Properties

Label 273.2.j.b.100.6
Level $273$
Weight $2$
Character 273.100
Analytic conductor $2.180$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Defining polynomial: \(x^{16} + 11 x^{14} - 4 x^{13} + 87 x^{12} - 35 x^{11} + 326 x^{10} - 205 x^{9} + 895 x^{8} - 481 x^{7} + 1005 x^{6} - 544 x^{5} + 811 x^{4} - 312 x^{3} + 195 x^{2} + 13 x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.6
Root \(0.415625 + 0.719884i\) of defining polynomial
Character \(\chi\) \(=\) 273.100
Dual form 273.2.j.b.172.6

$q$-expansion

\(f(q)\) \(=\) \(q+(0.415625 + 0.719884i) q^{2} -1.00000 q^{3} +(0.654511 - 1.13365i) q^{4} +(-1.30847 + 2.26634i) q^{5} +(-0.415625 - 0.719884i) q^{6} +(0.801591 + 2.52140i) q^{7} +2.75063 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(0.415625 + 0.719884i) q^{2} -1.00000 q^{3} +(0.654511 - 1.13365i) q^{4} +(-1.30847 + 2.26634i) q^{5} +(-0.415625 - 0.719884i) q^{6} +(0.801591 + 2.52140i) q^{7} +2.75063 q^{8} +1.00000 q^{9} -2.17533 q^{10} -1.84837 q^{11} +(-0.654511 + 1.13365i) q^{12} +(2.74506 + 2.33765i) q^{13} +(-1.48195 + 1.62501i) q^{14} +(1.30847 - 2.26634i) q^{15} +(-0.165791 - 0.287158i) q^{16} +(-3.41564 + 5.91607i) q^{17} +(0.415625 + 0.719884i) q^{18} +5.06988 q^{19} +(1.71281 + 2.96668i) q^{20} +(-0.801591 - 2.52140i) q^{21} +(-0.768228 - 1.33061i) q^{22} +(0.636428 + 1.10233i) q^{23} -2.75063 q^{24} +(-0.924183 - 1.60073i) q^{25} +(-0.541921 + 2.94772i) q^{26} -1.00000 q^{27} +(3.38302 + 0.741562i) q^{28} +(0.724496 - 1.25486i) q^{29} +2.17533 q^{30} +(-3.09878 - 5.36725i) q^{31} +(2.88844 - 5.00293i) q^{32} +1.84837 q^{33} -5.67851 q^{34} +(-6.76319 - 1.48250i) q^{35} +(0.654511 - 1.13365i) q^{36} +(-3.93922 - 6.82292i) q^{37} +(2.10717 + 3.64973i) q^{38} +(-2.74506 - 2.33765i) q^{39} +(-3.59911 + 6.23384i) q^{40} +(4.41239 - 7.64248i) q^{41} +(1.48195 - 1.62501i) q^{42} +(0.109598 + 0.189830i) q^{43} +(-1.20978 + 2.09539i) q^{44} +(-1.30847 + 2.26634i) q^{45} +(-0.529032 + 0.916310i) q^{46} +(0.624016 - 1.08083i) q^{47} +(0.165791 + 0.287158i) q^{48} +(-5.71490 + 4.04226i) q^{49} +(0.768228 - 1.33061i) q^{50} +(3.41564 - 5.91607i) q^{51} +(4.44675 - 1.58191i) q^{52} +(1.33947 + 2.32004i) q^{53} +(-0.415625 - 0.719884i) q^{54} +(2.41853 - 4.18902i) q^{55} +(2.20488 + 6.93543i) q^{56} -5.06988 q^{57} +1.20448 q^{58} +(6.01804 - 10.4236i) q^{59} +(-1.71281 - 2.96668i) q^{60} -8.72218 q^{61} +(2.57586 - 4.46153i) q^{62} +(0.801591 + 2.52140i) q^{63} +4.13888 q^{64} +(-8.88974 + 3.16249i) q^{65} +(0.768228 + 1.33061i) q^{66} +13.8331 q^{67} +(4.47115 + 7.74426i) q^{68} +(-0.636428 - 1.10233i) q^{69} +(-1.74373 - 5.48488i) q^{70} +(1.78833 + 3.09749i) q^{71} +2.75063 q^{72} +(-3.26733 - 5.65918i) q^{73} +(3.27448 - 5.67156i) q^{74} +(0.924183 + 1.60073i) q^{75} +(3.31829 - 5.74745i) q^{76} +(-1.48163 - 4.66047i) q^{77} +(0.541921 - 2.94772i) q^{78} +(3.08084 - 5.33616i) q^{79} +0.867729 q^{80} +1.00000 q^{81} +7.33560 q^{82} -8.67738 q^{83} +(-3.38302 - 0.741562i) q^{84} +(-8.93852 - 15.4820i) q^{85} +(-0.0911037 + 0.157796i) q^{86} +(-0.724496 + 1.25486i) q^{87} -5.08417 q^{88} +(7.57751 + 13.1246i) q^{89} -2.17533 q^{90} +(-3.69373 + 8.79524i) q^{91} +1.66620 q^{92} +(3.09878 + 5.36725i) q^{93} +1.03743 q^{94} +(-6.63379 + 11.4901i) q^{95} +(-2.88844 + 5.00293i) q^{96} +(6.08221 + 10.5347i) q^{97} +(-5.28522 - 2.43400i) q^{98} -1.84837 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 16q^{3} - 6q^{4} + q^{7} + 12q^{8} + 16q^{9} + O(q^{10}) \) \( 16q - 16q^{3} - 6q^{4} + q^{7} + 12q^{8} + 16q^{9} + 8q^{10} + 4q^{11} + 6q^{12} + 5q^{13} - 7q^{14} - 6q^{16} - 2q^{17} + 22q^{19} - 20q^{20} - q^{21} + 7q^{22} + 4q^{23} - 12q^{24} + 2q^{25} - 6q^{26} - 16q^{27} - 7q^{28} + 15q^{29} - 8q^{30} + 3q^{31} + 3q^{32} - 4q^{33} - 68q^{34} - 12q^{35} - 6q^{36} + 4q^{37} + 2q^{38} - 5q^{39} - 25q^{40} + 19q^{41} + 7q^{42} + 11q^{43} - 16q^{44} + 2q^{46} + 5q^{47} + 6q^{48} + 13q^{49} - 7q^{50} + 2q^{51} + 36q^{52} + 36q^{53} - 15q^{55} + 39q^{56} - 22q^{57} - 40q^{58} - 17q^{59} + 20q^{60} + 44q^{61} - 6q^{62} + q^{63} - 20q^{64} - 21q^{65} - 7q^{66} - 52q^{67} + 5q^{68} - 4q^{69} + 46q^{70} + 9q^{71} + 12q^{72} - 6q^{73} + 15q^{74} - 2q^{75} - 16q^{76} - 36q^{77} + 6q^{78} + 16q^{79} + 56q^{80} + 16q^{81} + 2q^{82} + 36q^{83} + 7q^{84} - 4q^{85} + 16q^{86} - 15q^{87} - 48q^{88} + 20q^{89} + 8q^{90} - 7q^{91} - 94q^{92} - 3q^{93} + 40q^{94} - 3q^{96} + 7q^{97} - 3q^{98} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.415625 + 0.719884i 0.293892 + 0.509035i 0.974726 0.223402i \(-0.0717162\pi\)
−0.680835 + 0.732437i \(0.738383\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.654511 1.13365i 0.327255 0.566823i
\(5\) −1.30847 + 2.26634i −0.585165 + 1.01354i 0.409690 + 0.912225i \(0.365637\pi\)
−0.994855 + 0.101311i \(0.967696\pi\)
\(6\) −0.415625 0.719884i −0.169678 0.293892i
\(7\) 0.801591 + 2.52140i 0.302973 + 0.952999i
\(8\) 2.75063 0.972494
\(9\) 1.00000 0.333333
\(10\) −2.17533 −0.687901
\(11\) −1.84837 −0.557303 −0.278652 0.960392i \(-0.589887\pi\)
−0.278652 + 0.960392i \(0.589887\pi\)
\(12\) −0.654511 + 1.13365i −0.188941 + 0.327255i
\(13\) 2.74506 + 2.33765i 0.761344 + 0.648348i
\(14\) −1.48195 + 1.62501i −0.396069 + 0.434302i
\(15\) 1.30847 2.26634i 0.337845 0.585165i
\(16\) −0.165791 0.287158i −0.0414477 0.0717896i
\(17\) −3.41564 + 5.91607i −0.828415 + 1.43486i 0.0708664 + 0.997486i \(0.477424\pi\)
−0.899281 + 0.437371i \(0.855910\pi\)
\(18\) 0.415625 + 0.719884i 0.0979639 + 0.169678i
\(19\) 5.06988 1.16311 0.581556 0.813507i \(-0.302444\pi\)
0.581556 + 0.813507i \(0.302444\pi\)
\(20\) 1.71281 + 2.96668i 0.382997 + 0.663370i
\(21\) −0.801591 2.52140i −0.174922 0.550214i
\(22\) −0.768228 1.33061i −0.163787 0.283687i
\(23\) 0.636428 + 1.10233i 0.132704 + 0.229851i 0.924718 0.380652i \(-0.124301\pi\)
−0.792014 + 0.610503i \(0.790967\pi\)
\(24\) −2.75063 −0.561470
\(25\) −0.924183 1.60073i −0.184837 0.320146i
\(26\) −0.541921 + 2.94772i −0.106279 + 0.578095i
\(27\) −1.00000 −0.192450
\(28\) 3.38302 + 0.741562i 0.639331 + 0.140142i
\(29\) 0.724496 1.25486i 0.134536 0.233022i −0.790884 0.611966i \(-0.790379\pi\)
0.925420 + 0.378943i \(0.123712\pi\)
\(30\) 2.17533 0.397160
\(31\) −3.09878 5.36725i −0.556557 0.963986i −0.997781 0.0665883i \(-0.978789\pi\)
0.441223 0.897397i \(-0.354545\pi\)
\(32\) 2.88844 5.00293i 0.510609 0.884401i
\(33\) 1.84837 0.321759
\(34\) −5.67851 −0.973857
\(35\) −6.76319 1.48250i −1.14319 0.250588i
\(36\) 0.654511 1.13365i 0.109085 0.188941i
\(37\) −3.93922 6.82292i −0.647603 1.12168i −0.983694 0.179852i \(-0.942438\pi\)
0.336090 0.941830i \(-0.390895\pi\)
\(38\) 2.10717 + 3.64973i 0.341829 + 0.592064i
\(39\) −2.74506 2.33765i −0.439562 0.374324i
\(40\) −3.59911 + 6.23384i −0.569069 + 0.985657i
\(41\) 4.41239 7.64248i 0.689099 1.19355i −0.283031 0.959111i \(-0.591340\pi\)
0.972130 0.234444i \(-0.0753268\pi\)
\(42\) 1.48195 1.62501i 0.228670 0.250745i
\(43\) 0.109598 + 0.189830i 0.0167136 + 0.0289488i 0.874261 0.485456i \(-0.161346\pi\)
−0.857548 + 0.514405i \(0.828013\pi\)
\(44\) −1.20978 + 2.09539i −0.182381 + 0.315892i
\(45\) −1.30847 + 2.26634i −0.195055 + 0.337845i
\(46\) −0.529032 + 0.916310i −0.0780015 + 0.135103i
\(47\) 0.624016 1.08083i 0.0910220 0.157655i −0.816919 0.576752i \(-0.804320\pi\)
0.907941 + 0.419097i \(0.137653\pi\)
\(48\) 0.165791 + 0.287158i 0.0239299 + 0.0414477i
\(49\) −5.71490 + 4.04226i −0.816415 + 0.577466i
\(50\) 0.768228 1.33061i 0.108644 0.188177i
\(51\) 3.41564 5.91607i 0.478286 0.828415i
\(52\) 4.44675 1.58191i 0.616653 0.219372i
\(53\) 1.33947 + 2.32004i 0.183991 + 0.318682i 0.943236 0.332123i \(-0.107765\pi\)
−0.759245 + 0.650805i \(0.774432\pi\)
\(54\) −0.415625 0.719884i −0.0565595 0.0979639i
\(55\) 2.41853 4.18902i 0.326114 0.564847i
\(56\) 2.20488 + 6.93543i 0.294639 + 0.926786i
\(57\) −5.06988 −0.671522
\(58\) 1.20448 0.158155
\(59\) 6.01804 10.4236i 0.783483 1.35703i −0.146419 0.989223i \(-0.546775\pi\)
0.929901 0.367809i \(-0.119892\pi\)
\(60\) −1.71281 2.96668i −0.221123 0.382997i
\(61\) −8.72218 −1.11676 −0.558381 0.829585i \(-0.688577\pi\)
−0.558381 + 0.829585i \(0.688577\pi\)
\(62\) 2.57586 4.46153i 0.327135 0.566615i
\(63\) 0.801591 + 2.52140i 0.100991 + 0.317666i
\(64\) 4.13888 0.517359
\(65\) −8.88974 + 3.16249i −1.10264 + 0.392259i
\(66\) 0.768228 + 1.33061i 0.0945623 + 0.163787i
\(67\) 13.8331 1.68998 0.844992 0.534779i \(-0.179605\pi\)
0.844992 + 0.534779i \(0.179605\pi\)
\(68\) 4.47115 + 7.74426i 0.542207 + 0.939129i
\(69\) −0.636428 1.10233i −0.0766170 0.132704i
\(70\) −1.74373 5.48488i −0.208415 0.655569i
\(71\) 1.78833 + 3.09749i 0.212236 + 0.367604i 0.952414 0.304807i \(-0.0985920\pi\)
−0.740178 + 0.672411i \(0.765259\pi\)
\(72\) 2.75063 0.324165
\(73\) −3.26733 5.65918i −0.382412 0.662357i 0.608994 0.793175i \(-0.291573\pi\)
−0.991406 + 0.130817i \(0.958240\pi\)
\(74\) 3.27448 5.67156i 0.380650 0.659306i
\(75\) 0.924183 + 1.60073i 0.106715 + 0.184837i
\(76\) 3.31829 5.74745i 0.380634 0.659278i
\(77\) −1.48163 4.66047i −0.168848 0.531110i
\(78\) 0.541921 2.94772i 0.0613605 0.333763i
\(79\) 3.08084 5.33616i 0.346621 0.600365i −0.639026 0.769185i \(-0.720662\pi\)
0.985647 + 0.168820i \(0.0539956\pi\)
\(80\) 0.867729 0.0970151
\(81\) 1.00000 0.111111
\(82\) 7.33560 0.810082
\(83\) −8.67738 −0.952467 −0.476233 0.879319i \(-0.657998\pi\)
−0.476233 + 0.879319i \(0.657998\pi\)
\(84\) −3.38302 0.741562i −0.369118 0.0809110i
\(85\) −8.93852 15.4820i −0.969519 1.67926i
\(86\) −0.0911037 + 0.157796i −0.00982396 + 0.0170156i
\(87\) −0.724496 + 1.25486i −0.0776741 + 0.134536i
\(88\) −5.08417 −0.541974
\(89\) 7.57751 + 13.1246i 0.803215 + 1.39121i 0.917490 + 0.397760i \(0.130212\pi\)
−0.114275 + 0.993449i \(0.536454\pi\)
\(90\) −2.17533 −0.229300
\(91\) −3.69373 + 8.79524i −0.387209 + 0.921992i
\(92\) 1.66620 0.173713
\(93\) 3.09878 + 5.36725i 0.321329 + 0.556557i
\(94\) 1.03743 0.107002
\(95\) −6.63379 + 11.4901i −0.680612 + 1.17885i
\(96\) −2.88844 + 5.00293i −0.294800 + 0.510609i
\(97\) 6.08221 + 10.5347i 0.617554 + 1.06964i 0.989931 + 0.141554i \(0.0452098\pi\)
−0.372376 + 0.928082i \(0.621457\pi\)
\(98\) −5.28522 2.43400i −0.533888 0.245871i
\(99\) −1.84837 −0.185768
\(100\) −2.41955 −0.241955
\(101\) −4.59607 −0.457326 −0.228663 0.973506i \(-0.573435\pi\)
−0.228663 + 0.973506i \(0.573435\pi\)
\(102\) 5.67851 0.562256
\(103\) −2.22609 + 3.85570i −0.219343 + 0.379914i −0.954607 0.297867i \(-0.903725\pi\)
0.735264 + 0.677781i \(0.237058\pi\)
\(104\) 7.55065 + 6.43001i 0.740402 + 0.630515i
\(105\) 6.76319 + 1.48250i 0.660020 + 0.144677i
\(106\) −1.11344 + 1.92853i −0.108147 + 0.187316i
\(107\) −3.60694 6.24740i −0.348696 0.603959i 0.637322 0.770597i \(-0.280042\pi\)
−0.986018 + 0.166639i \(0.946709\pi\)
\(108\) −0.654511 + 1.13365i −0.0629803 + 0.109085i
\(109\) 4.34979 + 7.53406i 0.416635 + 0.721632i 0.995599 0.0937209i \(-0.0298761\pi\)
−0.578964 + 0.815353i \(0.696543\pi\)
\(110\) 4.02081 0.383369
\(111\) 3.93922 + 6.82292i 0.373894 + 0.647603i
\(112\) 0.591144 0.648208i 0.0558578 0.0612499i
\(113\) 1.82527 + 3.16146i 0.171707 + 0.297405i 0.939017 0.343871i \(-0.111738\pi\)
−0.767310 + 0.641277i \(0.778405\pi\)
\(114\) −2.10717 3.64973i −0.197355 0.341829i
\(115\) −3.33099 −0.310616
\(116\) −0.948381 1.64264i −0.0880550 0.152516i
\(117\) 2.74506 + 2.33765i 0.253781 + 0.216116i
\(118\) 10.0050 0.921036
\(119\) −17.6547 3.86993i −1.61840 0.354756i
\(120\) 3.59911 6.23384i 0.328552 0.569069i
\(121\) −7.58354 −0.689413
\(122\) −3.62516 6.27896i −0.328207 0.568471i
\(123\) −4.41239 + 7.64248i −0.397852 + 0.689099i
\(124\) −8.11274 −0.728546
\(125\) −8.24763 −0.737691
\(126\) −1.48195 + 1.62501i −0.132023 + 0.144767i
\(127\) 4.80639 8.32491i 0.426498 0.738716i −0.570061 0.821602i \(-0.693080\pi\)
0.996559 + 0.0828862i \(0.0264138\pi\)
\(128\) −4.05666 7.02634i −0.358562 0.621047i
\(129\) −0.109598 0.189830i −0.00964959 0.0167136i
\(130\) −5.97143 5.08517i −0.523729 0.445999i
\(131\) 8.28016 14.3417i 0.723441 1.25304i −0.236172 0.971711i \(-0.575893\pi\)
0.959613 0.281325i \(-0.0907738\pi\)
\(132\) 1.20978 2.09539i 0.105297 0.182381i
\(133\) 4.06397 + 12.7832i 0.352391 + 1.10844i
\(134\) 5.74940 + 9.95825i 0.496672 + 0.860261i
\(135\) 1.30847 2.26634i 0.112615 0.195055i
\(136\) −9.39516 + 16.2729i −0.805628 + 1.39539i
\(137\) 5.27844 9.14252i 0.450967 0.781098i −0.547479 0.836819i \(-0.684412\pi\)
0.998446 + 0.0557212i \(0.0177458\pi\)
\(138\) 0.529032 0.916310i 0.0450342 0.0780015i
\(139\) −4.57749 7.92845i −0.388258 0.672482i 0.603958 0.797016i \(-0.293590\pi\)
−0.992215 + 0.124534i \(0.960256\pi\)
\(140\) −6.10721 + 6.69676i −0.516154 + 0.565979i
\(141\) −0.624016 + 1.08083i −0.0525516 + 0.0910220i
\(142\) −1.48655 + 2.57479i −0.124749 + 0.216071i
\(143\) −5.07388 4.32084i −0.424299 0.361327i
\(144\) −0.165791 0.287158i −0.0138159 0.0239299i
\(145\) 1.89596 + 3.28390i 0.157451 + 0.272713i
\(146\) 2.71597 4.70420i 0.224775 0.389322i
\(147\) 5.71490 4.04226i 0.471357 0.333400i
\(148\) −10.3130 −0.847727
\(149\) −10.9073 −0.893565 −0.446782 0.894643i \(-0.647430\pi\)
−0.446782 + 0.894643i \(0.647430\pi\)
\(150\) −0.768228 + 1.33061i −0.0627255 + 0.108644i
\(151\) 11.1702 + 19.3474i 0.909018 + 1.57447i 0.815430 + 0.578855i \(0.196500\pi\)
0.0935880 + 0.995611i \(0.470166\pi\)
\(152\) 13.9454 1.13112
\(153\) −3.41564 + 5.91607i −0.276138 + 0.478286i
\(154\) 2.73919 3.00361i 0.220730 0.242038i
\(155\) 16.2186 1.30271
\(156\) −4.44675 + 1.58191i −0.356025 + 0.126654i
\(157\) −0.329586 0.570859i −0.0263038 0.0455595i 0.852574 0.522607i \(-0.175040\pi\)
−0.878878 + 0.477047i \(0.841707\pi\)
\(158\) 5.12190 0.407476
\(159\) −1.33947 2.32004i −0.106227 0.183991i
\(160\) 7.55887 + 13.0924i 0.597581 + 1.03504i
\(161\) −2.26925 + 2.48830i −0.178842 + 0.196106i
\(162\) 0.415625 + 0.719884i 0.0326546 + 0.0565595i
\(163\) 18.1851 1.42436 0.712182 0.701995i \(-0.247707\pi\)
0.712182 + 0.701995i \(0.247707\pi\)
\(164\) −5.77591 10.0042i −0.451023 0.781194i
\(165\) −2.41853 + 4.18902i −0.188282 + 0.326114i
\(166\) −3.60654 6.24671i −0.279922 0.484839i
\(167\) −2.21154 + 3.83050i −0.171134 + 0.296413i −0.938817 0.344417i \(-0.888076\pi\)
0.767683 + 0.640830i \(0.221410\pi\)
\(168\) −2.20488 6.93543i −0.170110 0.535080i
\(169\) 2.07076 + 12.8340i 0.159289 + 0.987232i
\(170\) 7.43016 12.8694i 0.569867 0.987039i
\(171\) 5.06988 0.387704
\(172\) 0.286933 0.0218784
\(173\) 3.52044 0.267654 0.133827 0.991005i \(-0.457273\pi\)
0.133827 + 0.991005i \(0.457273\pi\)
\(174\) −1.20448 −0.0913111
\(175\) 3.29527 3.61337i 0.249099 0.273145i
\(176\) 0.306442 + 0.530773i 0.0230990 + 0.0400086i
\(177\) −6.01804 + 10.4236i −0.452344 + 0.783483i
\(178\) −6.29881 + 10.9099i −0.472116 + 0.817729i
\(179\) 10.8203 0.808746 0.404373 0.914594i \(-0.367490\pi\)
0.404373 + 0.914594i \(0.367490\pi\)
\(180\) 1.71281 + 2.96668i 0.127666 + 0.221123i
\(181\) −23.0651 −1.71441 −0.857207 0.514973i \(-0.827802\pi\)
−0.857207 + 0.514973i \(0.827802\pi\)
\(182\) −7.86677 + 0.996466i −0.583124 + 0.0738630i
\(183\) 8.72218 0.644762
\(184\) 1.75058 + 3.03209i 0.129054 + 0.223529i
\(185\) 20.6174 1.51582
\(186\) −2.57586 + 4.46153i −0.188872 + 0.327135i
\(187\) 6.31336 10.9351i 0.461678 0.799650i
\(188\) −0.816850 1.41483i −0.0595749 0.103187i
\(189\) −0.801591 2.52140i −0.0583072 0.183405i
\(190\) −11.0287 −0.800105
\(191\) −1.82966 −0.132389 −0.0661947 0.997807i \(-0.521086\pi\)
−0.0661947 + 0.997807i \(0.521086\pi\)
\(192\) −4.13888 −0.298698
\(193\) 3.15951 0.227427 0.113713 0.993514i \(-0.463725\pi\)
0.113713 + 0.993514i \(0.463725\pi\)
\(194\) −5.05584 + 8.75697i −0.362988 + 0.628714i
\(195\) 8.88974 3.16249i 0.636607 0.226471i
\(196\) 0.842029 + 9.12438i 0.0601450 + 0.651742i
\(197\) 5.57597 9.65786i 0.397271 0.688094i −0.596117 0.802898i \(-0.703291\pi\)
0.993388 + 0.114804i \(0.0366239\pi\)
\(198\) −0.768228 1.33061i −0.0545956 0.0945623i
\(199\) −10.3748 + 17.9697i −0.735452 + 1.27384i 0.219072 + 0.975709i \(0.429697\pi\)
−0.954525 + 0.298132i \(0.903636\pi\)
\(200\) −2.54208 4.40302i −0.179752 0.311340i
\(201\) −13.8331 −0.975713
\(202\) −1.91024 3.30864i −0.134404 0.232795i
\(203\) 3.74476 + 0.820855i 0.262831 + 0.0576127i
\(204\) −4.47115 7.74426i −0.313043 0.542207i
\(205\) 11.5469 + 19.9999i 0.806474 + 1.39685i
\(206\) −3.70088 −0.257853
\(207\) 0.636428 + 1.10233i 0.0442348 + 0.0766170i
\(208\) 0.216169 1.17583i 0.0149887 0.0815291i
\(209\) −9.37100 −0.648206
\(210\) 1.74373 + 5.48488i 0.120329 + 0.378493i
\(211\) 8.16773 14.1469i 0.562289 0.973914i −0.435007 0.900427i \(-0.643254\pi\)
0.997296 0.0734866i \(-0.0234126\pi\)
\(212\) 3.50680 0.240848
\(213\) −1.78833 3.09749i −0.122535 0.212236i
\(214\) 2.99827 5.19316i 0.204957 0.354997i
\(215\) −0.573624 −0.0391208
\(216\) −2.75063 −0.187157
\(217\) 11.0490 12.1156i 0.750056 0.822460i
\(218\) −3.61577 + 6.26270i −0.244891 + 0.424163i
\(219\) 3.26733 + 5.65918i 0.220786 + 0.382412i
\(220\) −3.16591 5.48351i −0.213445 0.369698i
\(221\) −23.2059 + 8.25540i −1.56100 + 0.555318i
\(222\) −3.27448 + 5.67156i −0.219769 + 0.380650i
\(223\) 9.30867 16.1231i 0.623355 1.07968i −0.365502 0.930811i \(-0.619103\pi\)
0.988857 0.148871i \(-0.0475640\pi\)
\(224\) 14.9297 + 3.27261i 0.997534 + 0.218660i
\(225\) −0.924183 1.60073i −0.0616122 0.106715i
\(226\) −1.51726 + 2.62797i −0.100926 + 0.174810i
\(227\) 11.2727 19.5249i 0.748197 1.29592i −0.200489 0.979696i \(-0.564253\pi\)
0.948686 0.316220i \(-0.102414\pi\)
\(228\) −3.31829 + 5.74745i −0.219759 + 0.380634i
\(229\) 9.62713 16.6747i 0.636179 1.10189i −0.350085 0.936718i \(-0.613847\pi\)
0.986264 0.165176i \(-0.0528193\pi\)
\(230\) −1.38444 2.39793i −0.0912875 0.158115i
\(231\) 1.48163 + 4.66047i 0.0974844 + 0.306636i
\(232\) 1.99282 3.45166i 0.130835 0.226613i
\(233\) −11.4276 + 19.7933i −0.748650 + 1.29670i 0.199820 + 0.979833i \(0.435964\pi\)
−0.948470 + 0.316867i \(0.897369\pi\)
\(234\) −0.541921 + 2.94772i −0.0354265 + 0.192698i
\(235\) 1.63301 + 2.82846i 0.106526 + 0.184508i
\(236\) −7.87775 13.6447i −0.512798 0.888192i
\(237\) −3.08084 + 5.33616i −0.200122 + 0.346621i
\(238\) −4.55185 14.3178i −0.295052 0.928085i
\(239\) −11.2501 −0.727705 −0.363853 0.931457i \(-0.618539\pi\)
−0.363853 + 0.931457i \(0.618539\pi\)
\(240\) −0.867729 −0.0560117
\(241\) −9.72305 + 16.8408i −0.626316 + 1.08481i 0.361968 + 0.932190i \(0.382105\pi\)
−0.988285 + 0.152621i \(0.951228\pi\)
\(242\) −3.15191 5.45928i −0.202613 0.350936i
\(243\) −1.00000 −0.0641500
\(244\) −5.70876 + 9.88787i −0.365466 + 0.633006i
\(245\) −1.68335 18.2411i −0.107545 1.16538i
\(246\) −7.33560 −0.467701
\(247\) 13.9172 + 11.8516i 0.885528 + 0.754101i
\(248\) −8.52359 14.7633i −0.541249 0.937470i
\(249\) 8.67738 0.549907
\(250\) −3.42793 5.93734i −0.216801 0.375510i
\(251\) −8.79293 15.2298i −0.555005 0.961297i −0.997903 0.0647248i \(-0.979383\pi\)
0.442898 0.896572i \(-0.353950\pi\)
\(252\) 3.38302 + 0.741562i 0.213110 + 0.0467140i
\(253\) −1.17635 2.03750i −0.0739566 0.128097i
\(254\) 7.99063 0.501377
\(255\) 8.93852 + 15.4820i 0.559752 + 0.969519i
\(256\) 7.51098 13.0094i 0.469436 0.813087i
\(257\) −7.59362 13.1525i −0.473677 0.820432i 0.525869 0.850565i \(-0.323740\pi\)
−0.999546 + 0.0301333i \(0.990407\pi\)
\(258\) 0.0911037 0.157796i 0.00567187 0.00982396i
\(259\) 14.0457 15.4015i 0.872755 0.957005i
\(260\) −2.23328 + 12.1477i −0.138502 + 0.753368i
\(261\) 0.724496 1.25486i 0.0448452 0.0776741i
\(262\) 13.7658 0.850453
\(263\) −13.9699 −0.861422 −0.430711 0.902490i \(-0.641737\pi\)
−0.430711 + 0.902490i \(0.641737\pi\)
\(264\) 5.08417 0.312909
\(265\) −7.01065 −0.430661
\(266\) −7.51333 + 8.23862i −0.460672 + 0.505142i
\(267\) −7.57751 13.1246i −0.463736 0.803215i
\(268\) 9.05393 15.6819i 0.553057 0.957922i
\(269\) 14.4628 25.0503i 0.881813 1.52734i 0.0324890 0.999472i \(-0.489657\pi\)
0.849324 0.527872i \(-0.177010\pi\)
\(270\) 2.17533 0.132387
\(271\) 5.05875 + 8.76202i 0.307297 + 0.532255i 0.977770 0.209679i \(-0.0672421\pi\)
−0.670473 + 0.741934i \(0.733909\pi\)
\(272\) 2.26513 0.137344
\(273\) 3.69373 8.79524i 0.223555 0.532312i
\(274\) 8.77541 0.530142
\(275\) 1.70823 + 2.95874i 0.103010 + 0.178419i
\(276\) −1.66620 −0.100293
\(277\) −1.70320 + 2.95002i −0.102335 + 0.177250i −0.912646 0.408750i \(-0.865965\pi\)
0.810311 + 0.586000i \(0.199298\pi\)
\(278\) 3.80504 6.59053i 0.228211 0.395274i
\(279\) −3.09878 5.36725i −0.185519 0.321329i
\(280\) −18.6030 4.07780i −1.11174 0.243695i
\(281\) 9.40331 0.560954 0.280477 0.959861i \(-0.409507\pi\)
0.280477 + 0.959861i \(0.409507\pi\)
\(282\) −1.03743 −0.0617779
\(283\) 10.4790 0.622911 0.311456 0.950261i \(-0.399183\pi\)
0.311456 + 0.950261i \(0.399183\pi\)
\(284\) 4.68194 0.277822
\(285\) 6.63379 11.4901i 0.392952 0.680612i
\(286\) 1.00167 5.44846i 0.0592299 0.322174i
\(287\) 22.8067 + 4.99924i 1.34623 + 0.295096i
\(288\) 2.88844 5.00293i 0.170203 0.294800i
\(289\) −14.8332 25.6919i −0.872542 1.51129i
\(290\) −1.57602 + 2.72975i −0.0925470 + 0.160296i
\(291\) −6.08221 10.5347i −0.356545 0.617554i
\(292\) −8.55401 −0.500586
\(293\) −4.61007 7.98488i −0.269323 0.466481i 0.699364 0.714766i \(-0.253467\pi\)
−0.968687 + 0.248284i \(0.920133\pi\)
\(294\) 5.28522 + 2.43400i 0.308240 + 0.141954i
\(295\) 15.7489 + 27.2778i 0.916934 + 1.58818i
\(296\) −10.8353 18.7673i −0.629790 1.09083i
\(297\) 1.84837 0.107253
\(298\) −4.53337 7.85203i −0.262611 0.454856i
\(299\) −0.829819 + 4.51371i −0.0479897 + 0.261034i
\(300\) 2.41955 0.139693
\(301\) −0.390784 + 0.428507i −0.0225244 + 0.0246987i
\(302\) −9.28524 + 16.0825i −0.534306 + 0.925445i
\(303\) 4.59607 0.264037
\(304\) −0.840540 1.45586i −0.0482083 0.0834992i
\(305\) 11.4127 19.7674i 0.653490 1.13188i
\(306\) −5.67851 −0.324619
\(307\) −16.1499 −0.921726 −0.460863 0.887471i \(-0.652460\pi\)
−0.460863 + 0.887471i \(0.652460\pi\)
\(308\) −6.25307 1.37068i −0.356302 0.0781016i
\(309\) 2.22609 3.85570i 0.126638 0.219343i
\(310\) 6.74088 + 11.6755i 0.382856 + 0.663126i
\(311\) 15.2138 + 26.3510i 0.862694 + 1.49423i 0.869319 + 0.494252i \(0.164558\pi\)
−0.00662478 + 0.999978i \(0.502109\pi\)
\(312\) −7.55065 6.43001i −0.427471 0.364028i
\(313\) −13.6859 + 23.7047i −0.773574 + 1.33987i 0.162018 + 0.986788i \(0.448200\pi\)
−0.935592 + 0.353082i \(0.885134\pi\)
\(314\) 0.273968 0.474527i 0.0154609 0.0267791i
\(315\) −6.76319 1.48250i −0.381063 0.0835293i
\(316\) −4.03288 6.98516i −0.226867 0.392946i
\(317\) −6.18424 + 10.7114i −0.347342 + 0.601613i −0.985776 0.168063i \(-0.946249\pi\)
0.638435 + 0.769676i \(0.279582\pi\)
\(318\) 1.11344 1.92853i 0.0624386 0.108147i
\(319\) −1.33913 + 2.31945i −0.0749771 + 0.129864i
\(320\) −5.41559 + 9.38008i −0.302741 + 0.524362i
\(321\) 3.60694 + 6.24740i 0.201320 + 0.348696i
\(322\) −2.73445 0.599394i −0.152385 0.0334029i
\(323\) −17.3169 + 29.9938i −0.963538 + 1.66890i
\(324\) 0.654511 1.13365i 0.0363617 0.0629803i
\(325\) 1.20501 6.55453i 0.0668421 0.363580i
\(326\) 7.55818 + 13.0911i 0.418609 + 0.725052i
\(327\) −4.34979 7.53406i −0.240544 0.416635i
\(328\) 12.1368 21.0216i 0.670144 1.16072i
\(329\) 3.22540 + 0.707011i 0.177822 + 0.0389788i
\(330\) −4.02081 −0.221338
\(331\) −12.4062 −0.681907 −0.340954 0.940080i \(-0.610750\pi\)
−0.340954 + 0.940080i \(0.610750\pi\)
\(332\) −5.67944 + 9.83708i −0.311700 + 0.539880i
\(333\) −3.93922 6.82292i −0.215868 0.373894i
\(334\) −3.67669 −0.201179
\(335\) −18.1002 + 31.3505i −0.988920 + 1.71286i
\(336\) −0.591144 + 0.648208i −0.0322495 + 0.0353627i
\(337\) −15.8519 −0.863506 −0.431753 0.901992i \(-0.642105\pi\)
−0.431753 + 0.901992i \(0.642105\pi\)
\(338\) −8.37835 + 6.82485i −0.455722 + 0.371223i
\(339\) −1.82527 3.16146i −0.0991351 0.171707i
\(340\) −23.4014 −1.26912
\(341\) 5.72768 + 9.92063i 0.310171 + 0.537232i
\(342\) 2.10717 + 3.64973i 0.113943 + 0.197355i
\(343\) −14.7732 11.1693i −0.797676 0.603086i
\(344\) 0.301464 + 0.522151i 0.0162539 + 0.0281525i
\(345\) 3.33099 0.179334
\(346\) 1.46318 + 2.53431i 0.0786613 + 0.136245i
\(347\) 6.46521 11.1981i 0.347071 0.601144i −0.638657 0.769492i \(-0.720510\pi\)
0.985728 + 0.168347i \(0.0538430\pi\)
\(348\) 0.948381 + 1.64264i 0.0508386 + 0.0880550i
\(349\) −1.67254 + 2.89693i −0.0895292 + 0.155069i −0.907312 0.420458i \(-0.861870\pi\)
0.817783 + 0.575527i \(0.195203\pi\)
\(350\) 3.97080 + 0.870404i 0.212248 + 0.0465250i
\(351\) −2.74506 2.33765i −0.146521 0.124775i
\(352\) −5.33890 + 9.24724i −0.284564 + 0.492880i
\(353\) 6.01463 0.320127 0.160063 0.987107i \(-0.448830\pi\)
0.160063 + 0.987107i \(0.448830\pi\)
\(354\) −10.0050 −0.531760
\(355\) −9.35992 −0.496773
\(356\) 19.8383 1.05143
\(357\) 17.6547 + 3.86993i 0.934386 + 0.204818i
\(358\) 4.49719 + 7.78936i 0.237684 + 0.411680i
\(359\) 7.44965 12.9032i 0.393177 0.681003i −0.599689 0.800233i \(-0.704709\pi\)
0.992867 + 0.119230i \(0.0380425\pi\)
\(360\) −3.59911 + 6.23384i −0.189690 + 0.328552i
\(361\) 6.70372 0.352827
\(362\) −9.58643 16.6042i −0.503852 0.872697i
\(363\) 7.58354 0.398033
\(364\) 7.55311 + 9.94397i 0.395890 + 0.521206i
\(365\) 17.1008 0.895097
\(366\) 3.62516 + 6.27896i 0.189490 + 0.328207i
\(367\) −8.08153 −0.421852 −0.210926 0.977502i \(-0.567648\pi\)
−0.210926 + 0.977502i \(0.567648\pi\)
\(368\) 0.211028 0.365511i 0.0110006 0.0190536i
\(369\) 4.41239 7.64248i 0.229700 0.397852i
\(370\) 8.56911 + 14.8421i 0.445487 + 0.771605i
\(371\) −4.77603 + 5.23707i −0.247959 + 0.271895i
\(372\) 8.11274 0.420626
\(373\) −11.2771 −0.583905 −0.291953 0.956433i \(-0.594305\pi\)
−0.291953 + 0.956433i \(0.594305\pi\)
\(374\) 10.4960 0.542733
\(375\) 8.24763 0.425906
\(376\) 1.71643 2.97295i 0.0885184 0.153318i
\(377\) 4.92222 1.75106i 0.253507 0.0901843i
\(378\) 1.48195 1.62501i 0.0762235 0.0835815i
\(379\) −8.94558 + 15.4942i −0.459504 + 0.795884i −0.998935 0.0461461i \(-0.985306\pi\)
0.539431 + 0.842030i \(0.318639\pi\)
\(380\) 8.68377 + 15.0407i 0.445468 + 0.771573i
\(381\) −4.80639 + 8.32491i −0.246239 + 0.426498i
\(382\) −0.760453 1.31714i −0.0389081 0.0673909i
\(383\) 0.0381094 0.00194730 0.000973650 1.00000i \(-0.499690\pi\)
0.000973650 1.00000i \(0.499690\pi\)
\(384\) 4.05666 + 7.02634i 0.207016 + 0.358562i
\(385\) 12.5009 + 2.74020i 0.637102 + 0.139653i
\(386\) 1.31317 + 2.27448i 0.0668388 + 0.115768i
\(387\) 0.109598 + 0.189830i 0.00557119 + 0.00964959i
\(388\) 15.9235 0.808392
\(389\) 19.5855 + 33.9231i 0.993025 + 1.71997i 0.598622 + 0.801032i \(0.295715\pi\)
0.394403 + 0.918938i \(0.370951\pi\)
\(390\) 5.97143 + 5.08517i 0.302375 + 0.257498i
\(391\) −8.69525 −0.439737
\(392\) −15.7196 + 11.1188i −0.793958 + 0.561582i
\(393\) −8.28016 + 14.3417i −0.417679 + 0.723441i
\(394\) 9.27006 0.467019
\(395\) 8.06236 + 13.9644i 0.405661 + 0.702626i
\(396\) −1.20978 + 2.09539i −0.0607935 + 0.105297i
\(397\) 8.73141 0.438217 0.219108 0.975701i \(-0.429685\pi\)
0.219108 + 0.975701i \(0.429685\pi\)
\(398\) −17.2482 −0.864573
\(399\) −4.06397 12.7832i −0.203453 0.639960i
\(400\) −0.306442 + 0.530773i −0.0153221 + 0.0265387i
\(401\) −12.1419 21.0303i −0.606336 1.05021i −0.991839 0.127498i \(-0.959305\pi\)
0.385503 0.922707i \(-0.374028\pi\)
\(402\) −5.74940 9.95825i −0.286754 0.496672i
\(403\) 4.04040 21.9773i 0.201267 1.09477i
\(404\) −3.00818 + 5.21031i −0.149662 + 0.259223i
\(405\) −1.30847 + 2.26634i −0.0650184 + 0.112615i
\(406\) 0.965497 + 3.03696i 0.0479168 + 0.150722i
\(407\) 7.28111 + 12.6113i 0.360911 + 0.625117i
\(408\) 9.39516 16.2729i 0.465130 0.805628i
\(409\) 9.86131 17.0803i 0.487610 0.844566i −0.512288 0.858814i \(-0.671202\pi\)
0.999898 + 0.0142477i \(0.00453532\pi\)
\(410\) −9.59841 + 16.6249i −0.474032 + 0.821047i
\(411\) −5.27844 + 9.14252i −0.260366 + 0.450967i
\(412\) 2.91400 + 5.04720i 0.143563 + 0.248658i
\(413\) 31.1060 + 6.81846i 1.53062 + 0.335514i
\(414\) −0.529032 + 0.916310i −0.0260005 + 0.0450342i
\(415\) 11.3541 19.6659i 0.557350 0.965359i
\(416\) 19.6241 6.98119i 0.962149 0.342281i
\(417\) 4.57749 + 7.92845i 0.224161 + 0.388258i
\(418\) −3.89483 6.74604i −0.190502 0.329959i
\(419\) 11.0976 19.2216i 0.542154 0.939039i −0.456626 0.889659i \(-0.650942\pi\)
0.998780 0.0493798i \(-0.0157245\pi\)
\(420\) 6.10721 6.69676i 0.298001 0.326768i
\(421\) −1.85475 −0.0903949 −0.0451974 0.998978i \(-0.514392\pi\)
−0.0451974 + 0.998978i \(0.514392\pi\)
\(422\) 13.5789 0.661009
\(423\) 0.624016 1.08083i 0.0303407 0.0525516i
\(424\) 3.68440 + 6.38156i 0.178930 + 0.309916i
\(425\) 12.6267 0.612485
\(426\) 1.48655 2.57479i 0.0720238 0.124749i
\(427\) −6.99163 21.9921i −0.338349 1.06427i
\(428\) −9.44312 −0.456450
\(429\) 5.07388 + 4.32084i 0.244969 + 0.208612i
\(430\) −0.238413 0.412943i −0.0114973 0.0199139i
\(431\) −37.7871 −1.82014 −0.910069 0.414456i \(-0.863972\pi\)
−0.910069 + 0.414456i \(0.863972\pi\)
\(432\) 0.165791 + 0.287158i 0.00797662 + 0.0138159i
\(433\) 17.5680 + 30.4286i 0.844263 + 1.46231i 0.886259 + 0.463189i \(0.153295\pi\)
−0.0419959 + 0.999118i \(0.513372\pi\)
\(434\) 13.3141 + 2.91846i 0.639096 + 0.140091i
\(435\) −1.89596 3.28390i −0.0909044 0.157451i
\(436\) 11.3879 0.545384
\(437\) 3.22662 + 5.58867i 0.154350 + 0.267342i
\(438\) −2.71597 + 4.70420i −0.129774 + 0.224775i
\(439\) −7.67375 13.2913i −0.366248 0.634360i 0.622727 0.782439i \(-0.286025\pi\)
−0.988976 + 0.148078i \(0.952691\pi\)
\(440\) 6.65247 11.5224i 0.317144 0.549310i
\(441\) −5.71490 + 4.04226i −0.272138 + 0.192489i
\(442\) −15.5879 13.2744i −0.741440 0.631398i
\(443\) −14.5356 + 25.1765i −0.690609 + 1.19617i 0.281030 + 0.959699i \(0.409324\pi\)
−0.971639 + 0.236471i \(0.924009\pi\)
\(444\) 10.3130 0.489435
\(445\) −39.6598 −1.88005
\(446\) 15.4757 0.732795
\(447\) 10.9073 0.515900
\(448\) 3.31769 + 10.4358i 0.156746 + 0.493043i
\(449\) −1.18131 2.04609i −0.0557494 0.0965607i 0.836804 0.547503i \(-0.184421\pi\)
−0.892553 + 0.450942i \(0.851088\pi\)
\(450\) 0.768228 1.33061i 0.0362146 0.0627255i
\(451\) −8.15570 + 14.1261i −0.384037 + 0.665172i
\(452\) 4.77864 0.224768
\(453\) −11.1702 19.3474i −0.524822 0.909018i
\(454\) 18.7409 0.879555
\(455\) −15.0998 19.8795i −0.707891 0.931967i
\(456\) −13.9454 −0.653051
\(457\) 8.37672 + 14.5089i 0.391846 + 0.678698i 0.992693 0.120667i \(-0.0385032\pi\)
−0.600847 + 0.799364i \(0.705170\pi\)
\(458\) 16.0051 0.747871
\(459\) 3.41564 5.91607i 0.159429 0.276138i
\(460\) −2.18017 + 3.77616i −0.101651 + 0.176064i
\(461\) 12.5469 + 21.7318i 0.584366 + 1.01215i 0.994954 + 0.100330i \(0.0319900\pi\)
−0.410588 + 0.911821i \(0.634677\pi\)
\(462\) −2.73919 + 3.00361i −0.127439 + 0.139741i
\(463\) −0.254256 −0.0118163 −0.00590815 0.999983i \(-0.501881\pi\)
−0.00590815 + 0.999983i \(0.501881\pi\)
\(464\) −0.480459 −0.0223048
\(465\) −16.2186 −0.752121
\(466\) −18.9985 −0.880088
\(467\) −5.11155 + 8.85346i −0.236534 + 0.409689i −0.959717 0.280967i \(-0.909345\pi\)
0.723183 + 0.690656i \(0.242678\pi\)
\(468\) 4.44675 1.58191i 0.205551 0.0731240i
\(469\) 11.0885 + 34.8788i 0.512020 + 1.61055i
\(470\) −1.35744 + 2.35116i −0.0626141 + 0.108451i
\(471\) 0.329586 + 0.570859i 0.0151865 + 0.0263038i
\(472\) 16.5534 28.6713i 0.761932 1.31970i
\(473\) −0.202578 0.350875i −0.00931453 0.0161332i
\(474\) −5.12190 −0.235256
\(475\) −4.68550 8.11552i −0.214985 0.372366i
\(476\) −15.9423 + 17.4813i −0.730715 + 0.801253i
\(477\) 1.33947 + 2.32004i 0.0613303 + 0.106227i
\(478\) −4.67581 8.09874i −0.213866 0.370428i
\(479\) −12.7080 −0.580643 −0.290322 0.956929i \(-0.593762\pi\)
−0.290322 + 0.956929i \(0.593762\pi\)
\(480\) −7.55887 13.0924i −0.345014 0.597581i
\(481\) 5.13622 27.9379i 0.234191 1.27386i
\(482\) −16.1646 −0.736277
\(483\) 2.26925 2.48830i 0.103254 0.113222i
\(484\) −4.96351 + 8.59706i −0.225614 + 0.390775i
\(485\) −31.8335 −1.44549
\(486\) −0.415625 0.719884i −0.0188532 0.0326546i
\(487\) −10.2410 + 17.7379i −0.464063 + 0.803781i −0.999159 0.0410108i \(-0.986942\pi\)
0.535096 + 0.844791i \(0.320276\pi\)
\(488\) −23.9915 −1.08604
\(489\) −18.1851 −0.822357
\(490\) 12.4318 8.79327i 0.561612 0.397239i
\(491\) −9.92098 + 17.1836i −0.447727 + 0.775487i −0.998238 0.0593417i \(-0.981100\pi\)
0.550510 + 0.834828i \(0.314433\pi\)
\(492\) 5.77591 + 10.0042i 0.260398 + 0.451023i
\(493\) 4.94924 + 8.57233i 0.222902 + 0.386078i
\(494\) −2.74748 + 14.9446i −0.123615 + 0.672389i
\(495\) 2.41853 4.18902i 0.108705 0.188282i
\(496\) −1.02750 + 1.77968i −0.0461361 + 0.0799100i
\(497\) −6.37648 + 6.99202i −0.286024 + 0.313635i
\(498\) 3.60654 + 6.24671i 0.161613 + 0.279922i
\(499\) −13.9419 + 24.1480i −0.624124 + 1.08101i 0.364585 + 0.931170i \(0.381211\pi\)
−0.988710 + 0.149845i \(0.952123\pi\)
\(500\) −5.39817 + 9.34990i −0.241413 + 0.418140i
\(501\) 2.21154 3.83050i 0.0988043 0.171134i
\(502\) 7.30913 12.6598i 0.326223 0.565034i
\(503\) 6.62277 + 11.4710i 0.295295 + 0.511465i 0.975053 0.221970i \(-0.0712489\pi\)
−0.679759 + 0.733436i \(0.737916\pi\)
\(504\) 2.20488 + 6.93543i 0.0982131 + 0.308929i
\(505\) 6.01381 10.4162i 0.267611 0.463516i
\(506\) 0.977844 1.69368i 0.0434705 0.0752931i
\(507\) −2.07076 12.8340i −0.0919657 0.569979i
\(508\) −6.29167 10.8975i −0.279148 0.483498i
\(509\) −13.5375 23.4477i −0.600040 1.03930i −0.992814 0.119665i \(-0.961818\pi\)
0.392775 0.919635i \(-0.371515\pi\)
\(510\) −7.43016 + 12.8694i −0.329013 + 0.569867i
\(511\) 11.6500 12.7746i 0.515365 0.565115i
\(512\) −3.73962 −0.165270
\(513\) −5.06988 −0.223841
\(514\) 6.31220 10.9331i 0.278419 0.482236i
\(515\) −5.82554 10.0901i −0.256704 0.444625i
\(516\) −0.286933 −0.0126315
\(517\) −1.15341 + 1.99776i −0.0507269 + 0.0878615i
\(518\) 16.9251 + 3.70999i 0.743645 + 0.163008i
\(519\) −3.52044 −0.154530
\(520\) −24.4524 + 8.69883i −1.07231 + 0.381469i
\(521\) −11.6257 20.1363i −0.509331 0.882187i −0.999942 0.0108082i \(-0.996560\pi\)
0.490611 0.871379i \(-0.336774\pi\)
\(522\) 1.20448 0.0527185
\(523\) −16.7690 29.0447i −0.733256 1.27004i −0.955484 0.295043i \(-0.904666\pi\)
0.222228 0.974995i \(-0.428667\pi\)
\(524\) −10.8389 18.7735i −0.473500 0.820126i
\(525\) −3.29527 + 3.61337i −0.143817 + 0.157700i
\(526\) −5.80626 10.0567i −0.253165 0.438494i
\(527\) 42.3373 1.84424
\(528\) −0.306442 0.530773i −0.0133362 0.0230990i
\(529\) 10.6899 18.5155i 0.464779 0.805021i
\(530\) −2.91380 5.04685i −0.126568 0.219221i
\(531\) 6.01804 10.4236i 0.261161 0.452344i
\(532\) 17.1515 + 3.75963i 0.743614 + 0.163001i
\(533\) 29.9777 10.6645i 1.29848 0.461929i
\(534\) 6.29881 10.9099i 0.272576 0.472116i
\(535\) 18.8783 0.816178
\(536\) 38.0498 1.64350
\(537\) −10.8203 −0.466930
\(538\) 24.0444 1.03663
\(539\) 10.5632 7.47158i 0.454991 0.321824i
\(540\) −1.71281 2.96668i −0.0737078 0.127666i
\(541\) −4.65598 + 8.06439i −0.200176 + 0.346715i −0.948585 0.316522i \(-0.897485\pi\)
0.748409 + 0.663238i \(0.230818\pi\)
\(542\) −4.20509 + 7.28343i −0.180624 + 0.312850i
\(543\) 23.0651 0.989817
\(544\) 19.7318 + 34.1764i 0.845992 + 1.46530i
\(545\) −22.7663 −0.975200
\(546\) 7.86677 0.996466i 0.336667 0.0426448i
\(547\) −31.5111 −1.34732 −0.673658 0.739043i \(-0.735278\pi\)
−0.673658 + 0.739043i \(0.735278\pi\)
\(548\) −6.90959 11.9678i −0.295163 0.511237i
\(549\) −8.72218 −0.372254
\(550\) −1.41997 + 2.45945i −0.0605476 + 0.104871i
\(551\) 3.67311 6.36201i 0.156480 0.271031i
\(552\) −1.75058 3.03209i −0.0745095 0.129054i
\(553\) 15.9242 + 3.49059i 0.677165 + 0.148435i
\(554\) −2.83157 −0.120302
\(555\) −20.6174 −0.875159
\(556\) −11.9841 −0.508238
\(557\) 5.53300 0.234441 0.117220 0.993106i \(-0.462602\pi\)
0.117220 + 0.993106i \(0.462602\pi\)
\(558\) 2.57586 4.46153i 0.109045 0.188872i
\(559\) −0.142902 + 0.777298i −0.00604410 + 0.0328762i
\(560\) 0.695564 + 2.18789i 0.0293929 + 0.0924553i
\(561\) −6.31336 + 10.9351i −0.266550 + 0.461678i
\(562\) 3.90826 + 6.76930i 0.164860 + 0.285546i
\(563\) −6.18438 + 10.7117i −0.260641 + 0.451443i −0.966412 0.256997i \(-0.917267\pi\)
0.705772 + 0.708439i \(0.250600\pi\)
\(564\) 0.816850 + 1.41483i 0.0343956 + 0.0595749i
\(565\) −9.55324 −0.401908
\(566\) 4.35534 + 7.54366i 0.183068 + 0.317084i
\(567\) 0.801591 + 2.52140i 0.0336637 + 0.105889i
\(568\) 4.91904 + 8.52003i 0.206398 + 0.357493i
\(569\) −0.997229 1.72725i −0.0418060 0.0724101i 0.844365 0.535768i \(-0.179978\pi\)
−0.886171 + 0.463358i \(0.846644\pi\)
\(570\) 11.0287 0.461941
\(571\) −11.0440 19.1288i −0.462179 0.800517i 0.536891 0.843652i \(-0.319599\pi\)
−0.999069 + 0.0431350i \(0.986265\pi\)
\(572\) −8.21921 + 2.92395i −0.343663 + 0.122257i
\(573\) 1.82966 0.0764351
\(574\) 5.88015 + 18.4960i 0.245433 + 0.772007i
\(575\) 1.17635 2.03750i 0.0490573 0.0849697i
\(576\) 4.13888 0.172453
\(577\) −4.54321 7.86907i −0.189136 0.327594i 0.755826 0.654772i \(-0.227235\pi\)
−0.944963 + 0.327179i \(0.893902\pi\)
\(578\) 12.3301 21.3564i 0.512866 0.888310i
\(579\) −3.15951 −0.131305
\(580\) 4.96371 0.206107
\(581\) −6.95572 21.8791i −0.288572 0.907700i
\(582\) 5.05584 8.75697i 0.209571 0.362988i
\(583\) −2.47584 4.28828i −0.102539 0.177602i
\(584\) −8.98721 15.5663i −0.371893 0.644138i
\(585\) −8.88974 + 3.16249i −0.367545 + 0.130753i
\(586\) 3.83213 6.63744i 0.158304 0.274190i
\(587\) −3.02112 + 5.23273i −0.124695 + 0.215978i −0.921614 0.388109i \(-0.873128\pi\)
0.796919 + 0.604086i \(0.206462\pi\)
\(588\) −0.842029 9.12438i −0.0347247 0.376283i
\(589\) −15.7105 27.2113i −0.647338 1.12122i
\(590\) −13.0912 + 22.6747i −0.538958 + 0.933503i
\(591\) −5.57597 + 9.65786i −0.229365 + 0.397271i
\(592\) −1.30617 + 2.26236i −0.0536834 + 0.0929823i
\(593\) −6.67095 + 11.5544i −0.273943 + 0.474484i −0.969868 0.243631i \(-0.921661\pi\)
0.695925 + 0.718115i \(0.254995\pi\)
\(594\) 0.768228 + 1.33061i 0.0315208 + 0.0545956i
\(595\) 31.8712 34.9478i 1.30659 1.43272i
\(596\) −7.13898 + 12.3651i −0.292424 + 0.506493i
\(597\) 10.3748 17.9697i 0.424614 0.735452i
\(598\) −3.59424 + 1.27864i −0.146979 + 0.0522874i
\(599\) −15.0725 26.1063i −0.615844 1.06667i −0.990236 0.139402i \(-0.955482\pi\)
0.374392 0.927270i \(-0.377851\pi\)
\(600\) 2.54208 + 4.40302i 0.103780 + 0.179752i
\(601\) −18.9159 + 32.7634i −0.771598 + 1.33645i 0.165089 + 0.986279i \(0.447209\pi\)
−0.936687 + 0.350168i \(0.886125\pi\)
\(602\) −0.470895 0.103221i −0.0191922 0.00420696i
\(603\) 13.8331 0.563328
\(604\) 29.2441 1.18992
\(605\) 9.92283 17.1869i 0.403421 0.698745i
\(606\) 1.91024 + 3.30864i 0.0775983 + 0.134404i
\(607\) 6.70899 0.272309 0.136155 0.990688i \(-0.456526\pi\)
0.136155 + 0.990688i \(0.456526\pi\)
\(608\) 14.6441 25.3643i 0.593895 1.02866i
\(609\) −3.74476 0.820855i −0.151745 0.0332627i
\(610\) 18.9737 0.768221
\(611\) 4.23956 1.50821i 0.171514 0.0610156i
\(612\) 4.47115 + 7.74426i 0.180736 + 0.313043i
\(613\) −20.1672 −0.814544 −0.407272 0.913307i \(-0.633520\pi\)
−0.407272 + 0.913307i \(0.633520\pi\)
\(614\) −6.71233 11.6261i −0.270888 0.469191i
\(615\) −11.5469 19.9999i −0.465618 0.806474i
\(616\) −4.07542 12.8192i −0.164203 0.516501i
\(617\) −2.98249 5.16582i −0.120071 0.207968i 0.799725 0.600367i \(-0.204979\pi\)
−0.919795 + 0.392399i \(0.871645\pi\)
\(618\) 3.70088 0.148871
\(619\) 4.31420 + 7.47242i 0.173402 + 0.300342i 0.939607 0.342255i \(-0.111191\pi\)
−0.766205 + 0.642596i \(0.777857\pi\)
\(620\) 10.6153 18.3862i 0.426320 0.738407i
\(621\) −0.636428 1.10233i −0.0255390 0.0442348i
\(622\) −12.6465 + 21.9043i −0.507077 + 0.878283i
\(623\) −27.0184 + 29.6265i −1.08247 + 1.18696i
\(624\) −0.216169 + 1.17583i −0.00865370 + 0.0470708i
\(625\) 15.4127 26.6956i 0.616507 1.06782i
\(626\) −22.7529 −0.909388
\(627\) 9.37100 0.374242
\(628\) −0.862869 −0.0344322
\(629\) 53.8198 2.14594
\(630\) −1.74373 5.48488i −0.0694718 0.218523i
\(631\) −1.02888 1.78208i −0.0409592 0.0709434i 0.844819 0.535052i \(-0.179708\pi\)
−0.885778 + 0.464109i \(0.846375\pi\)
\(632\) 8.47423 14.6778i 0.337087 0.583852i
\(633\) −8.16773 + 14.1469i −0.324638 + 0.562289i
\(634\) −10.2813 −0.408323
\(635\) 12.5780 + 21.7858i 0.499144 + 0.864542i
\(636\) −3.50680 −0.139054
\(637\) −25.1372 2.26318i −0.995971 0.0896706i
\(638\) −2.22631 −0.0881405
\(639\) 1.78833 + 3.09749i 0.0707454 + 0.122535i
\(640\) 21.2321 0.839271
\(641\) 8.83114 15.2960i 0.348809 0.604155i −0.637229 0.770674i \(-0.719920\pi\)
0.986038 + 0.166519i \(0.0532529\pi\)
\(642\) −2.99827 + 5.19316i −0.118332 + 0.204957i
\(643\) −24.6023 42.6124i −0.970219 1.68047i −0.694885 0.719121i \(-0.744545\pi\)
−0.275334 0.961349i \(-0.588788\pi\)
\(644\) 1.33561 + 4.20115i 0.0526304 + 0.165548i
\(645\) 0.573624 0.0225864
\(646\) −28.7894 −1.13270
\(647\) −15.4959 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(648\) 2.75063 0.108055
\(649\) −11.1235 + 19.2666i −0.436637 + 0.756278i
\(650\) 5.21934 1.85676i 0.204719 0.0728281i
\(651\) −11.0490 + 12.1156i −0.433045 + 0.474848i
\(652\) 11.9023 20.6154i 0.466131 0.807363i
\(653\) 18.3665 + 31.8117i 0.718738 + 1.24489i 0.961500 + 0.274804i \(0.0886130\pi\)
−0.242763 + 0.970086i \(0.578054\pi\)
\(654\) 3.61577 6.26270i 0.141388 0.244891i
\(655\) 21.6687 + 37.5312i 0.846665 + 1.46647i
\(656\) −2.92613 −0.114246
\(657\) −3.26733 5.65918i −0.127471 0.220786i
\(658\) 0.831593 + 2.61577i 0.0324189 + 0.101973i
\(659\) −5.48070 9.49284i −0.213498 0.369789i 0.739309 0.673366i \(-0.235152\pi\)
−0.952807 + 0.303577i \(0.901819\pi\)
\(660\) 3.16591 + 5.48351i 0.123233 + 0.213445i
\(661\) 16.0710 0.625091 0.312545 0.949903i \(-0.398818\pi\)
0.312545 + 0.949903i \(0.398818\pi\)
\(662\) −5.15634 8.93104i −0.200407 0.347115i
\(663\) 23.2059 8.25540i 0.901241 0.320613i
\(664\) −23.8682 −0.926268
\(665\) −34.2886 7.51609i −1.32965 0.291462i
\(666\) 3.27448 5.67156i 0.126883 0.219769i
\(667\) 1.84436 0.0714139
\(668\) 2.89495 + 5.01421i 0.112009 + 0.194005i
\(669\) −9.30867 + 16.1231i −0.359894 + 0.623355i
\(670\) −30.0916 −1.16254
\(671\) 16.1218 0.622375
\(672\) −14.9297 3.27261i −0.575927 0.126244i
\(673\) 14.1074 24.4348i 0.543802 0.941892i −0.454880 0.890553i \(-0.650318\pi\)
0.998681 0.0513390i \(-0.0163489\pi\)
\(674\) −6.58844 11.4115i −0.253777 0.439555i
\(675\) 0.924183 + 1.60073i 0.0355718 + 0.0616122i
\(676\) 15.9046 + 6.05249i 0.611714 + 0.232788i
\(677\) 17.5358 30.3729i 0.673956 1.16733i −0.302817 0.953049i \(-0.597927\pi\)
0.976773 0.214277i \(-0.0687395\pi\)
\(678\) 1.51726 2.62797i 0.0582699 0.100926i
\(679\) −21.6867 + 23.7802i −0.832259 + 0.912600i
\(680\) −24.5866 42.5852i −0.942851 1.63307i
\(681\) −11.2727 + 19.5249i −0.431972 + 0.748197i
\(682\) −4.76114 + 8.24654i −0.182313 + 0.315776i
\(683\) −24.1916 + 41.9011i −0.925666 + 1.60330i −0.135181 + 0.990821i \(0.543161\pi\)
−0.790486 + 0.612480i \(0.790172\pi\)
\(684\) 3.31829 5.74745i 0.126878 0.219759i
\(685\) 13.8133 + 23.9254i 0.527781 + 0.914143i
\(686\) 1.90050 15.2772i 0.0725615 0.583287i
\(687\) −9.62713 + 16.6747i −0.367298 + 0.636179i
\(688\) 0.0363408 0.0629441i 0.00138548 0.00239972i
\(689\) −1.74650 + 9.49988i −0.0665363 + 0.361917i
\(690\) 1.38444 + 2.39793i 0.0527049 + 0.0912875i
\(691\) 12.0530 + 20.8764i 0.458518 + 0.794176i 0.998883 0.0472547i \(-0.0150473\pi\)
−0.540365 + 0.841431i \(0.681714\pi\)
\(692\) 2.30417 3.99093i 0.0875913 0.151713i
\(693\) −1.48163 4.66047i −0.0562826 0.177037i
\(694\) 10.7484 0.408005
\(695\) 23.9580 0.908779
\(696\) −1.99282 + 3.45166i −0.0755376 + 0.130835i
\(697\) 30.1423 + 52.2079i 1.14172 + 1.97752i
\(698\) −2.78061 −0.105248
\(699\) 11.4276 19.7933i 0.432233 0.748650i
\(700\) −1.93949 6.10065i −0.0733059 0.230583i
\(701\) −3.07792 −0.116251 −0.0581257 0.998309i \(-0.518512\pi\)
−0.0581257 + 0.998309i \(0.518512\pi\)
\(702\) 0.541921 2.94772i 0.0204535 0.111254i
\(703\) −19.9714 34.5914i −0.753235 1.30464i
\(704\) −7.65016 −0.288326
\(705\) −1.63301 2.82846i −0.0615027 0.106526i
\(706\) 2.49983 + 4.32984i 0.0940825 + 0.162956i
\(707\) −3.68417 11.5885i −0.138557 0.435831i
\(708\) 7.87775 + 13.6447i 0.296064 + 0.512798i
\(709\) 35.9444 1.34992 0.674959 0.737855i \(-0.264161\pi\)
0.674959 + 0.737855i \(0.264161\pi\)
\(710\) −3.89022 6.73806i −0.145997 0.252875i
\(711\) 3.08084 5.33616i 0.115540 0.200122i
\(712\) 20.8429 + 36.1010i 0.781121 + 1.35294i
\(713\) 3.94430 6.83173i 0.147715 0.255850i
\(714\) 4.55185 + 14.3178i 0.170349 + 0.535830i
\(715\) 16.4315 5.84544i 0.614503 0.218607i
\(716\) 7.08200 12.2664i 0.264667 0.458416i
\(717\) 11.2501 0.420141
\(718\) 12.3851 0.462206
\(719\) 10.1952 0.380217 0.190108 0.981763i \(-0.439116\pi\)
0.190108 + 0.981763i \(0.439116\pi\)
\(720\) 0.867729 0.0323384
\(721\) −11.5062 2.52217i −0.428513 0.0939303i
\(722\) 2.78624 + 4.82590i 0.103693 + 0.179602i
\(723\) 9.72305 16.8408i 0.361604 0.626316i
\(724\) −15.0963 + 26.1476i −0.561051 + 0.971769i
\(725\) −2.67827 −0.0994683
\(726\) 3.15191 + 5.45928i 0.116979 + 0.202613i
\(727\) −2.32372 −0.0861821 −0.0430911 0.999071i \(-0.513721\pi\)
−0.0430911 + 0.999071i \(0.513721\pi\)
\(728\) −10.1601 + 24.1924i −0.376558 + 0.896632i
\(729\) 1.00000 0.0370370
\(730\) 7.10753 + 12.3106i 0.263061 + 0.455636i
\(731\) −1.49739 −0.0553831
\(732\) 5.70876 9.88787i 0.211002 0.365466i
\(733\) 2.91958 5.05685i 0.107837 0.186779i −0.807057 0.590474i \(-0.798941\pi\)
0.914894 + 0.403695i \(0.132274\pi\)
\(734\) −3.35889 5.81777i −0.123979 0.214738i
\(735\) 1.68335 + 18.2411i 0.0620912 + 0.672832i
\(736\) 7.35314 0.271040
\(737\) −25.5687 −0.941834
\(738\) 7.33560 0.270027
\(739\) 0.0211428 0.000777749 0.000388875 1.00000i \(-0.499876\pi\)
0.000388875 1.00000i \(0.499876\pi\)
\(740\) 13.4943 23.3728i 0.496060 0.859201i
\(741\) −13.9172 11.8516i −0.511260 0.435380i
\(742\) −5.75513 1.26153i −0.211277 0.0463122i
\(743\) −14.8332 + 25.6918i −0.544176 + 0.942541i 0.454482 + 0.890756i \(0.349824\pi\)
−0.998658 + 0.0517853i \(0.983509\pi\)
\(744\) 8.52359 + 14.7633i 0.312490 + 0.541249i
\(745\) 14.2719 24.7197i 0.522883 0.905660i
\(746\) −4.68704 8.11819i −0.171605 0.297228i
\(747\) −8.67738 −0.317489
\(748\) −8.26432 14.3142i −0.302173 0.523380i
\(749\) 12.8609 14.1024i 0.469927 0.515290i
\(750\) 3.42793 + 5.93734i 0.125170 + 0.216801i
\(751\) −6.30078 10.9133i −0.229919 0.398231i 0.727865 0.685720i \(-0.240513\pi\)
−0.957784 + 0.287489i \(0.907179\pi\)
\(752\) −0.413824 −0.0150906
\(753\) 8.79293 + 15.2298i 0.320432 + 0.555005i
\(754\) 3.30636 + 2.81565i 0.120411 + 0.102540i
\(755\) −58.4635 −2.12770
\(756\) −3.38302 0.741562i −0.123039 0.0269703i
\(757\) −8.13319 + 14.0871i −0.295606 + 0.512004i −0.975126 0.221653i \(-0.928855\pi\)
0.679520 + 0.733657i \(0.262188\pi\)
\(758\) −14.8720 −0.540177
\(759\) 1.17635 + 2.03750i 0.0426989 + 0.0739566i
\(760\) −18.2471 + 31.6049i −0.661891 + 1.14643i
\(761\) 46.2551 1.67675 0.838374 0.545096i \(-0.183507\pi\)
0.838374 + 0.545096i \(0.183507\pi\)
\(762\) −7.99063 −0.289470
\(763\) −15.5096 + 17.0068i −0.561486 + 0.615687i
\(764\) −1.19753 + 2.07419i −0.0433252 + 0.0750414i
\(765\) −8.93852 15.4820i −0.323173 0.559752i
\(766\) 0.0158392 + 0.0274344i 0.000572295 + 0.000991244i
\(767\) 40.8866 14.5452i 1.47633 0.525198i
\(768\) −7.51098 + 13.0094i −0.271029 + 0.469436i
\(769\) 19.2803 33.3944i 0.695264 1.20423i −0.274827 0.961494i \(-0.588621\pi\)
0.970092 0.242739i \(-0.0780460\pi\)
\(770\) 3.22305 + 10.1381i 0.116151 + 0.365351i
\(771\) 7.59362 + 13.1525i 0.273477 + 0.473677i
\(772\) 2.06794 3.58177i 0.0744267 0.128911i
\(773\) 5.17723 8.96723i 0.186212 0.322529i −0.757772 0.652519i \(-0.773712\pi\)
0.943984 + 0.329990i \(0.107046\pi\)
\(774\) −0.0911037 + 0.157796i −0.00327465 + 0.00567187i
\(775\) −5.72768 + 9.92063i −0.205744 + 0.356360i
\(776\) 16.7299