0.525869 0.850565i \(-0.676260\pi\)
0.999546 + 0.0301333i \(0.00959318\pi\)
\(258\) 0 0
\(259\) 14.0457 + 15.4015i 0.872755 + 0.957005i
\(260\) 2.23328 + 12.1477i 0.138502 + 0.753368i
\(261\) 0 0
\(262\) 13.7658 0.850453
\(263\) 13.9699 0.861422 0.430711 0.902490i \(-0.358263\pi\)
0.430711 + 0.902490i \(0.358263\pi\)
\(264\) 0 0
\(265\) −7.01065 −0.430661
\(266\) 7.51333 + 8.23862i 0.460672 + 0.505142i
\(267\) 0 0
\(268\) 9.05393 + 15.6819i 0.553057 + 0.957922i
\(269\) −14.4628 25.0503i −0.881813 1.52734i −0.849324 0.527872i \(-0.822990\pi\)
−0.0324890 0.999472i \(-0.510343\pi\)
\(270\) 0 0
\(271\) 5.05875 8.76202i 0.307297 0.532255i −0.670473 0.741934i \(-0.733909\pi\)
0.977770 + 0.209679i \(0.0672421\pi\)
\(272\) −2.26513 −0.137344
\(273\) 0 0
\(274\) 8.77541 0.530142
\(275\) −1.70823 + 2.95874i −0.103010 + 0.178419i
\(276\) 0 0
\(277\) −1.70320 2.95002i −0.102335 0.177250i 0.810311 0.586000i \(-0.199298\pi\)
−0.912646 + 0.408750i \(0.865965\pi\)
\(278\) −3.80504 6.59053i −0.228211 0.395274i
\(279\) 0 0
\(280\) −18.6030 + 4.07780i −1.11174 + 0.243695i
\(281\) −9.40331 −0.560954 −0.280477 0.959861i \(-0.590493\pi\)
−0.280477 + 0.959861i \(0.590493\pi\)
\(282\) 0 0
\(283\) 10.4790 0.622911 0.311456 0.950261i \(-0.399183\pi\)
0.311456 + 0.950261i \(0.399183\pi\)
\(284\) −4.68194 −0.277822
\(285\) 0 0
\(286\) 1.00167 + 5.44846i 0.0592299 + 0.322174i
\(287\) −22.8067 + 4.99924i −1.34623 + 0.295096i
\(288\) 0 0
\(289\) −14.8332 + 25.6919i −0.872542 + 1.51129i
\(290\) 1.57602 + 2.72975i 0.0925470 + 0.160296i
\(291\) 0 0
\(292\) −8.55401 −0.500586
\(293\) 4.61007 7.98488i 0.269323 0.466481i −0.699364 0.714766i \(-0.746533\pi\)
0.968687 + 0.248284i \(0.0798667\pi\)
\(294\) 0 0
\(295\) 15.7489 27.2778i 0.916934 1.58818i
\(296\) 10.8353 18.7673i 0.629790 1.09083i
\(297\) 0 0
\(298\) −4.53337 + 7.85203i −0.262611 + 0.454856i
\(299\) 0.829819 + 4.51371i 0.0479897 + 0.261034i
\(300\) 0 0
\(301\) −0.390784 0.428507i −0.0225244 0.0246987i
\(302\) 9.28524 + 16.0825i 0.534306 + 0.925445i
\(303\) 0 0
\(304\) −0.840540 + 1.45586i −0.0482083 + 0.0834992i
\(305\) −11.4127 19.7674i −0.653490 1.13188i
\(306\) 0 0
\(307\) −16.1499 −0.921726 −0.460863 0.887471i \(-0.652460\pi\)
−0.460863 + 0.887471i \(0.652460\pi\)
\(308\) 6.25307 1.37068i 0.356302 0.0781016i
\(309\) 0 0
\(310\) 6.74088 11.6755i 0.382856 0.663126i
\(311\) −15.2138 + 26.3510i −0.862694 + 1.49423i 0.00662478 + 0.999978i \(0.497891\pi\)
−0.869319 + 0.494252i \(0.835442\pi\)
\(312\) 0 0
\(313\) −13.6859 23.7047i −0.773574 1.33987i −0.935592 0.353082i \(-0.885134\pi\)
0.162018 0.986788i \(-0.448200\pi\)
\(314\) −0.273968 0.474527i −0.0154609 0.0267791i
\(315\) 0 0
\(316\) −4.03288 + 6.98516i −0.226867 + 0.392946i
\(317\) 6.18424 + 10.7114i 0.347342 + 0.601613i 0.985776 0.168063i \(-0.0537511\pi\)
−0.638435 + 0.769676i \(0.720418\pi\)
\(318\) 0 0
\(319\) −1.33913 2.31945i −0.0749771 0.129864i
\(320\) 5.41559 + 9.38008i 0.302741 + 0.524362i
\(321\) 0 0
\(322\) −2.73445 + 0.599394i −0.152385 + 0.0334029i
\(323\) 17.3169 + 29.9938i 0.963538 + 1.66890i
\(324\) 0 0
\(325\) 1.20501 + 6.55453i 0.0668421 + 0.363580i
\(326\) −7.55818 + 13.0911i −0.418609 + 0.725052i
\(327\) 0 0
\(328\) 12.1368 + 21.0216i 0.670144 + 1.16072i
\(329\) −3.22540 + 0.707011i −0.177822 + 0.0389788i
\(330\) 0 0
\(331\) −12.4062 −0.681907 −0.340954 0.940080i \(-0.610750\pi\)
−0.340954 + 0.940080i \(0.610750\pi\)
\(332\) 5.67944 + 9.83708i 0.311700 + 0.539880i
\(333\) 0 0
\(334\) −3.67669 −0.201179
\(335\) 18.1002 + 31.3505i 0.988920 + 1.71286i
\(336\) 0 0
\(337\) −15.8519 −0.863506 −0.431753 0.901992i \(-0.642105\pi\)
−0.431753 + 0.901992i \(0.642105\pi\)
\(338\) 8.37835 + 6.82485i 0.455722 + 0.371223i
\(339\) 0 0
\(340\) −23.4014 −1.26912
\(341\) −5.72768 + 9.92063i −0.310171 + 0.537232i
\(342\) 0 0
\(343\) −14.7732 + 11.1693i −0.797676 + 0.603086i
\(344\) −0.301464 + 0.522151i −0.0162539 + 0.0281525i
\(345\) 0 0
\(346\) 1.46318 2.53431i 0.0786613 0.136245i
\(347\) −6.46521 11.1981i −0.347071 0.601144i 0.638657 0.769492i \(-0.279490\pi\)
−0.985728 + 0.168347i \(0.946157\pi\)
\(348\) 0 0
\(349\) −1.67254 2.89693i −0.0895292 0.155069i 0.817783 0.575527i \(-0.195203\pi\)
−0.907312 + 0.420458i \(0.861870\pi\)
\(350\) −3.97080 + 0.870404i −0.212248 + 0.0465250i
\(351\) 0 0
\(352\) −5.33890 9.24724i −0.284564 0.492880i
\(353\) −6.01463 −0.320127 −0.160063 0.987107i \(-0.551170\pi\)
−0.160063 + 0.987107i \(0.551170\pi\)
\(354\) 0 0
\(355\) −9.35992 −0.496773
\(356\) −19.8383 −1.05143
\(357\) 0 0
\(358\) 4.49719 7.78936i 0.237684 0.411680i
\(359\) −7.44965 12.9032i −0.393177 0.681003i 0.599689 0.800233i \(-0.295291\pi\)
−0.992867 + 0.119230i \(0.961958\pi\)
\(360\) 0 0
\(361\) 6.70372 0.352827
\(362\) 9.58643 16.6042i 0.503852 0.872697i
\(363\) 0 0
\(364\) 7.55311 9.94397i 0.395890 0.521206i
\(365\) −17.1008 −0.895097
\(366\) 0 0
\(367\) −8.08153 −0.421852 −0.210926 0.977502i \(-0.567648\pi\)
−0.210926 + 0.977502i \(0.567648\pi\)
\(368\) −0.211028 0.365511i −0.0110006 0.0190536i
\(369\) 0 0
\(370\) 8.56911 14.8421i 0.445487 0.771605i
\(371\) 4.77603 + 5.23707i 0.247959 + 0.271895i
\(372\) 0 0
\(373\) −11.2771 −0.583905 −0.291953 0.956433i \(-0.594305\pi\)
−0.291953 + 0.956433i \(0.594305\pi\)
\(374\) −10.4960 −0.542733
\(375\) 0 0
\(376\) 1.71643 + 2.97295i 0.0885184 + 0.153318i
\(377\) −4.92222 1.75106i −0.253507 0.0901843i
\(378\) 0 0
\(379\) −8.94558 15.4942i −0.459504 0.795884i 0.539431 0.842030i \(-0.318639\pi\)
−0.998935 + 0.0461461i \(0.985306\pi\)
\(380\) −8.68377 + 15.0407i −0.445468 + 0.771573i
\(381\) 0 0
\(382\) −0.760453 + 1.31714i −0.0389081 + 0.0673909i
\(383\) −0.0381094 −0.00194730 −0.000973650 1.00000i \(-0.500310\pi\)
−0.000973650 1.00000i \(0.500310\pi\)
\(384\) 0 0
\(385\) 12.5009 2.74020i 0.637102 0.139653i
\(386\) −1.31317 + 2.27448i −0.0668388 + 0.115768i
\(387\) 0 0
\(388\) 15.9235 0.808392
\(389\) −19.5855 + 33.9231i −0.993025 + 1.71997i −0.394403 + 0.918938i \(0.629049\pi\)
−0.598622 + 0.801032i \(0.704285\pi\)
\(390\) 0 0
\(391\) −8.69525 −0.439737
\(392\) 15.7196 + 11.1188i 0.793958 + 0.561582i
\(393\) 0 0
\(394\) 9.27006 0.467019
\(395\) −8.06236 + 13.9644i −0.405661 + 0.702626i
\(396\) 0 0
\(397\) 8.73141 0.438217 0.219108 0.975701i \(-0.429685\pi\)
0.219108 + 0.975701i \(0.429685\pi\)
\(398\) 17.2482 0.864573
\(399\) 0 0
\(400\) −0.306442 0.530773i −0.0153221 0.0265387i
\(401\) 12.1419 21.0303i 0.606336 1.05021i −0.385503 0.922707i \(-0.625972\pi\)
0.991839 0.127498i \(-0.0406948\pi\)
\(402\) 0 0
\(403\) 4.04040 + 21.9773i 0.201267 + 1.09477i
\(404\) 3.00818 + 5.21031i 0.149662 + 0.259223i
\(405\) 0 0
\(406\) 0.965497 3.03696i 0.0479168 0.150722i
\(407\) −7.28111 + 12.6113i −0.360911 + 0.625117i
\(408\) 0 0
\(409\) 9.86131 + 17.0803i 0.487610 + 0.844566i 0.999898 0.0142477i \(-0.00453532\pi\)
−0.512288 + 0.858814i \(0.671202\pi\)
\(410\) 9.59841 + 16.6249i 0.474032 + 0.821047i
\(411\) 0 0
\(412\) 2.91400 5.04720i 0.143563 0.248658i
\(413\) −31.1060 + 6.81846i −1.53062 + 0.335514i
\(414\) 0 0
\(415\) 11.3541 + 19.6659i 0.557350 + 0.965359i
\(416\) −19.6241 6.98119i −0.962149 0.342281i
\(417\) 0 0
\(418\) −3.89483 + 6.74604i −0.190502 + 0.329959i
\(419\) −11.0976 19.2216i −0.542154 0.939039i −0.998780 0.0493798i \(-0.984276\pi\)
0.456626 0.889659i \(-0.349058\pi\)
\(420\) 0 0
\(421\) −1.85475 −0.0903949 −0.0451974 0.998978i \(-0.514392\pi\)
−0.0451974 + 0.998978i \(0.514392\pi\)
\(422\) −13.5789 −0.661009
\(423\) 0 0
\(424\) 3.68440 6.38156i 0.178930 0.309916i
\(425\) −12.6267 −0.612485
\(426\) 0 0
\(427\) −6.99163 + 21.9921i −0.338349 + 1.06427i
\(428\) 9.44312 0.456450
\(429\) 0 0
\(430\) −0.238413 + 0.412943i −0.0114973 + 0.0199139i
\(431\) 37.7871 1.82014 0.910069 0.414456i \(-0.136028\pi\)
0.910069 + 0.414456i \(0.136028\pi\)
\(432\) 0 0
\(433\) 17.5680 30.4286i 0.844263 1.46231i −0.0419959 0.999118i \(-0.513372\pi\)
0.886259 0.463189i \(-0.153295\pi\)
\(434\) −13.3141 + 2.91846i −0.639096 + 0.140091i
\(435\) 0 0
\(436\) 11.3879 0.545384
\(437\) −3.22662 + 5.58867i −0.154350 + 0.267342i
\(438\) 0 0
\(439\) −7.67375 + 13.2913i −0.366248 + 0.634360i −0.988976 0.148078i \(-0.952691\pi\)
0.622727 + 0.782439i \(0.286025\pi\)
\(440\) −6.65247 11.5224i −0.317144 0.549310i
\(441\) 0 0
\(442\) −15.5879 + 13.2744i −0.741440 + 0.631398i
\(443\) 14.5356 + 25.1765i 0.690609 + 1.19617i 0.971639 + 0.236471i \(0.0759907\pi\)
−0.281030 + 0.959699i \(0.590676\pi\)
\(444\) 0 0
\(445\) −39.6598 −1.88005
\(446\) −15.4757 −0.732795
\(447\) 0 0
\(448\) 3.31769 10.4358i 0.156746 0.493043i
\(449\) 1.18131 2.04609i 0.0557494 0.0965607i −0.836804 0.547503i \(-0.815579\pi\)
0.892553 + 0.450942i \(0.148912\pi\)
\(450\) 0 0
\(451\) −8.15570 14.1261i −0.384037 0.665172i
\(452\) −4.77864 −0.224768
\(453\) 0 0
\(454\) 18.7409 0.879555
\(455\) 15.0998 19.8795i 0.707891 0.931967i
\(456\) 0 0
\(457\) 8.37672 14.5089i 0.391846 0.678698i −0.600847 0.799364i \(-0.705170\pi\)
0.992693 + 0.120667i \(0.0385032\pi\)
\(458\) −16.0051 −0.747871
\(459\) 0 0
\(460\) −2.18017 3.77616i −0.101651 0.176064i
\(461\) −12.5469 + 21.7318i −0.584366 + 1.01215i 0.410588 + 0.911821i \(0.365323\pi\)
−0.994954 + 0.100330i \(0.968010\pi\)
\(462\) 0 0
\(463\) −0.254256 −0.0118163 −0.00590815 0.999983i \(-0.501881\pi\)
−0.00590815 + 0.999983i \(0.501881\pi\)
\(464\) 0.480459 0.0223048
\(465\) 0 0
\(466\) −18.9985 −0.880088
\(467\) 5.11155 + 8.85346i 0.236534 + 0.409689i 0.959717 0.280967i \(-0.0906551\pi\)
−0.723183 + 0.690656i \(0.757322\pi\)
\(468\) 0 0
\(469\) 11.0885 34.8788i 0.512020 1.61055i
\(470\) 1.35744 + 2.35116i 0.0626141 + 0.108451i
\(471\) 0 0
\(472\) 16.5534 + 28.6713i 0.761932 + 1.31970i
\(473\) 0.202578 0.350875i 0.00931453 0.0161332i
\(474\) 0 0
\(475\) −4.68550 + 8.11552i −0.214985 + 0.372366i
\(476\) 15.9423 + 17.4813i 0.730715 + 0.801253i
\(477\) 0 0
\(478\) −4.67581 + 8.09874i −0.213866 + 0.370428i
\(479\) 12.7080 0.580643 0.290322 0.956929i \(-0.406238\pi\)
0.290322 + 0.956929i \(0.406238\pi\)
\(480\) 0 0
\(481\) 5.13622 + 27.9379i 0.234191 + 1.27386i
\(482\) 16.1646 0.736277
\(483\) 0 0
\(484\) −4.96351 8.59706i −0.225614 0.390775i
\(485\) 31.8335 1.44549
\(486\) 0 0
\(487\) −10.2410 17.7379i −0.464063 0.803781i 0.535096 0.844791i \(-0.320276\pi\)
−0.999159 + 0.0410108i \(0.986942\pi\)
\(488\) 23.9915 1.08604
\(489\) 0 0
\(490\) 12.4318 + 8.79327i 0.561612 + 0.397239i
\(491\) 9.92098 + 17.1836i 0.447727 + 0.775487i 0.998238 0.0593417i \(-0.0189002\pi\)
−0.550510 + 0.834828i \(0.685567\pi\)
\(492\) 0 0
\(493\) 4.94924 8.57233i 0.222902 0.386078i
\(494\) 2.74748 + 14.9446i 0.123615 + 0.672389i
\(495\) 0 0
\(496\) −1.02750 1.77968i −0.0461361 0.0799100i
\(497\) 6.37648 + 6.99202i 0.286024 + 0.313635i
\(498\) 0 0
\(499\) −13.9419 24.1480i −0.624124 1.08101i −0.988710 0.149845i \(-0.952123\pi\)
0.364585 0.931170i \(-0.381211\pi\)
\(500\) 5.39817 + 9.34990i 0.241413 + 0.418140i
\(501\) 0 0
\(502\) 7.30913 + 12.6598i 0.326223 + 0.565034i
\(503\) −6.62277 + 11.4710i −0.295295 + 0.511465i −0.975053 0.221970i \(-0.928751\pi\)
0.679759 + 0.733436i \(0.262084\pi\)
\(504\) 0 0
\(505\) 6.01381 + 10.4162i 0.267611 + 0.463516i
\(506\) −0.977844 1.69368i −0.0434705 0.0752931i
\(507\) 0 0
\(508\) −6.29167 + 10.8975i −0.279148 + 0.483498i
\(509\) 13.5375 23.4477i 0.600040 1.03930i −0.392775 0.919635i \(-0.628485\pi\)
0.992814 0.119665i \(-0.0381819\pi\)
\(510\) 0 0
\(511\) 11.6500 + 12.7746i 0.515365 + 0.565115i
\(512\) 3.73962 0.165270
\(513\) 0 0
\(514\) 6.31220 + 10.9331i 0.278419 + 0.482236i
\(515\) 5.82554 10.0901i 0.256704 0.444625i
\(516\) 0 0
\(517\) −1.15341 1.99776i −0.0507269 0.0878615i
\(518\) −16.9251 + 3.70999i −0.743645 + 0.163008i
\(519\) 0 0
\(520\) −24.4524 8.69883i −1.07231 0.381469i
\(521\) 11.6257 20.1363i 0.509331 0.882187i −0.490611 0.871379i \(-0.663226\pi\)
0.999942 0.0108082i \(-0.00344041\pi\)
\(522\) 0 0
\(523\) −16.7690 + 29.0447i −0.733256 + 1.27004i 0.222228 + 0.974995i \(0.428667\pi\)
−0.955484 + 0.295043i \(0.904666\pi\)
\(524\) 10.8389 18.7735i 0.473500 0.820126i
\(525\) 0 0
\(526\) −5.80626 + 10.0567i −0.253165 + 0.438494i
\(527\) −42.3373 −1.84424
\(528\) 0 0
\(529\) 10.6899 + 18.5155i 0.464779 + 0.805021i
\(530\) 2.91380 5.04685i 0.126568 0.219221i
\(531\) 0 0
\(532\) 17.1515 3.75963i 0.743614 0.163001i
\(533\) −29.9777 10.6645i −1.29848 0.461929i
\(534\) 0 0
\(535\) 18.8783 0.816178
\(536\) −38.0498 −1.64350
\(537\) 0 0
\(538\) 24.0444 1.03663
\(539\) −10.5632 7.47158i −0.454991 0.321824i
\(540\) 0 0
\(541\) −4.65598 8.06439i −0.200176 0.346715i 0.748409 0.663238i \(-0.230818\pi\)
−0.948585 + 0.316522i \(0.897485\pi\)
\(542\) 4.20509 + 7.28343i 0.180624 + 0.312850i
\(543\) 0 0
\(544\) 19.7318 34.1764i 0.845992 1.46530i
\(545\) 22.7663 0.975200
\(546\) 0 0
\(547\) −31.5111 −1.34732 −0.673658 0.739043i \(-0.735278\pi\)
−0.673658 + 0.739043i \(0.735278\pi\)
\(548\) 6.90959 11.9678i 0.295163 0.511237i
\(549\) 0 0
\(550\) −1.41997 2.45945i −0.0605476 0.104871i
\(551\) −3.67311 6.36201i −0.156480 0.271031i
\(552\) 0 0
\(553\) 15.9242 3.49059i 0.677165 0.148435i
\(554\) 2.83157 0.120302
\(555\) 0 0
\(556\) −11.9841 −0.508238
\(557\) −5.53300 −0.234441 −0.117220 0.993106i \(-0.537398\pi\)
−0.117220 + 0.993106i \(0.537398\pi\)
\(558\) 0 0
\(559\) −0.142902 0.777298i −0.00604410 0.0328762i
\(560\) −0.695564 + 2.18789i −0.0293929 + 0.0924553i
\(561\) 0 0
\(562\) 3.90826 6.76930i 0.164860 0.285546i
\(563\) 6.18438 + 10.7117i 0.260641 + 0.451443i 0.966412 0.256997i \(-0.0827329\pi\)
−0.705772 + 0.708439i \(0.749400\pi\)
\(564\) 0 0
\(565\) −9.55324 −0.401908
\(566\) −4.35534 + 7.54366i −0.183068 + 0.317084i
\(567\) 0 0
\(568\) 4.91904 8.52003i 0.206398 0.357493i
\(569\) 0.997229 1.72725i 0.0418060 0.0724101i −0.844365 0.535768i \(-0.820022\pi\)
0.886171 + 0.463358i \(0.153356\pi\)
\(570\) 0 0
\(571\) −11.0440 + 19.1288i −0.462179 + 0.800517i −0.999069 0.0431350i \(-0.986265\pi\)
0.536891 + 0.843652i \(0.319599\pi\)
\(572\) 8.21921 + 2.92395i 0.343663 + 0.122257i
\(573\) 0 0
\(574\) 5.88015 18.4960i 0.245433 0.772007i
\(575\) −1.17635 2.03750i −0.0490573 0.0849697i
\(576\) 0 0
\(577\) −4.54321 + 7.86907i −0.189136 + 0.327594i −0.944963 0.327179i \(-0.893902\pi\)
0.755826 + 0.654772i \(0.227235\pi\)
\(578\) −12.3301 21.3564i −0.512866 0.888310i
\(579\) 0 0
\(580\) 4.96371 0.206107
\(581\) 6.95572 21.8791i 0.288572 0.907700i
\(582\) 0 0
\(583\) −2.47584 + 4.28828i −0.102539 + 0.177602i
\(584\) 8.98721 15.5663i 0.371893 0.644138i
\(585\) 0 0
\(586\) 3.83213 + 6.63744i 0.158304 + 0.274190i
\(587\) 3.02112 + 5.23273i 0.124695 + 0.215978i 0.921614 0.388109i \(-0.126872\pi\)
−0.796919 + 0.604086i \(0.793538\pi\)
\(588\) 0 0
\(589\) −15.7105 + 27.2113i −0.647338 + 1.12122i
\(590\) 13.0912 + 22.6747i 0.538958 + 0.933503i
\(591\) 0 0
\(592\) −1.30617 2.26236i −0.0536834 0.0929823i
\(593\) 6.67095 + 11.5544i 0.273943 + 0.474484i 0.969868 0.243631i \(-0.0783386\pi\)
−0.695925 + 0.718115i \(0.745005\pi\)
\(594\) 0 0
\(595\) 31.8712 + 34.9478i 1.30659 + 1.43272i
\(596\) 7.13898 + 12.3651i 0.292424 + 0.506493i
\(597\) 0 0
\(598\) −3.59424 1.27864i −0.146979 0.0522874i
\(599\) 15.0725 26.1063i 0.615844 1.06667i −0.374392 0.927270i \(-0.622149\pi\)
0.990236 0.139402i \(-0.0445181\pi\)
\(600\) 0 0
\(601\) −18.9159 32.7634i −0.771598 1.33645i −0.936687 0.350168i \(-0.886125\pi\)
0.165089 0.986279i \(-0.447209\pi\)
\(602\) 0.470895 0.103221i 0.0191922 0.00420696i
\(603\) 0 0
\(604\) 29.2441 1.18992
\(605\) −9.92283 17.1869i −0.403421 0.698745i
\(606\) 0 0
\(607\) 6.70899 0.272309 0.136155 0.990688i \(-0.456526\pi\)
0.136155 + 0.990688i \(0.456526\pi\)
\(608\) −14.6441 25.3643i −0.593895 1.02866i
\(609\) 0 0
\(610\) 18.9737 0.768221
\(611\) −4.23956 1.50821i −0.171514 0.0610156i
\(612\) 0 0
\(613\) −20.1672 −0.814544 −0.407272 0.913307i \(-0.633520\pi\)
−0.407272 + 0.913307i \(0.633520\pi\)
\(614\) 6.71233 11.6261i 0.270888 0.469191i
\(615\) 0 0
\(616\) −4.07542 + 12.8192i −0.164203 + 0.516501i
\(617\) 2.98249 5.16582i 0.120071 0.207968i −0.799725 0.600367i \(-0.795021\pi\)
0.919795 + 0.392399i \(0.128355\pi\)
\(618\) 0 0
\(619\) 4.31420 7.47242i 0.173402 0.300342i −0.766205 0.642596i \(-0.777857\pi\)
0.939607 + 0.342255i \(0.111191\pi\)
\(620\) −10.6153 18.3862i −0.426320 0.738407i
\(621\) 0 0
\(622\) −12.6465 21.9043i −0.507077 0.878283i
\(623\) 27.0184 + 29.6265i 1.08247 + 1.18696i
\(624\) 0 0
\(625\) 15.4127 + 26.6956i 0.616507 + 1.06782i
\(626\) 22.7529 0.909388
\(627\) 0 0
\(628\) −0.862869 −0.0344322
\(629\) −53.8198 −2.14594
\(630\) 0 0
\(631\) −1.02888 + 1.78208i −0.0409592 + 0.0709434i −0.885778 0.464109i \(-0.846375\pi\)
0.844819 + 0.535052i \(0.179708\pi\)
\(632\) −8.47423 14.6778i −0.337087 0.583852i
\(633\) 0 0
\(634\) −10.2813 −0.408323
\(635\) −12.5780 + 21.7858i −0.499144 + 0.864542i
\(636\) 0 0
\(637\) −25.1372 + 2.26318i −0.995971 + 0.0896706i
\(638\) 2.22631 0.0881405
\(639\) 0 0
\(640\) 21.2321 0.839271
\(641\) −8.83114 15.2960i −0.348809 0.604155i 0.637229 0.770674i \(-0.280080\pi\)
−0.986038 + 0.166519i \(0.946747\pi\)
\(642\) 0 0
\(643\) −24.6023 + 42.6124i −0.970219 + 1.68047i −0.275334 + 0.961349i \(0.588788\pi\)
−0.694885 + 0.719121i \(0.744545\pi\)
\(644\) −1.33561 + 4.20115i −0.0526304 + 0.165548i
\(645\) 0 0
\(646\) −28.7894 −1.13270
\(647\) 15.4959 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(648\) 0 0
\(649\) −11.1235 19.2666i −0.436637 0.756278i
\(650\) −5.21934 1.85676i −0.204719 0.0728281i
\(651\) 0 0
\(652\) 11.9023 + 20.6154i 0.466131 + 0.807363i
\(653\) −18.3665 + 31.8117i −0.718738 + 1.24489i 0.242763 + 0.970086i \(0.421946\pi\)
−0.961500 + 0.274804i \(0.911387\pi\)
\(654\) 0 0
\(655\) 21.6687 37.5312i 0.846665 1.46647i
\(656\) 2.92613 0.114246
\(657\) 0 0
\(658\) 0.831593 2.61577i 0.0324189 0.101973i
\(659\) 5.48070 9.49284i 0.213498 0.369789i −0.739309 0.673366i \(-0.764848\pi\)
0.952807 + 0.303577i \(0.0981811\pi\)
\(660\) 0 0
\(661\) 16.0710 0.625091 0.312545 0.949903i \(-0.398818\pi\)
0.312545 + 0.949903i \(0.398818\pi\)
\(662\) 5.15634 8.93104i 0.200407 0.347115i
\(663\) 0 0
\(664\) −23.8682 −0.926268
\(665\) 34.2886 7.51609i 1.32965 0.291462i
\(666\) 0 0
\(667\) 1.84436 0.0714139
\(668\) −2.89495 + 5.01421i −0.112009 + 0.194005i
\(669\) 0 0
\(670\) −30.0916 −1.16254
\(671\) −16.1218 −0.622375
\(672\) 0 0
\(673\) 14.1074 + 24.4348i 0.543802 + 0.941892i 0.998681 + 0.0513390i \(0.0163489\pi\)
−0.454880 + 0.890553i \(0.650318\pi\)
\(674\) 6.58844 11.4115i 0.253777 0.439555i
\(675\) 0 0
\(676\) 15.9046 6.05249i 0.611714 0.232788i
\(677\) −17.5358 30.3729i −0.673956 1.16733i −0.976773 0.214277i \(-0.931260\pi\)
0.302817 0.953049i \(-0.402073\pi\)
\(678\) 0 0
\(679\) −21.6867 23.7802i −0.832259 0.912600i
\(680\) 24.5866 42.5852i 0.942851 1.63307i
\(681\) 0 0
\(682\) −4.76114 8.24654i −0.182313 0.315776i
\(683\) 24.1916 + 41.9011i 0.925666 + 1.60330i 0.790486 + 0.612480i \(0.209828\pi\)
0.135181 + 0.990821i \(0.456839\pi\)
\(684\) 0 0
\(685\) 13.8133 23.9254i 0.527781 0.914143i
\(686\) −1.90050 15.2772i −0.0725615 0.583287i
\(687\) 0 0
\(688\) 0.0363408 + 0.0629441i 0.00138548 + 0.00239972i
\(689\) 1.74650 + 9.49988i 0.0665363 + 0.361917i
\(690\) 0 0
\(691\) 12.0530 20.8764i 0.458518 0.794176i −0.540365 0.841431i \(-0.681714\pi\)
0.998883 + 0.0472547i \(0.0150473\pi\)
\(692\) −2.30417 3.99093i −0.0875913 0.151713i
\(693\) 0 0
\(694\) 10.7484 0.408005
\(695\) −23.9580 −0.908779
\(696\) 0 0
\(697\) 30.1423 52.2079i 1.14172 1.97752i
\(698\) 2.78061 0.105248
\(699\) 0 0
\(700\) −1.93949 + 6.10065i −0.0733059 + 0.230583i
\(701\) 3.07792 0.116251 0.0581257 0.998309i \(-0.481488\pi\)
0.0581257 + 0.998309i \(0.481488\pi\)
\(702\) 0 0
\(703\) −19.9714 + 34.5914i −0.753235 + 1.30464i
\(704\) 7.65016 0.288326
\(705\) 0 0
\(706\) 2.49983 4.32984i 0.0940825 0.162956i
\(707\) 3.68417 11.5885i 0.138557 0.435831i
\(708\) 0 0
\(709\) 35.9444 1.34992 0.674959 0.737855i \(-0.264161\pi\)
0.674959 + 0.737855i \(0.264161\pi\)
\(710\) 3.89022 6.73806i 0.145997 0.252875i
\(711\) 0 0
\(712\) 20.8429 36.1010i 0.781121 1.35294i
\(713\) −3.94430 6.83173i −0.147715 0.255850i
\(714\) 0 0
\(715\) 16.4315 + 5.84544i 0.614503 + 0.218607i
\(716\) −7.08200 12.2664i −0.264667 0.458416i
\(717\) 0 0
\(718\) 12.3851 0.462206
\(719\) −10.1952 −0.380217 −0.190108 0.981763i \(-0.560884\pi\)
−0.190108 + 0.981763i \(0.560884\pi\)
\(720\) 0 0
\(721\) −11.5062 + 2.52217i −0.428513 + 0.0939303i
\(722\) −2.78624 + 4.82590i −0.103693 + 0.179602i
\(723\) 0 0
\(724\) −15.0963 26.1476i −0.561051 0.971769i
\(725\) 2.67827 0.0994683
\(726\) 0 0
\(727\) −2.32372 −0.0861821 −0.0430911 0.999071i \(-0.513721\pi\)
−0.0430911 + 0.999071i \(0.513721\pi\)
\(728\) 10.1601 + 24.1924i 0.376558 + 0.896632i
\(729\) 0 0
\(730\) 7.10753 12.3106i 0.263061 0.455636i
\(731\) 1.49739 0.0553831
\(732\) 0 0
\(733\) 2.91958 + 5.05685i 0.107837 + 0.186779i 0.914894 0.403695i \(-0.132274\pi\)
−0.807057 + 0.590474i \(0.798941\pi\)
\(734\) 3.35889 5.81777i 0.123979 0.214738i
\(735\) 0 0
\(736\) 7.35314 0.271040
\(737\) 25.5687 0.941834
\(738\) 0 0
\(739\) 0.0211428 0.000777749 0.000388875 1.00000i \(-0.499876\pi\)
0.000388875 1.00000i \(0.499876\pi\)
\(740\) −13.4943 23.3728i −0.496060 0.859201i
\(741\) 0 0
\(742\) −5.75513 + 1.26153i −0.211277 + 0.0463122i
\(743\) 14.8332 + 25.6918i 0.544176 + 0.942541i 0.998658 + 0.0517853i \(0.0164911\pi\)
−0.454482 + 0.890756i \(0.650176\pi\)
\(744\) 0 0
\(745\) 14.2719 + 24.7197i 0.522883 + 0.905660i
\(746\) 4.68704 8.11819i 0.171605 0.297228i
\(747\) 0 0
\(748\) −8.26432 + 14.3142i −0.302173 + 0.523380i
\(749\) −12.8609 14.1024i −0.469927 0.515290i
\(750\) 0 0
\(751\) −6.30078 + 10.9133i −0.229919 + 0.398231i −0.957784 0.287489i \(-0.907179\pi\)
0.727865 + 0.685720i \(0.240513\pi\)
\(752\) 0.413824 0.0150906
\(753\) 0 0
\(754\) 3.30636 2.81565i 0.120411 0.102540i
\(755\) 58.4635 2.12770
\(756\) 0 0
\(757\) −8.13319 14.0871i −0.295606 0.512004i 0.679520 0.733657i \(-0.262188\pi\)
−0.975126 + 0.221653i \(0.928855\pi\)
\(758\) 14.8720 0.540177
\(759\) 0 0
\(760\) −18.2471 31.6049i −0.661891 1.14643i
\(761\) −46.2551 −1.67675 −0.838374 0.545096i \(-0.816493\pi\)
−0.838374 + 0.545096i \(0.816493\pi\)
\(762\) 0 0
\(763\) −15.5096 17.0068i −0.561486 0.615687i
\(764\) 1.19753 + 2.07419i 0.0433252 + 0.0750414i
\(765\) 0 0
\(766\) 0.0158392 0.0274344i 0.000572295 0.000991244i
\(767\) −40.8866 14.5452i −1.47633 0.525198i
\(768\) 0 0
\(769\) 19.2803 + 33.3944i 0.695264 + 1.20423i 0.970092 + 0.242739i \(0.0780460\pi\)
−0.274827 + 0.961494i \(0.588621\pi\)
\(770\) −3.22305 + 10.1381i −0.116151 + 0.365351i
\(771\) 0 0
\(772\) 2.06794 + 3.58177i 0.0744267 + 0.128911i
\(773\) −5.17723 8.96723i −0.186212 0.322529i 0.757772 0.652519i \(-0.226288\pi\)
−0.943984 + 0.329990i \(0.892954\pi\)
\(774\) 0 0
\(775\) −5.72768 9.92063i −0.205744 0.356360i
\(776\) −16.7299 + 28.9770i −0.600568 + 1.04021i
\(777\) 0 0
\(778\) −16.2805 28.1986i −0.583683 1.01097i
\(779\) −22.3703 38.7465i −0.801499 1.38824i
\(780\) 0 0
\(781\) −3.30550 + 5.72529i −0.118280 + 0.204867i
\(782\) 3.61397 6.25957i 0.129235 0.223842i
\(783\) 0 0
\(784\) 2.10825 0.970911i 0.0752946 0.0346754i
\(785\) −1.72501 −0.0615683
\(786\) 0 0
\(787\) −17.1440 29.6942i −0.611116 1.05848i −0.991053 0.133471i \(-0.957388\pi\)
0.379937 0.925012i \(-0.375946\pi\)
\(788\) 7.29906 12.6423i 0.260018 0.450365i
\(789\) 0 0
\(790\) −6.70184 11.6079i −0.238441 0.412992i
\(791\) 6.50818 + 7.13643i 0.231404 + 0.253742i
\(792\) 0 0
\(793\) −23.9430 + 20.3894i −0.850239 + 0.724050i
\(794\) −3.62899 + 6.28560i −0.128788 + 0.223068i
\(795\) 0 0
\(796\) 13.5809 23.5228i 0.481362 0.833743i
\(797\) −6.60638 + 11.4426i −0.234010 + 0.405317i −0.958984 0.283459i \(-0.908518\pi\)
0.724975 + 0.688776i \(0.241851\pi\)
\(798\) 0 0
\(799\) 4.26283 7.38343i 0.150808 0.261207i
\(800\) 10.6778 0.377517
\(801\) 0 0
\(802\) 10.0929 + 17.4815i 0.356394 + 0.617293i
\(803\) −6.03922 + 10.4602i −0.213120 + 0.369134i
\(804\) 0 0
\(805\) −2.67009 + 8.39875i −0.0941083 + 0.296017i
\(806\) −17.5004 6.22571i −0.616426 0.219291i
\(807\) 0 0
\(808\) −12.6421 −0.444746
\(809\) 50.9750 1.79219 0.896094 0.443865i \(-0.146393\pi\)
0.896094 + 0.443865i \(0.146393\pi\)
\(810\) 0 0
\(811\) 7.86969 0.276342 0.138171 0.990408i \(-0.455878\pi\)
0.138171 + 0.990408i \(0.455878\pi\)
\(812\) −3.38155 3.70798i −0.118669 0.130124i
\(813\) 0 0
\(814\) −6.05243 10.4831i −0.212138 0.367433i
\(815\) 23.7946 + 41.2135i 0.833488 + 1.44364i
\(816\) 0 0
\(817\) 0.555650 0.962415i 0.0194397 0.0336706i
\(818\) −16.3944 −0.573218
\(819\) 0 0
\(820\) 30.2304 1.05569
\(821\) −20.8357 + 36.0885i −0.727171 + 1.25950i 0.230904 + 0.972977i \(0.425832\pi\)
−0.958074 + 0.286520i \(0.907502\pi\)
\(822\) 0 0
\(823\) 7.85504 + 13.6053i 0.273809 + 0.474252i 0.969834 0.243766i \(-0.0783829\pi\)
−0.696025 + 0.718018i \(0.745050\pi\)
\(824\) 6.12315 + 10.6056i 0.213310 + 0.369464i
\(825\) 0 0
\(826\) 8.01993 25.2266i 0.279049 0.877746i
\(827\) −33.6343 −1.16958 −0.584789 0.811185i \(-0.698823\pi\)
−0.584789 + 0.811185i \(0.698823\pi\)
\(828\) 0 0
\(829\) −50.3021 −1.74706 −0.873532 0.486767i \(-0.838176\pi\)
−0.873532 + 0.486767i \(0.838176\pi\)
\(830\) −18.8762 −0.655202
\(831\) 0 0
\(832\) 11.3615 9.67525i 0.393889 0.335429i
\(833\) 4.39423 47.6167i 0.152251 1.64982i
\(834\) 0 0
\(835\) −5.78746 + 10.0242i −0.200283 + 0.346901i
\(836\) 6.13342 + 10.6234i 0.212129 + 0.367418i
\(837\) 0 0
\(838\) 18.4498 0.637338
\(839\) 19.2875 33.4069i 0.665877 1.15333i −0.313170 0.949697i \(-0.601391\pi\)
0.979047 0.203635i \(-0.0652757\pi\)
\(840\) 0 0
\(841\) 13.4502 23.2964i 0.463800 0.803326i
\(842\) 0.770881 1.33520i 0.0265663 0.0460142i
\(843\) 0 0
\(844\) −10.6917 + 18.5186i −0.368025 + 0.637437i
\(845\) 31.7957 12.0999i 1.09381 0.416248i
\(846\) 0 0
\(847\) −6.07890 + 19.1211i −0.208874 + 0.657010i
\(848\) −0.444145 0.769282i −0.0152520 0.0264173i
\(849\) 0 0
\(850\) 5.24798 9.08977i 0.180004 0.311777i
\(851\) −5.01406 8.68460i −0.171880 0.297704i
\(852\) 0 0
\(853\) 22.6889 0.776855 0.388427 0.921479i \(-0.373018\pi\)
0.388427 + 0.921479i \(0.373018\pi\)
\(854\) −12.9259 14.1736i −0.442314 0.485012i
\(855\) 0 0
\(856\) −9.92134 + 17.1843i −0.339104 + 0.587346i
\(857\) −10.2901 + 17.8230i −0.351504 + 0.608822i −0.986513 0.163682i \(-0.947663\pi\)
0.635009 + 0.772504i \(0.280996\pi\)
\(858\) 0 0
\(859\) 1.81131 + 3.13729i 0.0618012 + 0.107043i 0.895271 0.445523i \(-0.146982\pi\)
−0.833469 + 0.552566i \(0.813649\pi\)
\(860\) 0.375443 + 0.650286i 0.0128025 + 0.0221746i
\(861\) 0 0
\(862\) −15.7053 + 27.2023i −0.534923 + 0.926515i
\(863\) 3.99010 + 6.91105i 0.135824 + 0.235255i 0.925912 0.377739i \(-0.123298\pi\)
−0.790088 + 0.612994i \(0.789965\pi\)
\(864\) 0 0
\(865\) −4.60639 7.97850i −0.156622 0.271277i
\(866\) 14.6034 + 25.2938i 0.496244 + 0.859520i
\(867\) 0 0
\(868\) −6.50310 + 20.4555i −0.220730 + 0.694304i
\(869\) 5.69451 + 9.86318i 0.193173 + 0.334586i
\(870\) 0 0
\(871\) 37.9728 32.3370i 1.28666 1.09570i
\(872\) −11.9647 + 20.7234i −0.405174 + 0.701783i
\(873\) 0 0
\(874\) −2.68213 4.64558i −0.0907244 0.157139i
\(875\) 6.61123 20.7956i 0.223500 0.703019i
\(876\) 0 0
\(877\) −12.6000 −0.425470 −0.212735 0.977110i \(-0.568237\pi\)
−0.212735 + 0.977110i \(0.568237\pi\)
\(878\) −6.37881 11.0484i −0.215275 0.372866i
\(879\) 0 0
\(880\) −1.60388 −0.0540668
\(881\) −0.0834951 0.144618i −0.00281302 0.00487230i 0.864615 0.502434i \(-0.167562\pi\)
−0.867428 + 0.497562i \(0.834229\pi\)
\(882\) 0 0
\(883\) 1.54174 0.0518836 0.0259418 0.999663i \(-0.491742\pi\)
0.0259418 + 0.999663i \(0.491742\pi\)
\(884\) 5.82979 + 31.7105i 0.196077 + 1.06654i
\(885\) 0 0
\(886\) −24.1655 −0.811857
\(887\) −5.16683 + 8.94922i −0.173485 + 0.300485i −0.939636 0.342176i \(-0.888836\pi\)
0.766151 + 0.642661i \(0.222170\pi\)
\(888\) 0 0
\(889\) 24.8432 5.44565i 0.833213 0.182641i
\(890\) 16.4836 28.5504i 0.552532 0.957013i
\(891\) 0 0
\(892\) −12.1852 + 21.1055i −0.407992 + 0.706663i
\(893\) −3.16369 5.47967i −0.105869 0.183370i
\(894\) 0 0
\(895\) −14.1580 24.5224i −0.473250 0.819693i
\(896\) −14.4644 15.8607i −0.483223 0.529869i
\(897\) 0 0
\(898\) 0.981963 + 1.70081i 0.0327685 + 0.0567568i
\(899\) 8.98022 0.299507
\(900\) 0 0
\(901\) −18.3007 −0.609684
\(902\) 13.5589 0.451461
\(903\) 0 0
\(904\) 5.02064 8.69600i 0.166984 0.289225i
\(905\) −30.1799 52.2732i −1.00321 1.73762i
\(906\) 0 0
\(907\) 23.8992 0.793559 0.396780 0.917914i \(-0.370128\pi\)
0.396780 + 0.917914i \(0.370128\pi\)
\(908\) 14.7562 25.5586i 0.489703 0.848191i
\(909\) 0 0
\(910\) 8.03510 + 19.1326i 0.266361 + 0.634239i
\(911\) −14.3304 −0.474786 −0.237393 0.971414i \(-0.576293\pi\)
−0.237393 + 0.971414i \(0.576293\pi\)
\(912\) 0 0
\(913\) 16.0390 0.530813
\(914\) 6.96315 + 12.0605i 0.230321 + 0.398927i
\(915\) 0 0
\(916\) −12.6021 + 21.8275i −0.416386 + 0.721202i
\(917\) −42.7983 + 9.38143i −1.41333 + 0.309802i
\(918\) 0 0
\(919\) −54.3463 −1.79272 −0.896359 0.443329i \(-0.853797\pi\)
−0.896359 + 0.443329i \(0.853797\pi\)
\(920\) 9.16231 0.302072
\(921\) 0 0
\(922\) −10.4296 18.0646i −0.343480 0.594926i
\(923\) 2.33175 + 12.6833i 0.0767506 + 0.417476i
\(924\) 0 0
\(925\) −7.28111 12.6113i −0.239402 0.414656i
\(926\) 0.105675 0.183035i 0.00347271 0.00601491i
\(927\) 0 0
\(928\) −4.18533 + 7.24920i −0.137390 + 0.237967i
\(929\) −16.6711 −0.546961 −0.273480 0.961878i \(-0.588175\pi\)
−0.273480 + 0.961878i \(0.588175\pi\)
\(930\) 0 0
\(931\) −28.9739 20.4938i −0.949581 0.671657i
\(932\) −14.9590 + 25.9098i −0.490000 + 0.848704i
\(933\) 0 0
\(934\) −8.49796 −0.278062
\(935\) −16.5217 + 28.6164i −0.540316 + 0.935855i
\(936\) 0 0
\(937\) −2.55078 −0.0833303 −0.0416651 0.999132i \(-0.513266\pi\)
−0.0416651 + 0.999132i \(0.513266\pi\)
\(938\) 20.5000 + 22.4790i 0.669350 + 0.733964i
\(939\) 0 0
\(940\) 4.27529 0.139445
\(941\) −17.3944 + 30.1280i −0.567041 + 0.982144i 0.429815 + 0.902917i \(0.358579\pi\)
−0.996857 + 0.0792275i \(0.974755\pi\)
\(942\) 0 0
\(943\) 11.2327 0.365786
\(944\) 3.99095 0.129894
\(945\) 0 0
\(946\) 0.168393 + 0.291665i 0.00547493 + 0.00948285i
\(947\) 7.49284 12.9780i 0.243485 0.421728i −0.718220 0.695816i \(-0.755043\pi\)
0.961704 + 0.274088i \(0.0883761\pi\)
\(948\) 0 0
\(949\) 4.26017 + 23.1727i 0.138291 + 0.752218i
\(950\) −3.89483 6.74604i −0.126365 0.218870i
\(951\) 0 0
\(952\) −48.5615 + 10.6447i −1.57389 + 0.344998i
\(953\) 6.40858 11.1000i 0.207594 0.359564i −0.743362 0.668889i \(-0.766770\pi\)
0.950956 + 0.309326i \(0.100103\pi\)
\(954\) 0 0
\(955\) 2.39405 + 4.14662i 0.0774697 + 0.134181i
\(956\) 7.36328 + 12.7536i 0.238146 + 0.412480i
\(957\) 0 0
\(958\) −5.28177 + 9.14829i −0.170646 + 0.295568i
\(959\) −27.2831 + 5.98048i −0.881017 + 0.193120i
\(960\) 0 0
\(961\) −3.70488 6.41704i −0.119512 0.207001i
\(962\) −22.2468 7.91421i −0.717265 0.255164i
\(963\) 0 0
\(964\) 12.7277 22.0450i 0.409931 0.710021i
\(965\) 4.13413 + 7.16052i 0.133082 + 0.230505i
\(966\) 0 0
\(967\) 17.8560 0.574209 0.287105 0.957899i \(-0.407307\pi\)
0.287105 + 0.957899i \(0.407307\pi\)
\(968\) 20.8595 0.670450
\(969\) 0 0
\(970\) −13.2308 + 22.9165i −0.424816 + 0.735803i
\(971\) −35.3067 −1.13305 −0.566523 0.824046i \(-0.691712\pi\)
−0.566523 + 0.824046i \(0.691712\pi\)
\(972\) 0 0
\(973\) 16.3215 + 17.8971i 0.523243 + 0.573753i
\(974\) 17.0256 0.545537
\(975\) 0 0
\(976\) 1.44606 2.50465i 0.0462872 0.0801718i
\(977\) −19.1054 −0.611237 −0.305618 0.952154i \(-0.598863\pi\)
−0.305618 + 0.952154i \(0.598863\pi\)
\(978\) 0 0
\(979\) −14.0060 + 24.2591i −0.447634 + 0.775325i
\(980\) 21.7807 10.0307i 0.695758 0.320417i
\(981\) 0 0
\(982\) −16.4936 −0.526333
\(983\) 18.4765 32.0022i 0.589308 1.02071i −0.405015 0.914310i \(-0.632734\pi\)
0.994323 0.106402i \(-0.0339331\pi\)
\(984\) 0 0
\(985\) 14.5920 25.2740i 0.464939 0.805297i
\(986\) 4.11406 + 7.12576i 0.131018 + 0.226930i
\(987\) 0 0
\(988\) 22.5445 + 8.02012i 0.717236 + 0.255154i
\(989\) 0.139503 + 0.241626i 0.00443593 + 0.00768326i
\(990\) 0 0
\(991\) 55.8372 1.77373 0.886863 0.462032i \(-0.152879\pi\)
0.886863 + 0.462032i \(0.152879\pi\)
\(992\) 35.8026 1.13673
\(993\) 0 0
\(994\) −7.68368 + 1.68427i −0.243711 + 0.0534218i
\(995\) 27.1503 47.0257i 0.860722 1.49081i
\(996\) 0 0
\(997\) 11.4391 + 19.8131i 0.362280 + 0.627488i 0.988336 0.152291i \(-0.0486650\pi\)
−0.626056 + 0.779778i \(0.715332\pi\)
\(998\) 23.1784 0.733699
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.n.e.172.3 16
3.2 odd 2 273.2.j.b.172.6 yes 16
7.2 even 3 819.2.s.e.289.6 16
13.9 even 3 819.2.s.e.802.6 16
21.2 odd 6 273.2.l.b.16.3 yes 16
39.35 odd 6 273.2.l.b.256.3 yes 16
91.9 even 3 inner 819.2.n.e.100.3 16
273.191 odd 6 273.2.j.b.100.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.b.100.6 16 273.191 odd 6
273.2.j.b.172.6 yes 16 3.2 odd 2
273.2.l.b.16.3 yes 16 21.2 odd 6
273.2.l.b.256.3 yes 16 39.35 odd 6
819.2.n.e.100.3 16 91.9 even 3 inner
819.2.n.e.172.3 16 1.1 even 1 trivial
819.2.s.e.289.6 16 7.2 even 3
819.2.s.e.802.6 16 13.9 even 3