Properties

Label 273.2.l.b.256.3
Level $273$
Weight $2$
Character 273.256
Analytic conductor $2.180$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [273,2,Mod(16,273)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("273.16"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(273, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.l (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 11 x^{14} - 4 x^{13} + 87 x^{12} - 35 x^{11} + 326 x^{10} - 205 x^{9} + 895 x^{8} - 481 x^{7} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 256.3
Root \(0.415625 - 0.719884i\) of defining polynomial
Character \(\chi\) \(=\) 273.256
Dual form 273.2.l.b.16.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.831251 q^{2} +(0.500000 + 0.866025i) q^{3} -1.30902 q^{4} +(-1.30847 - 2.26634i) q^{5} +(-0.415625 - 0.719884i) q^{6} +(1.78280 + 1.95490i) q^{7} +2.75063 q^{8} +(-0.500000 + 0.866025i) q^{9} +(1.08767 + 1.88389i) q^{10} +(0.924183 + 1.60073i) q^{11} +(-0.654511 - 1.13365i) q^{12} +(2.74506 + 2.33765i) q^{13} +(-1.48195 - 1.62501i) q^{14} +(1.30847 - 2.26634i) q^{15} +0.331582 q^{16} +6.83128 q^{17} +(0.415625 - 0.719884i) q^{18} +(-2.53494 + 4.39065i) q^{19} +(1.71281 + 2.96668i) q^{20} +(-0.801591 + 2.52140i) q^{21} +(-0.768228 - 1.33061i) q^{22} -1.27286 q^{23} +(1.37531 + 2.38211i) q^{24} +(-0.924183 + 1.60073i) q^{25} +(-2.28184 - 1.94318i) q^{26} -1.00000 q^{27} +(-2.33372 - 2.55900i) q^{28} +(0.724496 - 1.25486i) q^{29} +(-1.08767 + 1.88389i) q^{30} +(-3.09878 + 5.36725i) q^{31} -5.77688 q^{32} +(-0.924183 + 1.60073i) q^{33} -5.67851 q^{34} +(2.09772 - 6.59834i) q^{35} +(0.654511 - 1.13365i) q^{36} +7.87843 q^{37} +(2.10717 - 3.64973i) q^{38} +(-0.651934 + 3.54612i) q^{39} +(-3.59911 - 6.23384i) q^{40} +(4.41239 - 7.64248i) q^{41} +(0.666324 - 2.09592i) q^{42} +(0.109598 + 0.189830i) q^{43} +(-1.20978 - 2.09539i) q^{44} +2.61694 q^{45} +1.05806 q^{46} +(0.624016 + 1.08083i) q^{47} +(0.165791 + 0.287158i) q^{48} +(-0.643251 + 6.97038i) q^{49} +(0.768228 - 1.33061i) q^{50} +(3.41564 + 5.91607i) q^{51} +(-3.59335 - 3.06004i) q^{52} +(1.33947 - 2.32004i) q^{53} +0.831251 q^{54} +(2.41853 - 4.18902i) q^{55} +(4.90382 + 5.37720i) q^{56} -5.06988 q^{57} +(-0.602238 + 1.04311i) q^{58} -12.0361 q^{59} +(-1.71281 + 2.96668i) q^{60} +(4.36109 - 7.55363i) q^{61} +(2.57586 - 4.46153i) q^{62} +(-2.58439 + 0.566501i) q^{63} +4.13888 q^{64} +(1.70607 - 9.27998i) q^{65} +(0.768228 - 1.33061i) q^{66} +(-6.91656 - 11.9798i) q^{67} -8.94230 q^{68} +(-0.636428 - 1.10233i) q^{69} +(-1.74373 + 5.48488i) q^{70} +(1.78833 + 3.09749i) q^{71} +(-1.37531 + 2.38211i) q^{72} +(-3.26733 + 5.65918i) q^{73} -6.54896 q^{74} -1.84837 q^{75} +(3.31829 - 5.74745i) q^{76} +(-1.48163 + 4.66047i) q^{77} +(0.541921 - 2.94772i) q^{78} +(3.08084 + 5.33616i) q^{79} +(-0.433865 - 0.751475i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-3.66780 + 6.35282i) q^{82} -8.67738 q^{83} +(1.04930 - 3.30057i) q^{84} +(-8.93852 - 15.4820i) q^{85} +(-0.0911037 - 0.157796i) q^{86} +1.44899 q^{87} +(2.54208 + 4.40302i) q^{88} -15.1550 q^{89} -2.17533 q^{90} +(0.324029 + 9.53389i) q^{91} +1.66620 q^{92} -6.19756 q^{93} +(-0.518714 - 0.898438i) q^{94} +13.2676 q^{95} +(-2.88844 - 5.00293i) q^{96} +(6.08221 + 10.5347i) q^{97} +(0.534703 - 5.79414i) q^{98} -1.84837 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{3} + 12 q^{4} + q^{7} + 12 q^{8} - 8 q^{9} - 4 q^{10} - 2 q^{11} + 6 q^{12} + 5 q^{13} - 7 q^{14} + 12 q^{16} + 4 q^{17} - 11 q^{19} - 20 q^{20} - q^{21} + 7 q^{22} - 8 q^{23} + 6 q^{24} + 2 q^{25}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.831251 −0.587783 −0.293892 0.955839i \(-0.594950\pi\)
−0.293892 + 0.955839i \(0.594950\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −1.30902 −0.654511
\(5\) −1.30847 2.26634i −0.585165 1.01354i −0.994855 0.101311i \(-0.967696\pi\)
0.409690 0.912225i \(-0.365637\pi\)
\(6\) −0.415625 0.719884i −0.169678 0.293892i
\(7\) 1.78280 + 1.95490i 0.673835 + 0.738882i
\(8\) 2.75063 0.972494
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 1.08767 + 1.88389i 0.343950 + 0.595739i
\(11\) 0.924183 + 1.60073i 0.278652 + 0.482639i 0.971050 0.238877i \(-0.0767792\pi\)
−0.692398 + 0.721516i \(0.743446\pi\)
\(12\) −0.654511 1.13365i −0.188941 0.327255i
\(13\) 2.74506 + 2.33765i 0.761344 + 0.648348i
\(14\) −1.48195 1.62501i −0.396069 0.434302i
\(15\) 1.30847 2.26634i 0.337845 0.585165i
\(16\) 0.331582 0.0828954
\(17\) 6.83128 1.65683 0.828415 0.560115i \(-0.189243\pi\)
0.828415 + 0.560115i \(0.189243\pi\)
\(18\) 0.415625 0.719884i 0.0979639 0.169678i
\(19\) −2.53494 + 4.39065i −0.581556 + 1.00728i 0.413740 + 0.910395i \(0.364222\pi\)
−0.995295 + 0.0968885i \(0.969111\pi\)
\(20\) 1.71281 + 2.96668i 0.382997 + 0.663370i
\(21\) −0.801591 + 2.52140i −0.174922 + 0.550214i
\(22\) −0.768228 1.33061i −0.163787 0.283687i
\(23\) −1.27286 −0.265409 −0.132704 0.991156i \(-0.542366\pi\)
−0.132704 + 0.991156i \(0.542366\pi\)
\(24\) 1.37531 + 2.38211i 0.280735 + 0.486247i
\(25\) −0.924183 + 1.60073i −0.184837 + 0.320146i
\(26\) −2.28184 1.94318i −0.447505 0.381088i
\(27\) −1.00000 −0.192450
\(28\) −2.33372 2.55900i −0.441032 0.483606i
\(29\) 0.724496 1.25486i 0.134536 0.233022i −0.790884 0.611966i \(-0.790379\pi\)
0.925420 + 0.378943i \(0.123712\pi\)
\(30\) −1.08767 + 1.88389i −0.198580 + 0.343950i
\(31\) −3.09878 + 5.36725i −0.556557 + 0.963986i 0.441223 + 0.897397i \(0.354545\pi\)
−0.997781 + 0.0665883i \(0.978789\pi\)
\(32\) −5.77688 −1.02122
\(33\) −0.924183 + 1.60073i −0.160880 + 0.278652i
\(34\) −5.67851 −0.973857
\(35\) 2.09772 6.59834i 0.354579 1.11532i
\(36\) 0.654511 1.13365i 0.109085 0.188941i
\(37\) 7.87843 1.29521 0.647603 0.761978i \(-0.275771\pi\)
0.647603 + 0.761978i \(0.275771\pi\)
\(38\) 2.10717 3.64973i 0.341829 0.592064i
\(39\) −0.651934 + 3.54612i −0.104393 + 0.567834i
\(40\) −3.59911 6.23384i −0.569069 0.985657i
\(41\) 4.41239 7.64248i 0.689099 1.19355i −0.283031 0.959111i \(-0.591340\pi\)
0.972130 0.234444i \(-0.0753268\pi\)
\(42\) 0.666324 2.09592i 0.102816 0.323407i
\(43\) 0.109598 + 0.189830i 0.0167136 + 0.0289488i 0.874261 0.485456i \(-0.161346\pi\)
−0.857548 + 0.514405i \(0.828013\pi\)
\(44\) −1.20978 2.09539i −0.182381 0.315892i
\(45\) 2.61694 0.390110
\(46\) 1.05806 0.156003
\(47\) 0.624016 + 1.08083i 0.0910220 + 0.157655i 0.907941 0.419097i \(-0.137653\pi\)
−0.816919 + 0.576752i \(0.804320\pi\)
\(48\) 0.165791 + 0.287158i 0.0239299 + 0.0414477i
\(49\) −0.643251 + 6.97038i −0.0918930 + 0.995769i
\(50\) 0.768228 1.33061i 0.108644 0.188177i
\(51\) 3.41564 + 5.91607i 0.478286 + 0.828415i
\(52\) −3.59335 3.06004i −0.498308 0.424351i
\(53\) 1.33947 2.32004i 0.183991 0.318682i −0.759245 0.650805i \(-0.774432\pi\)
0.943236 + 0.332123i \(0.107765\pi\)
\(54\) 0.831251 0.113119
\(55\) 2.41853 4.18902i 0.326114 0.564847i
\(56\) 4.90382 + 5.37720i 0.655300 + 0.718558i
\(57\) −5.06988 −0.671522
\(58\) −0.602238 + 1.04311i −0.0790777 + 0.136967i
\(59\) −12.0361 −1.56697 −0.783483 0.621414i \(-0.786559\pi\)
−0.783483 + 0.621414i \(0.786559\pi\)
\(60\) −1.71281 + 2.96668i −0.221123 + 0.382997i
\(61\) 4.36109 7.55363i 0.558381 0.967144i −0.439251 0.898364i \(-0.644756\pi\)
0.997632 0.0687794i \(-0.0219105\pi\)
\(62\) 2.57586 4.46153i 0.327135 0.566615i
\(63\) −2.58439 + 0.566501i −0.325603 + 0.0713724i
\(64\) 4.13888 0.517359
\(65\) 1.70607 9.27998i 0.211612 1.15104i
\(66\) 0.768228 1.33061i 0.0945623 0.163787i
\(67\) −6.91656 11.9798i −0.844992 1.46357i −0.885628 0.464395i \(-0.846272\pi\)
0.0406360 0.999174i \(-0.487062\pi\)
\(68\) −8.94230 −1.08441
\(69\) −0.636428 1.10233i −0.0766170 0.132704i
\(70\) −1.74373 + 5.48488i −0.208415 + 0.655569i
\(71\) 1.78833 + 3.09749i 0.212236 + 0.367604i 0.952414 0.304807i \(-0.0985920\pi\)
−0.740178 + 0.672411i \(0.765259\pi\)
\(72\) −1.37531 + 2.38211i −0.162082 + 0.280735i
\(73\) −3.26733 + 5.65918i −0.382412 + 0.662357i −0.991406 0.130817i \(-0.958240\pi\)
0.608994 + 0.793175i \(0.291573\pi\)
\(74\) −6.54896 −0.761301
\(75\) −1.84837 −0.213431
\(76\) 3.31829 5.74745i 0.380634 0.659278i
\(77\) −1.48163 + 4.66047i −0.168848 + 0.531110i
\(78\) 0.541921 2.94772i 0.0613605 0.333763i
\(79\) 3.08084 + 5.33616i 0.346621 + 0.600365i 0.985647 0.168820i \(-0.0539956\pi\)
−0.639026 + 0.769185i \(0.720662\pi\)
\(80\) −0.433865 0.751475i −0.0485075 0.0840175i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −3.66780 + 6.35282i −0.405041 + 0.701551i
\(83\) −8.67738 −0.952467 −0.476233 0.879319i \(-0.657998\pi\)
−0.476233 + 0.879319i \(0.657998\pi\)
\(84\) 1.04930 3.30057i 0.114488 0.360121i
\(85\) −8.93852 15.4820i −0.969519 1.67926i
\(86\) −0.0911037 0.157796i −0.00982396 0.0170156i
\(87\) 1.44899 0.155348
\(88\) 2.54208 + 4.40302i 0.270987 + 0.469363i
\(89\) −15.1550 −1.60643 −0.803215 0.595690i \(-0.796879\pi\)
−0.803215 + 0.595690i \(0.796879\pi\)
\(90\) −2.17533 −0.229300
\(91\) 0.324029 + 9.53389i 0.0339674 + 0.999423i
\(92\) 1.66620 0.173713
\(93\) −6.19756 −0.642657
\(94\) −0.518714 0.898438i −0.0535012 0.0926668i
\(95\) 13.2676 1.36122
\(96\) −2.88844 5.00293i −0.294800 0.510609i
\(97\) 6.08221 + 10.5347i 0.617554 + 1.06964i 0.989931 + 0.141554i \(0.0452098\pi\)
−0.372376 + 0.928082i \(0.621457\pi\)
\(98\) 0.534703 5.79414i 0.0540132 0.585296i
\(99\) −1.84837 −0.185768
\(100\) 1.20978 2.09539i 0.120978 0.209539i
\(101\) 2.29803 + 3.98031i 0.228663 + 0.396056i 0.957412 0.288725i \(-0.0932313\pi\)
−0.728749 + 0.684781i \(0.759898\pi\)
\(102\) −2.83926 4.91774i −0.281128 0.486928i
\(103\) −2.22609 3.85570i −0.219343 0.379914i 0.735264 0.677781i \(-0.237058\pi\)
−0.954607 + 0.297867i \(0.903725\pi\)
\(104\) 7.55065 + 6.43001i 0.740402 + 0.630515i
\(105\) 6.76319 1.48250i 0.660020 0.144677i
\(106\) −1.11344 + 1.92853i −0.108147 + 0.187316i
\(107\) 7.21387 0.697391 0.348696 0.937236i \(-0.386625\pi\)
0.348696 + 0.937236i \(0.386625\pi\)
\(108\) 1.30902 0.125961
\(109\) 4.34979 7.53406i 0.416635 0.721632i −0.578964 0.815353i \(-0.696543\pi\)
0.995599 + 0.0937209i \(0.0298761\pi\)
\(110\) −2.01041 + 3.48212i −0.191685 + 0.332007i
\(111\) 3.93922 + 6.82292i 0.373894 + 0.647603i
\(112\) 0.591144 + 0.648208i 0.0558578 + 0.0612499i
\(113\) 1.82527 + 3.16146i 0.171707 + 0.297405i 0.939017 0.343871i \(-0.111738\pi\)
−0.767310 + 0.641277i \(0.778405\pi\)
\(114\) 4.21435 0.394710
\(115\) 1.66549 + 2.88472i 0.155308 + 0.269002i
\(116\) −0.948381 + 1.64264i −0.0880550 + 0.152516i
\(117\) −3.39700 + 1.20847i −0.314053 + 0.111723i
\(118\) 10.0050 0.921036
\(119\) 12.1788 + 13.3545i 1.11643 + 1.22420i
\(120\) 3.59911 6.23384i 0.328552 0.569069i
\(121\) 3.79177 6.56754i 0.344707 0.597049i
\(122\) −3.62516 + 6.27896i −0.328207 + 0.568471i
\(123\) 8.82477 0.795703
\(124\) 4.05637 7.02584i 0.364273 0.630939i
\(125\) −8.24763 −0.737691
\(126\) 2.14828 0.470904i 0.191384 0.0419515i
\(127\) 4.80639 8.32491i 0.426498 0.738716i −0.570061 0.821602i \(-0.693080\pi\)
0.996559 + 0.0828862i \(0.0264138\pi\)
\(128\) 8.11332 0.717123
\(129\) −0.109598 + 0.189830i −0.00964959 + 0.0167136i
\(130\) −1.41817 + 7.71399i −0.124382 + 0.676562i
\(131\) 8.28016 + 14.3417i 0.723441 + 1.25304i 0.959613 + 0.281325i \(0.0907738\pi\)
−0.236172 + 0.971711i \(0.575893\pi\)
\(132\) 1.20978 2.09539i 0.105297 0.182381i
\(133\) −13.1026 + 2.87209i −1.13614 + 0.249042i
\(134\) 5.74940 + 9.95825i 0.496672 + 0.860261i
\(135\) 1.30847 + 2.26634i 0.112615 + 0.195055i
\(136\) 18.7903 1.61126
\(137\) −10.5569 −0.901934 −0.450967 0.892541i \(-0.648921\pi\)
−0.450967 + 0.892541i \(0.648921\pi\)
\(138\) 0.529032 + 0.916310i 0.0450342 + 0.0780015i
\(139\) −4.57749 7.92845i −0.388258 0.672482i 0.603958 0.797016i \(-0.293590\pi\)
−0.992215 + 0.124534i \(0.960256\pi\)
\(140\) −2.74595 + 8.63738i −0.232076 + 0.729992i
\(141\) −0.624016 + 1.08083i −0.0525516 + 0.0910220i
\(142\) −1.48655 2.57479i −0.124749 0.216071i
\(143\) −1.20501 + 6.55453i −0.100768 + 0.548117i
\(144\) −0.165791 + 0.287158i −0.0138159 + 0.0239299i
\(145\) −3.79192 −0.314902
\(146\) 2.71597 4.70420i 0.224775 0.389322i
\(147\) −6.35815 + 2.92812i −0.524412 + 0.241507i
\(148\) −10.3130 −0.847727
\(149\) 5.45367 9.44604i 0.446782 0.773850i −0.551392 0.834246i \(-0.685903\pi\)
0.998174 + 0.0603965i \(0.0192365\pi\)
\(150\) 1.53646 0.125451
\(151\) 11.1702 19.3474i 0.909018 1.57447i 0.0935880 0.995611i \(-0.470166\pi\)
0.815430 0.578855i \(-0.196500\pi\)
\(152\) −6.97268 + 12.0770i −0.565559 + 0.979577i
\(153\) −3.41564 + 5.91607i −0.276138 + 0.478286i
\(154\) 1.23161 3.87402i 0.0992459 0.312177i
\(155\) 16.2186 1.30271
\(156\) 0.853396 4.64195i 0.0683264 0.371654i
\(157\) −0.329586 + 0.570859i −0.0263038 + 0.0455595i −0.878878 0.477047i \(-0.841707\pi\)
0.852574 + 0.522607i \(0.175040\pi\)
\(158\) −2.56095 4.43569i −0.203738 0.352885i
\(159\) 2.67895 0.212455
\(160\) 7.55887 + 13.0924i 0.597581 + 1.03504i
\(161\) −2.26925 2.48830i −0.178842 0.196106i
\(162\) 0.415625 + 0.719884i 0.0326546 + 0.0565595i
\(163\) −9.09253 + 15.7487i −0.712182 + 1.23354i 0.251854 + 0.967765i \(0.418960\pi\)
−0.964036 + 0.265771i \(0.914374\pi\)
\(164\) −5.77591 + 10.0042i −0.451023 + 0.781194i
\(165\) 4.83706 0.376565
\(166\) 7.21308 0.559844
\(167\) −2.21154 + 3.83050i −0.171134 + 0.296413i −0.938817 0.344417i \(-0.888076\pi\)
0.767683 + 0.640830i \(0.221410\pi\)
\(168\) −2.20488 + 6.93543i −0.170110 + 0.535080i
\(169\) 2.07076 + 12.8340i 0.159289 + 0.987232i
\(170\) 7.43016 + 12.8694i 0.569867 + 0.987039i
\(171\) −2.53494 4.39065i −0.193852 0.335761i
\(172\) −0.143467 0.248491i −0.0109392 0.0189473i
\(173\) −1.76022 + 3.04879i −0.133827 + 0.231795i −0.925149 0.379605i \(-0.876060\pi\)
0.791322 + 0.611400i \(0.209393\pi\)
\(174\) −1.20448 −0.0913111
\(175\) −4.77690 + 1.04710i −0.361100 + 0.0791534i
\(176\) 0.306442 + 0.530773i 0.0230990 + 0.0400086i
\(177\) −6.01804 10.4236i −0.452344 0.783483i
\(178\) 12.5976 0.944232
\(179\) −5.41014 9.37064i −0.404373 0.700395i 0.589875 0.807494i \(-0.299177\pi\)
−0.994248 + 0.107100i \(0.965844\pi\)
\(180\) −3.42563 −0.255331
\(181\) −23.0651 −1.71441 −0.857207 0.514973i \(-0.827802\pi\)
−0.857207 + 0.514973i \(0.827802\pi\)
\(182\) −0.269349 7.92505i −0.0199655 0.587444i
\(183\) 8.72218 0.644762
\(184\) −3.50115 −0.258109
\(185\) −10.3087 17.8552i −0.757910 1.31274i
\(186\) 5.15173 0.377743
\(187\) 6.31336 + 10.9351i 0.461678 + 0.799650i
\(188\) −0.816850 1.41483i −0.0595749 0.103187i
\(189\) −1.78280 1.95490i −0.129680 0.142198i
\(190\) −11.0287 −0.800105
\(191\) 0.914829 1.58453i 0.0661947 0.114653i −0.831029 0.556230i \(-0.812247\pi\)
0.897223 + 0.441577i \(0.145581\pi\)
\(192\) 2.06944 + 3.58437i 0.149349 + 0.258680i
\(193\) −1.57976 2.73622i −0.113713 0.196957i 0.803551 0.595235i \(-0.202941\pi\)
−0.917265 + 0.398278i \(0.869608\pi\)
\(194\) −5.05584 8.75697i −0.362988 0.628714i
\(195\) 8.88974 3.16249i 0.636607 0.226471i
\(196\) 0.842029 9.12438i 0.0601450 0.651742i
\(197\) 5.57597 9.65786i 0.397271 0.688094i −0.596117 0.802898i \(-0.703291\pi\)
0.993388 + 0.114804i \(0.0366239\pi\)
\(198\) 1.53646 0.109191
\(199\) 20.7497 1.47090 0.735452 0.677577i \(-0.236970\pi\)
0.735452 + 0.677577i \(0.236970\pi\)
\(200\) −2.54208 + 4.40302i −0.179752 + 0.311340i
\(201\) 6.91656 11.9798i 0.487856 0.844992i
\(202\) −1.91024 3.30864i −0.134404 0.232795i
\(203\) 3.74476 0.820855i 0.262831 0.0576127i
\(204\) −4.47115 7.74426i −0.313043 0.542207i
\(205\) −23.0939 −1.61295
\(206\) 1.85044 + 3.20506i 0.128926 + 0.223307i
\(207\) 0.636428 1.10233i 0.0442348 0.0766170i
\(208\) 0.910213 + 0.775123i 0.0631119 + 0.0537451i
\(209\) −9.37100 −0.648206
\(210\) −5.62191 + 1.23233i −0.387949 + 0.0850387i
\(211\) 8.16773 14.1469i 0.562289 0.973914i −0.435007 0.900427i \(-0.643254\pi\)
0.997296 0.0734866i \(-0.0234126\pi\)
\(212\) −1.75340 + 3.03698i −0.120424 + 0.208581i
\(213\) −1.78833 + 3.09749i −0.122535 + 0.212236i
\(214\) −5.99654 −0.409915
\(215\) 0.286812 0.496773i 0.0195604 0.0338796i
\(216\) −2.75063 −0.187157
\(217\) −16.0169 + 3.51092i −1.08730 + 0.238337i
\(218\) −3.61577 + 6.26270i −0.244891 + 0.424163i
\(219\) −6.53466 −0.441571
\(220\) −3.16591 + 5.48351i −0.213445 + 0.369698i
\(221\) 18.7523 + 15.9692i 1.26142 + 1.07420i
\(222\) −3.27448 5.67156i −0.219769 0.380650i
\(223\) 9.30867 16.1231i 0.623355 1.07968i −0.365502 0.930811i \(-0.619103\pi\)
0.988857 0.148871i \(-0.0475640\pi\)
\(224\) −10.2990 11.2932i −0.688133 0.754560i
\(225\) −0.924183 1.60073i −0.0616122 0.106715i
\(226\) −1.51726 2.62797i −0.100926 0.174810i
\(227\) −22.5455 −1.49639 −0.748197 0.663476i \(-0.769080\pi\)
−0.748197 + 0.663476i \(0.769080\pi\)
\(228\) 6.63659 0.439519
\(229\) 9.62713 + 16.6747i 0.636179 + 1.10189i 0.986264 + 0.165176i \(0.0528193\pi\)
−0.350085 + 0.936718i \(0.613847\pi\)
\(230\) −1.38444 2.39793i −0.0912875 0.158115i
\(231\) −4.77690 + 1.04710i −0.314297 + 0.0688942i
\(232\) 1.99282 3.45166i 0.130835 0.226613i
\(233\) −11.4276 19.7933i −0.748650 1.29670i −0.948470 0.316867i \(-0.897369\pi\)
0.199820 0.979833i \(-0.435964\pi\)
\(234\) 2.82376 1.00454i 0.184595 0.0656689i
\(235\) 1.63301 2.82846i 0.106526 0.184508i
\(236\) 15.7555 1.02560
\(237\) −3.08084 + 5.33616i −0.200122 + 0.346621i
\(238\) −10.1236 11.1009i −0.656219 0.719565i
\(239\) −11.2501 −0.727705 −0.363853 0.931457i \(-0.618539\pi\)
−0.363853 + 0.931457i \(0.618539\pi\)
\(240\) 0.433865 0.751475i 0.0280058 0.0485075i
\(241\) 19.4461 1.25263 0.626316 0.779569i \(-0.284562\pi\)
0.626316 + 0.779569i \(0.284562\pi\)
\(242\) −3.15191 + 5.45928i −0.202613 + 0.350936i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) −5.70876 + 9.88787i −0.365466 + 0.633006i
\(245\) 16.6389 7.66271i 1.06302 0.489552i
\(246\) −7.33560 −0.467701
\(247\) −17.2224 + 6.12680i −1.09583 + 0.389839i
\(248\) −8.52359 + 14.7633i −0.541249 + 0.937470i
\(249\) −4.33869 7.51483i −0.274953 0.476233i
\(250\) 6.85585 0.433602
\(251\) −8.79293 15.2298i −0.555005 0.961297i −0.997903 0.0647248i \(-0.979383\pi\)
0.442898 0.896572i \(-0.353950\pi\)
\(252\) 3.38302 0.741562i 0.213110 0.0467140i
\(253\) −1.17635 2.03750i −0.0739566 0.128097i
\(254\) −3.99531 + 6.92009i −0.250688 + 0.434205i
\(255\) 8.93852 15.4820i 0.559752 0.969519i
\(256\) −15.0220 −0.938872
\(257\) 15.1872 0.947353 0.473677 0.880699i \(-0.342927\pi\)
0.473677 + 0.880699i \(0.342927\pi\)
\(258\) 0.0911037 0.157796i 0.00567187 0.00982396i
\(259\) 14.0457 + 15.4015i 0.872755 + 0.957005i
\(260\) −2.23328 + 12.1477i −0.138502 + 0.753368i
\(261\) 0.724496 + 1.25486i 0.0448452 + 0.0776741i
\(262\) −6.88289 11.9215i −0.425226 0.736514i
\(263\) 6.98496 + 12.0983i 0.430711 + 0.746014i 0.996935 0.0782380i \(-0.0249294\pi\)
−0.566223 + 0.824252i \(0.691596\pi\)
\(264\) −2.54208 + 4.40302i −0.156454 + 0.270987i
\(265\) −7.01065 −0.430661
\(266\) 10.8915 2.38743i 0.667802 0.146383i
\(267\) −7.57751 13.1246i −0.463736 0.803215i
\(268\) 9.05393 + 15.6819i 0.553057 + 0.957922i
\(269\) −28.9256 −1.76363 −0.881813 0.471600i \(-0.843677\pi\)
−0.881813 + 0.471600i \(0.843677\pi\)
\(270\) −1.08767 1.88389i −0.0661933 0.114650i
\(271\) −10.1175 −0.614595 −0.307297 0.951614i \(-0.599425\pi\)
−0.307297 + 0.951614i \(0.599425\pi\)
\(272\) 2.26513 0.137344
\(273\) −8.09457 + 5.04756i −0.489906 + 0.305492i
\(274\) 8.77541 0.530142
\(275\) −3.41646 −0.206020
\(276\) 0.833099 + 1.44297i 0.0501466 + 0.0868565i
\(277\) 3.40639 0.204670 0.102335 0.994750i \(-0.467369\pi\)
0.102335 + 0.994750i \(0.467369\pi\)
\(278\) 3.80504 + 6.59053i 0.228211 + 0.395274i
\(279\) −3.09878 5.36725i −0.185519 0.321329i
\(280\) 5.77003 18.1496i 0.344825 1.08465i
\(281\) 9.40331 0.560954 0.280477 0.959861i \(-0.409507\pi\)
0.280477 + 0.959861i \(0.409507\pi\)
\(282\) 0.518714 0.898438i 0.0308889 0.0535012i
\(283\) −5.23950 9.07507i −0.311456 0.539457i 0.667222 0.744859i \(-0.267483\pi\)
−0.978678 + 0.205402i \(0.934150\pi\)
\(284\) −2.34097 4.05468i −0.138911 0.240601i
\(285\) 6.63379 + 11.4901i 0.392952 + 0.680612i
\(286\) 1.00167 5.44846i 0.0592299 0.322174i
\(287\) 22.8067 4.99924i 1.34623 0.295096i
\(288\) 2.88844 5.00293i 0.170203 0.294800i
\(289\) 29.6664 1.74508
\(290\) 3.15204 0.185094
\(291\) −6.08221 + 10.5347i −0.356545 + 0.617554i
\(292\) 4.27701 7.40799i 0.250293 0.433520i
\(293\) −4.61007 7.98488i −0.269323 0.466481i 0.699364 0.714766i \(-0.253467\pi\)
−0.968687 + 0.248284i \(0.920133\pi\)
\(294\) 5.28522 2.43400i 0.308240 0.141954i
\(295\) 15.7489 + 27.2778i 0.916934 + 1.58818i
\(296\) 21.6706 1.25958
\(297\) −0.924183 1.60073i −0.0536265 0.0928839i
\(298\) −4.53337 + 7.85203i −0.262611 + 0.454856i
\(299\) −3.49407 2.97550i −0.202068 0.172077i
\(300\) 2.41955 0.139693
\(301\) −0.175706 + 0.552682i −0.0101275 + 0.0318561i
\(302\) −9.28524 + 16.0825i −0.534306 + 0.925445i
\(303\) −2.29803 + 3.98031i −0.132019 + 0.228663i
\(304\) −0.840540 + 1.45586i −0.0482083 + 0.0834992i
\(305\) −22.8254 −1.30698
\(306\) 2.83926 4.91774i 0.162309 0.281128i
\(307\) −16.1499 −0.921726 −0.460863 0.887471i \(-0.652460\pi\)
−0.460863 + 0.887471i \(0.652460\pi\)
\(308\) 1.93949 6.10065i 0.110513 0.347617i
\(309\) 2.22609 3.85570i 0.126638 0.219343i
\(310\) −13.4818 −0.765712
\(311\) 15.2138 26.3510i 0.862694 1.49423i −0.00662478 0.999978i \(-0.502109\pi\)
0.869319 0.494252i \(-0.164558\pi\)
\(312\) −1.79323 + 9.75406i −0.101522 + 0.552215i
\(313\) −13.6859 23.7047i −0.773574 1.33987i −0.935592 0.353082i \(-0.885134\pi\)
0.162018 0.986788i \(-0.448200\pi\)
\(314\) 0.273968 0.474527i 0.0154609 0.0267791i
\(315\) 4.66548 + 5.11585i 0.262870 + 0.288245i
\(316\) −4.03288 6.98516i −0.226867 0.392946i
\(317\) −6.18424 10.7114i −0.347342 0.601613i 0.638435 0.769676i \(-0.279582\pi\)
−0.985776 + 0.168063i \(0.946249\pi\)
\(318\) −2.22688 −0.124877
\(319\) 2.67827 0.149954
\(320\) −5.41559 9.38008i −0.302741 0.524362i
\(321\) 3.60694 + 6.24740i 0.201320 + 0.348696i
\(322\) 1.88632 + 2.06841i 0.105120 + 0.115268i
\(323\) −17.3169 + 29.9938i −0.963538 + 1.66890i
\(324\) 0.654511 + 1.13365i 0.0363617 + 0.0629803i
\(325\) −6.27890 + 2.23369i −0.348291 + 0.123903i
\(326\) 7.55818 13.0911i 0.418609 0.725052i
\(327\) 8.69959 0.481088
\(328\) 12.1368 21.0216i 0.670144 1.16072i
\(329\) −1.00041 + 3.14678i −0.0551544 + 0.173488i
\(330\) −4.02081 −0.221338
\(331\) 6.20311 10.7441i 0.340954 0.590549i −0.643656 0.765315i \(-0.722583\pi\)
0.984610 + 0.174766i \(0.0559168\pi\)
\(332\) 11.3589 0.623400
\(333\) −3.93922 + 6.82292i −0.215868 + 0.373894i
\(334\) 1.83834 3.18411i 0.100590 0.174226i
\(335\) −18.1002 + 31.3505i −0.988920 + 1.71286i
\(336\) −0.265793 + 0.836050i −0.0145002 + 0.0456103i
\(337\) −15.8519 −0.863506 −0.431753 0.901992i \(-0.642105\pi\)
−0.431753 + 0.901992i \(0.642105\pi\)
\(338\) −1.72132 10.6683i −0.0936276 0.580278i
\(339\) −1.82527 + 3.16146i −0.0991351 + 0.171707i
\(340\) 11.7007 + 20.2662i 0.634561 + 1.09909i
\(341\) −11.4554 −0.620343
\(342\) 2.10717 + 3.64973i 0.113943 + 0.197355i
\(343\) −14.7732 + 11.1693i −0.797676 + 0.603086i
\(344\) 0.301464 + 0.522151i 0.0162539 + 0.0281525i
\(345\) −1.66549 + 2.88472i −0.0896672 + 0.155308i
\(346\) 1.46318 2.53431i 0.0786613 0.136245i
\(347\) −12.9304 −0.694142 −0.347071 0.937839i \(-0.612824\pi\)
−0.347071 + 0.937839i \(0.612824\pi\)
\(348\) −1.89676 −0.101677
\(349\) −1.67254 + 2.89693i −0.0895292 + 0.155069i −0.907312 0.420458i \(-0.861870\pi\)
0.817783 + 0.575527i \(0.195203\pi\)
\(350\) 3.97080 0.870404i 0.212248 0.0465250i
\(351\) −2.74506 2.33765i −0.146521 0.124775i
\(352\) −5.33890 9.24724i −0.284564 0.492880i
\(353\) −3.00732 5.20882i −0.160063 0.277238i 0.774828 0.632172i \(-0.217836\pi\)
−0.934891 + 0.354935i \(0.884503\pi\)
\(354\) 5.00251 + 8.66459i 0.265880 + 0.460518i
\(355\) 4.67996 8.10593i 0.248387 0.430218i
\(356\) 19.8383 1.05143
\(357\) −5.47590 + 17.2244i −0.289815 + 0.911611i
\(358\) 4.49719 + 7.78936i 0.237684 + 0.411680i
\(359\) 7.44965 + 12.9032i 0.393177 + 0.681003i 0.992867 0.119230i \(-0.0380425\pi\)
−0.599689 + 0.800233i \(0.704709\pi\)
\(360\) 7.19822 0.379380
\(361\) −3.35186 5.80559i −0.176414 0.305557i
\(362\) 19.1729 1.00770
\(363\) 7.58354 0.398033
\(364\) −0.424161 12.4801i −0.0222321 0.654133i
\(365\) 17.1008 0.895097
\(366\) −7.25032 −0.378981
\(367\) 4.04076 + 6.99881i 0.210926 + 0.365335i 0.952005 0.306084i \(-0.0990187\pi\)
−0.741078 + 0.671418i \(0.765685\pi\)
\(368\) −0.422056 −0.0220012
\(369\) 4.41239 + 7.64248i 0.229700 + 0.397852i
\(370\) 8.56911 + 14.8421i 0.445487 + 0.771605i
\(371\) 6.92345 1.51763i 0.359448 0.0787913i
\(372\) 8.11274 0.420626
\(373\) 5.63854 9.76624i 0.291953 0.505677i −0.682319 0.731055i \(-0.739028\pi\)
0.974271 + 0.225378i \(0.0723617\pi\)
\(374\) −5.24798 9.08977i −0.271367 0.470021i
\(375\) −4.12382 7.14266i −0.212953 0.368845i
\(376\) 1.71643 + 2.97295i 0.0885184 + 0.153318i
\(377\) 4.92222 1.75106i 0.253507 0.0901843i
\(378\) 1.48195 + 1.62501i 0.0762235 + 0.0835815i
\(379\) −8.94558 + 15.4942i −0.459504 + 0.795884i −0.998935 0.0461461i \(-0.985306\pi\)
0.539431 + 0.842030i \(0.318639\pi\)
\(380\) −17.3675 −0.890936
\(381\) 9.61278 0.492477
\(382\) −0.760453 + 1.31714i −0.0389081 + 0.0673909i
\(383\) −0.0190547 + 0.0330037i −0.000973650 + 0.00168641i −0.866512 0.499157i \(-0.833643\pi\)
0.865538 + 0.500843i \(0.166977\pi\)
\(384\) 4.05666 + 7.02634i 0.207016 + 0.358562i
\(385\) 12.5009 2.74020i 0.637102 0.139653i
\(386\) 1.31317 + 2.27448i 0.0668388 + 0.115768i
\(387\) −0.219197 −0.0111424
\(388\) −7.96174 13.7901i −0.404196 0.700088i
\(389\) 19.5855 33.9231i 0.993025 1.71997i 0.394403 0.918938i \(-0.370951\pi\)
0.598622 0.801032i \(-0.295715\pi\)
\(390\) −7.38960 + 2.62882i −0.374187 + 0.133116i
\(391\) −8.69525 −0.439737
\(392\) −1.76934 + 19.1729i −0.0893654 + 0.968379i
\(393\) −8.28016 + 14.3417i −0.417679 + 0.723441i
\(394\) −4.63503 + 8.02811i −0.233509 + 0.404450i
\(395\) 8.06236 13.9644i 0.405661 0.702626i
\(396\) 2.41955 0.121587
\(397\) −4.36570 + 7.56162i −0.219108 + 0.379507i −0.954536 0.298097i \(-0.903648\pi\)
0.735427 + 0.677604i \(0.236981\pi\)
\(398\) −17.2482 −0.864573
\(399\) −9.03859 9.91110i −0.452495 0.496176i
\(400\) −0.306442 + 0.530773i −0.0153221 + 0.0265387i
\(401\) 24.2837 1.21267 0.606336 0.795208i \(-0.292639\pi\)
0.606336 + 0.795208i \(0.292639\pi\)
\(402\) −5.74940 + 9.95825i −0.286754 + 0.496672i
\(403\) −21.0531 + 7.48956i −1.04873 + 0.373082i
\(404\) −3.00818 5.21031i −0.149662 0.259223i
\(405\) −1.30847 + 2.26634i −0.0650184 + 0.112615i
\(406\) −3.11284 + 0.682337i −0.154487 + 0.0338638i
\(407\) 7.28111 + 12.6113i 0.360911 + 0.625117i
\(408\) 9.39516 + 16.2729i 0.465130 + 0.805628i
\(409\) −19.7226 −0.975221 −0.487610 0.873061i \(-0.662131\pi\)
−0.487610 + 0.873061i \(0.662131\pi\)
\(410\) 19.1968 0.948063
\(411\) −5.27844 9.14252i −0.260366 0.450967i
\(412\) 2.91400 + 5.04720i 0.143563 + 0.248658i
\(413\) −21.4579 23.5293i −1.05588 1.15780i
\(414\) −0.529032 + 0.916310i −0.0260005 + 0.0450342i
\(415\) 11.3541 + 19.6659i 0.557350 + 0.965359i
\(416\) −15.8579 13.5043i −0.777498 0.662105i
\(417\) 4.57749 7.92845i 0.224161 0.388258i
\(418\) 7.78965 0.381004
\(419\) 11.0976 19.2216i 0.542154 0.939039i −0.456626 0.889659i \(-0.650942\pi\)
0.998780 0.0493798i \(-0.0157245\pi\)
\(420\) −8.85317 + 1.94062i −0.431990 + 0.0946927i
\(421\) −1.85475 −0.0903949 −0.0451974 0.998978i \(-0.514392\pi\)
−0.0451974 + 0.998978i \(0.514392\pi\)
\(422\) −6.78943 + 11.7596i −0.330504 + 0.572450i
\(423\) −1.24803 −0.0606814
\(424\) 3.68440 6.38156i 0.178930 0.309916i
\(425\) −6.31336 + 10.9351i −0.306243 + 0.530428i
\(426\) 1.48655 2.57479i 0.0720238 0.124749i
\(427\) 22.5415 4.94112i 1.09086 0.239118i
\(428\) −9.44312 −0.456450
\(429\) −6.27890 + 2.23369i −0.303148 + 0.107844i
\(430\) −0.238413 + 0.412943i −0.0114973 + 0.0199139i
\(431\) 18.8935 + 32.7246i 0.910069 + 1.57629i 0.813964 + 0.580915i \(0.197305\pi\)
0.0961051 + 0.995371i \(0.469362\pi\)
\(432\) −0.331582 −0.0159532
\(433\) 17.5680 + 30.4286i 0.844263 + 1.46231i 0.886259 + 0.463189i \(0.153295\pi\)
−0.0419959 + 0.999118i \(0.513372\pi\)
\(434\) 13.3141 2.91846i 0.639096 0.140091i
\(435\) −1.89596 3.28390i −0.0909044 0.157451i
\(436\) −5.69397 + 9.86225i −0.272692 + 0.472316i
\(437\) 3.22662 5.58867i 0.154350 0.267342i
\(438\) 5.43194 0.259548
\(439\) 15.3475 0.732496 0.366248 0.930517i \(-0.380642\pi\)
0.366248 + 0.930517i \(0.380642\pi\)
\(440\) 6.65247 11.5224i 0.317144 0.549310i
\(441\) −5.71490 4.04226i −0.272138 0.192489i
\(442\) −15.5879 13.2744i −0.741440 0.631398i
\(443\) −14.5356 25.1765i −0.690609 1.19617i −0.971639 0.236471i \(-0.924009\pi\)
0.281030 0.959699i \(-0.409324\pi\)
\(444\) −5.15652 8.93136i −0.244718 0.423863i
\(445\) 19.8299 + 34.3464i 0.940027 + 1.62817i
\(446\) −7.73784 + 13.4023i −0.366397 + 0.634619i
\(447\) 10.9073 0.515900
\(448\) 7.37879 + 8.09108i 0.348615 + 0.382268i
\(449\) −1.18131 2.04609i −0.0557494 0.0965607i 0.836804 0.547503i \(-0.184421\pi\)
−0.892553 + 0.450942i \(0.851088\pi\)
\(450\) 0.768228 + 1.33061i 0.0362146 + 0.0627255i
\(451\) 16.3114 0.768074
\(452\) −2.38932 4.13842i −0.112384 0.194655i
\(453\) 22.3404 1.04964
\(454\) 18.7409 0.879555
\(455\) 21.1830 13.2092i 0.993074 0.619255i
\(456\) −13.9454 −0.653051
\(457\) −16.7534 −0.783692 −0.391846 0.920031i \(-0.628163\pi\)
−0.391846 + 0.920031i \(0.628163\pi\)
\(458\) −8.00257 13.8608i −0.373935 0.647675i
\(459\) −6.83128 −0.318857
\(460\) −2.18017 3.77616i −0.101651 0.176064i
\(461\) 12.5469 + 21.7318i 0.584366 + 1.01215i 0.994954 + 0.100330i \(0.0319900\pi\)
−0.410588 + 0.911821i \(0.634677\pi\)
\(462\) 3.97080 0.870404i 0.184738 0.0404948i
\(463\) −0.254256 −0.0118163 −0.00590815 0.999983i \(-0.501881\pi\)
−0.00590815 + 0.999983i \(0.501881\pi\)
\(464\) 0.240230 0.416090i 0.0111524 0.0193165i
\(465\) 8.10932 + 14.0457i 0.376061 + 0.651356i
\(466\) 9.49924 + 16.4532i 0.440044 + 0.762178i
\(467\) −5.11155 8.85346i −0.236534 0.409689i 0.723183 0.690656i \(-0.242678\pi\)
−0.959717 + 0.280967i \(0.909345\pi\)
\(468\) 4.44675 1.58191i 0.205551 0.0731240i
\(469\) 11.0885 34.8788i 0.512020 1.61055i
\(470\) −1.35744 + 2.35116i −0.0626141 + 0.108451i
\(471\) −0.659171 −0.0303730
\(472\) −33.1068 −1.52386
\(473\) −0.202578 + 0.350875i −0.00931453 + 0.0161332i
\(474\) 2.56095 4.43569i 0.117628 0.203738i
\(475\) −4.68550 8.11552i −0.214985 0.372366i
\(476\) −15.9423 17.4813i −0.730715 0.801253i
\(477\) 1.33947 + 2.32004i 0.0613303 + 0.106227i
\(478\) 9.35162 0.427733
\(479\) 6.35400 + 11.0055i 0.290322 + 0.502852i 0.973886 0.227039i \(-0.0729043\pi\)
−0.683564 + 0.729891i \(0.739571\pi\)
\(480\) −7.55887 + 13.0924i −0.345014 + 0.597581i
\(481\) 21.6268 + 18.4170i 0.986098 + 0.839745i
\(482\) −16.1646 −0.736277
\(483\) 1.02031 3.20938i 0.0464258 0.146032i
\(484\) −4.96351 + 8.59706i −0.225614 + 0.390775i
\(485\) 15.9168 27.5686i 0.722743 1.25183i
\(486\) −0.415625 + 0.719884i −0.0188532 + 0.0326546i
\(487\) 20.4820 0.928126 0.464063 0.885802i \(-0.346391\pi\)
0.464063 + 0.885802i \(0.346391\pi\)
\(488\) 11.9957 20.7772i 0.543022 0.940541i
\(489\) −18.1851 −0.822357
\(490\) −13.8311 + 6.36963i −0.624825 + 0.287751i
\(491\) −9.92098 + 17.1836i −0.447727 + 0.775487i −0.998238 0.0593417i \(-0.981100\pi\)
0.550510 + 0.834828i \(0.314433\pi\)
\(492\) −11.5518 −0.520796
\(493\) 4.94924 8.57233i 0.222902 0.386078i
\(494\) 14.3161 5.09291i 0.644113 0.229141i
\(495\) 2.41853 + 4.18902i 0.108705 + 0.188282i
\(496\) −1.02750 + 1.77968i −0.0461361 + 0.0799100i
\(497\) −2.86703 + 9.01821i −0.128604 + 0.404522i
\(498\) 3.60654 + 6.24671i 0.161613 + 0.279922i
\(499\) −13.9419 24.1480i −0.624124 1.08101i −0.988710 0.149845i \(-0.952123\pi\)
0.364585 0.931170i \(-0.381211\pi\)
\(500\) 10.7963 0.482827
\(501\) −4.42308 −0.197609
\(502\) 7.30913 + 12.6598i 0.326223 + 0.565034i
\(503\) 6.62277 + 11.4710i 0.295295 + 0.511465i 0.975053 0.221970i \(-0.0712489\pi\)
−0.679759 + 0.733436i \(0.737916\pi\)
\(504\) −7.10870 + 1.55823i −0.316647 + 0.0694092i
\(505\) 6.01381 10.4162i 0.267611 0.463516i
\(506\) 0.977844 + 1.69368i 0.0434705 + 0.0752931i
\(507\) −10.0792 + 8.21034i −0.447633 + 0.364634i
\(508\) −6.29167 + 10.8975i −0.279148 + 0.483498i
\(509\) 27.0750 1.20008 0.600040 0.799970i \(-0.295151\pi\)
0.600040 + 0.799970i \(0.295151\pi\)
\(510\) −7.43016 + 12.8694i −0.329013 + 0.569867i
\(511\) −16.8881 + 3.70189i −0.747086 + 0.163762i
\(512\) −3.73962 −0.165270
\(513\) 2.53494 4.39065i 0.111920 0.193852i
\(514\) −12.6244 −0.556838
\(515\) −5.82554 + 10.0901i −0.256704 + 0.444625i
\(516\) 0.143467 0.248491i 0.00631576 0.0109392i
\(517\) −1.15341 + 1.99776i −0.0507269 + 0.0878615i
\(518\) −11.6755 12.8025i −0.512991 0.562511i
\(519\) −3.52044 −0.154530
\(520\) 4.69277 25.5258i 0.205791 1.11938i
\(521\) −11.6257 + 20.1363i −0.509331 + 0.882187i 0.490611 + 0.871379i \(0.336774\pi\)
−0.999942 + 0.0108082i \(0.996560\pi\)
\(522\) −0.602238 1.04311i −0.0263592 0.0456555i
\(523\) 33.5380 1.46651 0.733256 0.679952i \(-0.237999\pi\)
0.733256 + 0.679952i \(0.237999\pi\)
\(524\) −10.8389 18.7735i −0.473500 0.820126i
\(525\) −3.29527 3.61337i −0.143817 0.157700i
\(526\) −5.80626 10.0567i −0.253165 0.438494i
\(527\) −21.1686 + 36.6652i −0.922121 + 1.59716i
\(528\) −0.306442 + 0.530773i −0.0133362 + 0.0230990i
\(529\) −21.3798 −0.929558
\(530\) 5.82761 0.253135
\(531\) 6.01804 10.4236i 0.261161 0.452344i
\(532\) 17.1515 3.75963i 0.743614 0.163001i
\(533\) 29.9777 10.6645i 1.29848 0.461929i
\(534\) 6.29881 + 10.9099i 0.272576 + 0.472116i
\(535\) −9.43913 16.3491i −0.408089 0.706831i
\(536\) −19.0249 32.9521i −0.821750 1.42331i
\(537\) 5.41014 9.37064i 0.233465 0.404373i
\(538\) 24.0444 1.03663
\(539\) −11.7522 + 5.41224i −0.506203 + 0.233122i
\(540\) −1.71281 2.96668i −0.0737078 0.127666i
\(541\) −4.65598 8.06439i −0.200176 0.346715i 0.748409 0.663238i \(-0.230818\pi\)
−0.948585 + 0.316522i \(0.897485\pi\)
\(542\) 8.41019 0.361248
\(543\) −11.5325 19.9749i −0.494908 0.857207i
\(544\) −39.4635 −1.69198
\(545\) −22.7663 −0.975200
\(546\) 6.72862 4.19579i 0.287958 0.179563i
\(547\) −31.5111 −1.34732 −0.673658 0.739043i \(-0.735278\pi\)
−0.673658 + 0.739043i \(0.735278\pi\)
\(548\) 13.8192 0.590326
\(549\) 4.36109 + 7.55363i 0.186127 + 0.322381i
\(550\) 2.83993 0.121095
\(551\) 3.67311 + 6.36201i 0.156480 + 0.271031i
\(552\) −1.75058 3.03209i −0.0745095 0.129054i
\(553\) −4.93914 + 15.5360i −0.210034 + 0.660659i
\(554\) −2.83157 −0.120302
\(555\) 10.3087 17.8552i 0.437579 0.757910i
\(556\) 5.99203 + 10.3785i 0.254119 + 0.440147i
\(557\) −2.76650 4.79172i −0.117220 0.203032i 0.801445 0.598069i \(-0.204065\pi\)
−0.918665 + 0.395037i \(0.870732\pi\)
\(558\) 2.57586 + 4.46153i 0.109045 + 0.188872i
\(559\) −0.142902 + 0.777298i −0.00604410 + 0.0328762i
\(560\) 0.695564 2.18789i 0.0293929 0.0924553i
\(561\) −6.31336 + 10.9351i −0.266550 + 0.461678i
\(562\) −7.81651 −0.329720
\(563\) 12.3688 0.521281 0.260641 0.965436i \(-0.416066\pi\)
0.260641 + 0.965436i \(0.416066\pi\)
\(564\) 0.816850 1.41483i 0.0343956 0.0595749i
\(565\) 4.77662 8.27335i 0.200954 0.348062i
\(566\) 4.35534 + 7.54366i 0.183068 + 0.317084i
\(567\) 0.801591 2.52140i 0.0336637 0.105889i
\(568\) 4.91904 + 8.52003i 0.206398 + 0.357493i
\(569\) 1.99446 0.0836120 0.0418060 0.999126i \(-0.486689\pi\)
0.0418060 + 0.999126i \(0.486689\pi\)
\(570\) −5.51434 9.55112i −0.230970 0.400052i
\(571\) −11.0440 + 19.1288i −0.462179 + 0.800517i −0.999069 0.0431350i \(-0.986265\pi\)
0.536891 + 0.843652i \(0.319599\pi\)
\(572\) 1.57739 8.58002i 0.0659539 0.358749i
\(573\) 1.82966 0.0764351
\(574\) −18.9581 + 4.15562i −0.791294 + 0.173452i
\(575\) 1.17635 2.03750i 0.0490573 0.0849697i
\(576\) −2.06944 + 3.58437i −0.0862266 + 0.149349i
\(577\) −4.54321 + 7.86907i −0.189136 + 0.327594i −0.944963 0.327179i \(-0.893902\pi\)
0.755826 + 0.654772i \(0.227235\pi\)
\(578\) −24.6603 −1.02573
\(579\) 1.57976 2.73622i 0.0656525 0.113713i
\(580\) 4.96371 0.206107
\(581\) −15.4700 16.9634i −0.641805 0.703760i
\(582\) 5.05584 8.75697i 0.209571 0.362988i
\(583\) 4.95168 0.205078
\(584\) −8.98721 + 15.5663i −0.371893 + 0.644138i
\(585\) 7.18367 + 6.11749i 0.297008 + 0.252927i
\(586\) 3.83213 + 6.63744i 0.158304 + 0.274190i
\(587\) −3.02112 + 5.23273i −0.124695 + 0.215978i −0.921614 0.388109i \(-0.873128\pi\)
0.796919 + 0.604086i \(0.206462\pi\)
\(588\) 8.32296 3.83297i 0.343233 0.158069i
\(589\) −15.7105 27.2113i −0.647338 1.12122i
\(590\) −13.0912 22.6747i −0.538958 0.933503i
\(591\) 11.1519 0.458729
\(592\) 2.61234 0.107367
\(593\) −6.67095 11.5544i −0.273943 0.474484i 0.695925 0.718115i \(-0.254995\pi\)
−0.969868 + 0.243631i \(0.921661\pi\)
\(594\) 0.768228 + 1.33061i 0.0315208 + 0.0545956i
\(595\) 14.3301 45.0752i 0.587476 1.84790i
\(596\) −7.13898 + 12.3651i −0.292424 + 0.506493i
\(597\) 10.3748 + 17.9697i 0.424614 + 0.735452i
\(598\) 2.90445 + 2.47338i 0.118772 + 0.101144i
\(599\) −15.0725 + 26.1063i −0.615844 + 1.06667i 0.374392 + 0.927270i \(0.377851\pi\)
−0.990236 + 0.139402i \(0.955482\pi\)
\(600\) −5.08417 −0.207560
\(601\) −18.9159 + 32.7634i −0.771598 + 1.33645i 0.165089 + 0.986279i \(0.447209\pi\)
−0.936687 + 0.350168i \(0.886125\pi\)
\(602\) 0.146056 0.459417i 0.00595279 0.0187245i
\(603\) 13.8331 0.563328
\(604\) −14.6220 + 25.3261i −0.594962 + 1.03051i
\(605\) −19.8457 −0.806841
\(606\) 1.91024 3.30864i 0.0775983 0.134404i
\(607\) −3.35449 + 5.81015i −0.136155 + 0.235827i −0.926038 0.377430i \(-0.876808\pi\)
0.789883 + 0.613257i \(0.210141\pi\)
\(608\) 14.6441 25.3643i 0.593895 1.02866i
\(609\) 2.58326 + 2.83263i 0.104679 + 0.114784i
\(610\) 18.9737 0.768221
\(611\) −0.813634 + 4.42567i −0.0329161 + 0.179043i
\(612\) 4.47115 7.74426i 0.180736 0.313043i
\(613\) 10.0836 + 17.4653i 0.407272 + 0.705416i 0.994583 0.103945i \(-0.0331467\pi\)
−0.587311 + 0.809362i \(0.699813\pi\)
\(614\) 13.4247 0.541775
\(615\) −11.5469 19.9999i −0.465618 0.806474i
\(616\) −4.07542 + 12.8192i −0.164203 + 0.516501i
\(617\) −2.98249 5.16582i −0.120071 0.207968i 0.799725 0.600367i \(-0.204979\pi\)
−0.919795 + 0.392399i \(0.871645\pi\)
\(618\) −1.85044 + 3.20506i −0.0744356 + 0.128926i
\(619\) 4.31420 7.47242i 0.173402 0.300342i −0.766205 0.642596i \(-0.777857\pi\)
0.939607 + 0.342255i \(0.111191\pi\)
\(620\) −21.2305 −0.852639
\(621\) 1.27286 0.0510780
\(622\) −12.6465 + 21.9043i −0.507077 + 0.878283i
\(623\) −27.0184 29.6265i −1.08247 1.18696i
\(624\) −0.216169 + 1.17583i −0.00865370 + 0.0470708i
\(625\) 15.4127 + 26.6956i 0.616507 + 1.06782i
\(626\) 11.3764 + 19.7046i 0.454694 + 0.787553i
\(627\) −4.68550 8.11552i −0.187121 0.324103i
\(628\) 0.431435 0.747267i 0.0172161 0.0298192i
\(629\) 53.8198 2.14594
\(630\) −3.87818 4.25255i −0.154510 0.169426i
\(631\) −1.02888 1.78208i −0.0409592 0.0709434i 0.844819 0.535052i \(-0.179708\pi\)
−0.885778 + 0.464109i \(0.846375\pi\)
\(632\) 8.47423 + 14.6778i 0.337087 + 0.583852i
\(633\) 16.3355 0.649276
\(634\) 5.14066 + 8.90388i 0.204162 + 0.353618i
\(635\) −25.1560 −0.998287
\(636\) −3.50680 −0.139054
\(637\) −18.0601 + 17.6305i −0.715567 + 0.698544i
\(638\) −2.22631 −0.0881405
\(639\) −3.57667 −0.141491
\(640\) −10.6160 18.3875i −0.419635 0.726830i
\(641\) −17.6623 −0.697618 −0.348809 0.937194i \(-0.613414\pi\)
−0.348809 + 0.937194i \(0.613414\pi\)
\(642\) −2.99827 5.19316i −0.118332 0.204957i
\(643\) −24.6023 42.6124i −0.970219 1.68047i −0.694885 0.719121i \(-0.744545\pi\)
−0.275334 0.961349i \(-0.588788\pi\)
\(644\) 2.97050 + 3.25725i 0.117054 + 0.128353i
\(645\) 0.573624 0.0225864
\(646\) 14.3947 24.9323i 0.566352 0.980950i
\(647\) 7.74797 + 13.4199i 0.304604 + 0.527590i 0.977173 0.212445i \(-0.0681426\pi\)
−0.672569 + 0.740034i \(0.734809\pi\)
\(648\) −1.37531 2.38211i −0.0540274 0.0935783i
\(649\) −11.1235 19.2666i −0.436637 0.756278i
\(650\) 5.21934 1.85676i 0.204719 0.0728281i
\(651\) −11.0490 12.1156i −0.433045 0.474848i
\(652\) 11.9023 20.6154i 0.466131 0.807363i
\(653\) −36.7330 −1.43748 −0.718738 0.695281i \(-0.755280\pi\)
−0.718738 + 0.695281i \(0.755280\pi\)
\(654\) −7.23154 −0.282776
\(655\) 21.6687 37.5312i 0.846665 1.46647i
\(656\) 1.46307 2.53411i 0.0571232 0.0989402i
\(657\) −3.26733 5.65918i −0.127471 0.220786i
\(658\) 0.831593 2.61577i 0.0324189 0.101973i
\(659\) −5.48070 9.49284i −0.213498 0.369789i 0.739309 0.673366i \(-0.235152\pi\)
−0.952807 + 0.303577i \(0.901819\pi\)
\(660\) −6.33182 −0.246466
\(661\) −8.03552 13.9179i −0.312545 0.541344i 0.666367 0.745624i \(-0.267848\pi\)
−0.978913 + 0.204279i \(0.934515\pi\)
\(662\) −5.15634 + 8.93104i −0.200407 + 0.347115i
\(663\) −4.45355 + 24.2246i −0.172961 + 0.940804i
\(664\) −23.8682 −0.926268
\(665\) 23.6534 + 25.9367i 0.917240 + 1.00578i
\(666\) 3.27448 5.67156i 0.126883 0.219769i
\(667\) −0.922180 + 1.59726i −0.0357069 + 0.0618462i
\(668\) 2.89495 5.01421i 0.112009 0.194005i
\(669\) 18.6173 0.719788
\(670\) 15.0458 26.0601i 0.581271 1.00679i
\(671\) 16.1218 0.622375
\(672\) 4.63070 14.5658i 0.178633 0.561889i
\(673\) 14.1074 24.4348i 0.543802 0.941892i −0.454880 0.890553i \(-0.650318\pi\)
0.998681 0.0513390i \(-0.0163489\pi\)
\(674\) 13.1769 0.507554
\(675\) 0.924183 1.60073i 0.0355718 0.0616122i
\(676\) −2.71067 16.8000i −0.104257 0.646154i
\(677\) 17.5358 + 30.3729i 0.673956 + 1.16733i 0.976773 + 0.214277i \(0.0687395\pi\)
−0.302817 + 0.953049i \(0.597927\pi\)
\(678\) 1.51726 2.62797i 0.0582699 0.100926i
\(679\) −9.75089 + 30.6713i −0.374205 + 1.17706i
\(680\) −24.5866 42.5852i −0.942851 1.63307i
\(681\) −11.2727 19.5249i −0.431972 0.748197i
\(682\) 9.52228 0.364627
\(683\) 48.3832 1.85133 0.925666 0.378341i \(-0.123505\pi\)
0.925666 + 0.378341i \(0.123505\pi\)
\(684\) 3.31829 + 5.74745i 0.126878 + 0.219759i
\(685\) 13.8133 + 23.9254i 0.527781 + 0.914143i
\(686\) 12.2802 9.28450i 0.468861 0.354484i
\(687\) −9.62713 + 16.6747i −0.367298 + 0.636179i
\(688\) 0.0363408 + 0.0629441i 0.00138548 + 0.00239972i
\(689\) 9.10039 3.23743i 0.346697 0.123336i
\(690\) 1.38444 2.39793i 0.0527049 0.0912875i
\(691\) −24.1060 −0.917035 −0.458518 0.888685i \(-0.651619\pi\)
−0.458518 + 0.888685i \(0.651619\pi\)
\(692\) 2.30417 3.99093i 0.0875913 0.151713i
\(693\) −3.29527 3.61337i −0.125177 0.137260i
\(694\) 10.7484 0.408005
\(695\) −11.9790 + 20.7483i −0.454390 + 0.787026i
\(696\) 3.98564 0.151075
\(697\) 30.1423 52.2079i 1.14172 1.97752i
\(698\) 1.39030 2.40808i 0.0526238 0.0911470i
\(699\) 11.4276 19.7933i 0.432233 0.748650i
\(700\) 6.25307 1.37068i 0.236344 0.0518068i
\(701\) −3.07792 −0.116251 −0.0581257 0.998309i \(-0.518512\pi\)
−0.0581257 + 0.998309i \(0.518512\pi\)
\(702\) 2.28184 + 1.94318i 0.0861224 + 0.0733404i
\(703\) −19.9714 + 34.5914i −0.753235 + 1.30464i
\(704\) 3.82508 + 6.62523i 0.144163 + 0.249698i
\(705\) 3.26602 0.123005
\(706\) 2.49983 + 4.32984i 0.0940825 + 0.162956i
\(707\) −3.68417 + 11.5885i −0.138557 + 0.435831i
\(708\) 7.87775 + 13.6447i 0.296064 + 0.512798i
\(709\) −17.9722 + 31.1287i −0.674959 + 1.16906i 0.301522 + 0.953459i \(0.402505\pi\)
−0.976481 + 0.215604i \(0.930828\pi\)
\(710\) −3.89022 + 6.73806i −0.145997 + 0.252875i
\(711\) −6.16167 −0.231081
\(712\) −41.6858 −1.56224
\(713\) 3.94430 6.83173i 0.147715 0.255850i
\(714\) 4.55185 14.3178i 0.170349 0.535830i
\(715\) 16.4315 5.84544i 0.614503 0.218607i
\(716\) 7.08200 + 12.2664i 0.264667 + 0.458416i
\(717\) −5.62503 9.74283i −0.210070 0.363853i
\(718\) −6.19253 10.7258i −0.231103 0.400282i
\(719\) −5.09760 + 8.82930i −0.190108 + 0.329278i −0.945286 0.326243i \(-0.894217\pi\)
0.755178 + 0.655520i \(0.227551\pi\)
\(720\) 0.867729 0.0323384
\(721\) 3.56883 11.2257i 0.132910 0.418068i
\(722\) 2.78624 + 4.82590i 0.103693 + 0.179602i
\(723\) 9.72305 + 16.8408i 0.361604 + 0.626316i
\(724\) 30.1927 1.12210
\(725\) 1.33913 + 2.31945i 0.0497342 + 0.0861421i
\(726\) −6.30383 −0.233957
\(727\) −2.32372 −0.0861821 −0.0430911 0.999071i \(-0.513721\pi\)
−0.0430911 + 0.999071i \(0.513721\pi\)
\(728\) 0.891282 + 26.2242i 0.0330331 + 0.971933i
\(729\) 1.00000 0.0370370
\(730\) −14.2151 −0.526123
\(731\) 0.748697 + 1.29678i 0.0276916 + 0.0479632i
\(732\) −11.4175 −0.422004
\(733\) 2.91958 + 5.05685i 0.107837 + 0.186779i 0.914894 0.403695i \(-0.132274\pi\)
−0.807057 + 0.590474i \(0.798941\pi\)
\(734\) −3.35889 5.81777i −0.123979 0.214738i
\(735\) 14.9555 + 10.5784i 0.551644 + 0.390188i
\(736\) 7.35314 0.271040
\(737\) 12.7843 22.1431i 0.470917 0.815652i
\(738\) −3.66780 6.35282i −0.135014 0.233850i
\(739\) −0.0105714 0.0183102i −0.000388875 0.000673551i 0.865831 0.500337i \(-0.166790\pi\)
−0.866220 + 0.499663i \(0.833457\pi\)
\(740\) 13.4943 + 23.3728i 0.496060 + 0.859201i
\(741\) −13.9172 11.8516i −0.511260 0.435380i
\(742\) −5.75513 + 1.26153i −0.211277 + 0.0463122i
\(743\) −14.8332 + 25.6918i −0.544176 + 0.942541i 0.454482 + 0.890756i \(0.349824\pi\)
−0.998658 + 0.0517853i \(0.983509\pi\)
\(744\) −17.0472 −0.624980
\(745\) −28.5439 −1.04577
\(746\) −4.68704 + 8.11819i −0.171605 + 0.297228i
\(747\) 4.33869 7.51483i 0.158744 0.274953i
\(748\) −8.26432 14.3142i −0.302173 0.523380i
\(749\) 12.8609 + 14.1024i 0.469927 + 0.515290i
\(750\) 3.42793 + 5.93734i 0.125170 + 0.216801i
\(751\) 12.6016 0.459838 0.229919 0.973210i \(-0.426154\pi\)
0.229919 + 0.973210i \(0.426154\pi\)
\(752\) 0.206912 + 0.358382i 0.00754531 + 0.0130689i
\(753\) 8.79293 15.2298i 0.320432 0.555005i
\(754\) −4.09160 + 1.45557i −0.149007 + 0.0530088i
\(755\) −58.4635 −2.12770
\(756\) 2.33372 + 2.55900i 0.0848767 + 0.0930701i
\(757\) −8.13319 + 14.0871i −0.295606 + 0.512004i −0.975126 0.221653i \(-0.928855\pi\)
0.679520 + 0.733657i \(0.262188\pi\)
\(758\) 7.43602 12.8796i 0.270089 0.467807i
\(759\) 1.17635 2.03750i 0.0426989 0.0739566i
\(760\) 36.4942 1.32378
\(761\) −23.1276 + 40.0581i −0.838374 + 1.45211i 0.0528802 + 0.998601i \(0.483160\pi\)
−0.891254 + 0.453505i \(0.850173\pi\)
\(762\) −7.99063 −0.289470
\(763\) 22.4831 4.92832i 0.813944 0.178417i
\(764\) −1.19753 + 2.07419i −0.0433252 + 0.0750414i
\(765\) 17.8770 0.646346
\(766\) 0.0158392 0.0274344i 0.000572295 0.000991244i
\(767\) −33.0398 28.1362i −1.19300 1.01594i
\(768\) −7.51098 13.0094i −0.271029 0.469436i
\(769\) 19.2803 33.3944i 0.695264 1.20423i −0.274827 0.961494i \(-0.588621\pi\)
0.970092 0.242739i \(-0.0780460\pi\)
\(770\) −10.3913 + 2.27779i −0.374478 + 0.0820859i
\(771\) 7.59362 + 13.1525i 0.273477 + 0.473677i
\(772\) 2.06794 + 3.58177i 0.0744267 + 0.128911i
\(773\) −10.3545 −0.372424 −0.186212 0.982510i \(-0.559621\pi\)
−0.186212 + 0.982510i \(0.559621\pi\)
\(774\) 0.182207 0.00654931
\(775\) −5.72768 9.92063i −0.205744 0.356360i
\(776\) 16.7299 + 28.9770i 0.600568 + 1.04021i
\(777\) −6.31528 + 19.8647i −0.226560 + 0.712641i
\(778\) −16.2805 + 28.1986i −0.583683 + 1.01097i
\(779\) 22.3703 + 38.7465i 0.801499 + 1.38824i
\(780\) −11.6369 + 4.13977i −0.416666 + 0.148227i
\(781\) −3.30550 + 5.72529i −0.118280 + 0.204867i
\(782\) 7.22793 0.258470
\(783\) −0.724496 + 1.25486i −0.0258914 + 0.0448452i
\(784\) −0.213290 + 2.31125i −0.00761751 + 0.0825447i
\(785\) 1.72501 0.0615683
\(786\) 6.88289 11.9215i 0.245505 0.425226i
\(787\) 34.2879 1.22223 0.611116 0.791541i \(-0.290721\pi\)
0.611116 + 0.791541i \(0.290721\pi\)
\(788\) −7.29906 + 12.6423i −0.260018 + 0.450365i
\(789\) −6.98496 + 12.0983i −0.248671 + 0.430711i
\(790\) −6.70184 + 11.6079i −0.238441 + 0.412992i
\(791\) −2.92624 + 9.20447i −0.104045 + 0.327273i
\(792\) −5.08417 −0.180658
\(793\) 29.6293 10.5405i 1.05217 0.374304i
\(794\) 3.62899 6.28560i 0.128788 0.223068i
\(795\) −3.50532 6.07140i −0.124321 0.215330i
\(796\) −27.1618 −0.962723
\(797\) 6.60638 + 11.4426i 0.234010 + 0.405317i 0.958984 0.283459i \(-0.0914819\pi\)
−0.724975 + 0.688776i \(0.758149\pi\)
\(798\) 7.51333 + 8.23862i 0.265969 + 0.291644i
\(799\) 4.26283 + 7.38343i 0.150808 + 0.261207i
\(800\) 5.33890 9.24724i 0.188758 0.326939i
\(801\) 7.57751 13.1246i 0.267738 0.463736i
\(802\) −20.1859 −0.712788
\(803\) −12.0784 −0.426239
\(804\) −9.05393 + 15.6819i −0.319307 + 0.553057i
\(805\) −2.67009 + 8.39875i −0.0941083 + 0.296017i
\(806\) 17.5004 6.22571i 0.616426 0.219291i
\(807\) −14.4628 25.0503i −0.509115 0.881813i
\(808\) 6.32103 + 10.9484i 0.222373 + 0.385162i
\(809\) 25.4875 + 44.1457i 0.896094 + 1.55208i 0.832445 + 0.554107i \(0.186940\pi\)
0.0636484 + 0.997972i \(0.479726\pi\)
\(810\) 1.08767 1.88389i 0.0382167 0.0661933i
\(811\) 7.86969 0.276342 0.138171 0.990408i \(-0.455878\pi\)
0.138171 + 0.990408i \(0.455878\pi\)
\(812\) −4.90197 + 1.07452i −0.172026 + 0.0377082i
\(813\) −5.05875 8.76202i −0.177418 0.307297i
\(814\) −6.05243 10.4831i −0.212138 0.367433i
\(815\) 47.5892 1.66698
\(816\) 1.13256 + 1.96166i 0.0396477 + 0.0686718i
\(817\) −1.11130 −0.0388795
\(818\) 16.3944 0.573218
\(819\) −8.41860 4.48633i −0.294170 0.156765i
\(820\) 30.2304 1.05569
\(821\) −41.6714 −1.45434 −0.727171 0.686457i \(-0.759165\pi\)
−0.727171 + 0.686457i \(0.759165\pi\)
\(822\) 4.38770 + 7.59973i 0.153039 + 0.265071i
\(823\) −15.7101 −0.547619 −0.273809 0.961784i \(-0.588284\pi\)
−0.273809 + 0.961784i \(0.588284\pi\)
\(824\) −6.12315 10.6056i −0.213310 0.369464i
\(825\) −1.70823 2.95874i −0.0594729 0.103010i
\(826\) 17.8369 + 19.5588i 0.620626 + 0.680537i
\(827\) 33.6343 1.16958 0.584789 0.811185i \(-0.301177\pi\)
0.584789 + 0.811185i \(0.301177\pi\)
\(828\) −0.833099 + 1.44297i −0.0289522 + 0.0501466i
\(829\) 25.1510 + 43.5629i 0.873532 + 1.51300i 0.858319 + 0.513117i \(0.171509\pi\)
0.0152129 + 0.999884i \(0.495157\pi\)
\(830\) −9.43810 16.3473i −0.327601 0.567422i
\(831\) 1.70320 + 2.95002i 0.0590832 + 0.102335i
\(832\) 11.3615 + 9.67525i 0.393889 + 0.335429i
\(833\) −4.39423 + 47.6167i −0.152251 + 1.64982i
\(834\) −3.80504 + 6.59053i −0.131758 + 0.228211i
\(835\) 11.5749 0.400567
\(836\) 12.2668 0.424258
\(837\) 3.09878 5.36725i 0.107110 0.185519i
\(838\) −9.22491 + 15.9780i −0.318669 + 0.551951i
\(839\) −19.2875 33.4069i −0.665877 1.15333i −0.979047 0.203635i \(-0.934724\pi\)
0.313170 0.949697i \(-0.398609\pi\)
\(840\) 18.6030 4.07780i 0.641865 0.140697i
\(841\) 13.4502 + 23.2964i 0.463800 + 0.803326i
\(842\) 1.54176 0.0531326
\(843\) 4.70165 + 8.14351i 0.161934 + 0.280477i
\(844\) −10.6917 + 18.5186i −0.368025 + 0.637437i
\(845\) 26.3767 21.4860i 0.907384 0.739139i
\(846\) 1.03743 0.0356675
\(847\) 19.5988 4.29608i 0.673424 0.147615i
\(848\) 0.444145 0.769282i 0.0152520 0.0264173i
\(849\) 5.23950 9.07507i 0.179819 0.311456i
\(850\) 5.24798 9.08977i 0.180004 0.311777i
\(851\) −10.0281 −0.343759
\(852\) 2.34097 4.05468i 0.0802003 0.138911i
\(853\) 22.6889 0.776855 0.388427 0.921479i \(-0.373018\pi\)
0.388427 + 0.921479i \(0.373018\pi\)
\(854\) −18.7377 + 4.10731i −0.641190 + 0.140549i
\(855\) −6.63379 + 11.4901i −0.226871 + 0.392952i
\(856\) 19.8427 0.678209
\(857\) 10.2901 17.8230i 0.351504 0.608822i −0.635009 0.772504i \(-0.719004\pi\)
0.986513 + 0.163682i \(0.0523371\pi\)
\(858\) 5.21934 1.85676i 0.178185 0.0633887i
\(859\) 1.81131 + 3.13729i 0.0618012 + 0.107043i 0.895271 0.445523i \(-0.146982\pi\)
−0.833469 + 0.552566i \(0.813649\pi\)
\(860\) −0.375443 + 0.650286i −0.0128025 + 0.0221746i
\(861\) 15.7328 + 17.2515i 0.536172 + 0.587931i
\(862\) −15.7053 27.2023i −0.534923 0.926515i
\(863\) −3.99010 6.91105i −0.135824 0.235255i 0.790088 0.612994i \(-0.210035\pi\)
−0.925912 + 0.377739i \(0.876702\pi\)
\(864\) 5.77688 0.196534
\(865\) 9.21277 0.313244
\(866\) −14.6034 25.2938i −0.496244 0.859520i
\(867\) 14.8332 + 25.6919i 0.503763 + 0.872542i
\(868\) 20.9665 4.59588i 0.711649 0.155994i
\(869\) −5.69451 + 9.86318i −0.193173 + 0.334586i
\(870\) 1.57602 + 2.72975i 0.0534321 + 0.0925470i
\(871\) 9.01828 49.0539i 0.305573 1.66213i
\(872\) 11.9647 20.7234i 0.405174 0.701783i
\(873\) −12.1644 −0.411703
\(874\) −2.68213 + 4.64558i −0.0907244 + 0.157139i
\(875\) −14.7039 16.1233i −0.497082 0.545066i
\(876\) 8.55401 0.289013
\(877\) 6.29998 10.9119i 0.212735 0.368468i −0.739834 0.672789i \(-0.765096\pi\)
0.952570 + 0.304321i \(0.0984295\pi\)
\(878\) −12.7576 −0.430549
\(879\) 4.61007 7.98488i 0.155494 0.269323i
\(880\) 0.801940 1.38900i 0.0270334 0.0468232i
\(881\) 0.0834951 0.144618i 0.00281302 0.00487230i −0.864615 0.502434i \(-0.832438\pi\)
0.867428 + 0.497562i \(0.165771\pi\)
\(882\) 4.75052 + 3.36013i 0.159958 + 0.113142i
\(883\) 1.54174 0.0518836 0.0259418 0.999663i \(-0.491742\pi\)
0.0259418 + 0.999663i \(0.491742\pi\)
\(884\) −24.5472 20.9040i −0.825611 0.703077i
\(885\) −15.7489 + 27.2778i −0.529392 + 0.916934i
\(886\) 12.0828 + 20.9280i 0.405928 + 0.703088i
\(887\) −10.3337 −0.346971 −0.173485 0.984836i \(-0.555503\pi\)
−0.173485 + 0.984836i \(0.555503\pi\)
\(888\) 10.8353 + 18.7673i 0.363609 + 0.629790i
\(889\) 24.8432 5.44565i 0.833213 0.182641i
\(890\) −16.4836 28.5504i −0.552532 0.957013i
\(891\) 0.924183 1.60073i 0.0309613 0.0536265i
\(892\) −12.1852 + 21.1055i −0.407992 + 0.706663i
\(893\) −6.32737 −0.211737
\(894\) −9.06674 −0.303237
\(895\) −14.1580 + 24.5224i −0.473250 + 0.819693i
\(896\) 14.4644 + 15.8607i 0.483223 + 0.529869i
\(897\) 0.829819 4.51371i 0.0277068 0.150708i
\(898\) 0.981963 + 1.70081i 0.0327685 + 0.0567568i
\(899\) 4.49011 + 7.77709i 0.149753 + 0.259381i
\(900\) 1.20978 + 2.09539i 0.0403259 + 0.0698464i
\(901\) 9.15033 15.8488i 0.304842 0.528001i
\(902\) −13.5589 −0.451461
\(903\) −0.566490 + 0.124175i −0.0188516 + 0.00413229i
\(904\) 5.02064 + 8.69600i 0.166984 + 0.289225i
\(905\) 30.1799 + 52.2732i 1.00321 + 1.73762i
\(906\) −18.5705 −0.616963
\(907\) −11.9496 20.6973i −0.396780 0.687242i 0.596547 0.802578i \(-0.296539\pi\)
−0.993327 + 0.115336i \(0.963206\pi\)
\(908\) 29.5125 0.979406
\(909\) −4.59607 −0.152442
\(910\) −17.6084 + 10.9801i −0.583712 + 0.363988i
\(911\) 14.3304 0.474786 0.237393 0.971414i \(-0.423707\pi\)
0.237393 + 0.971414i \(0.423707\pi\)
\(912\) −1.68108 −0.0556662
\(913\) −8.01949 13.8902i −0.265406 0.459697i
\(914\) 13.9263 0.460641
\(915\) −11.4127 19.7674i −0.377293 0.653490i
\(916\) −12.6021 21.8275i −0.416386 0.721202i
\(917\) −13.2746 + 41.7552i −0.438366 + 1.37888i
\(918\) 5.67851 0.187419
\(919\) 27.1731 47.0652i 0.896359 1.55254i 0.0642448 0.997934i \(-0.479536\pi\)
0.832114 0.554605i \(-0.187131\pi\)
\(920\) 4.58115 + 7.93479i 0.151036 + 0.261602i
\(921\) −8.07497 13.9863i −0.266079 0.460863i
\(922\) −10.4296 18.0646i −0.343480 0.594926i
\(923\) −2.33175 + 12.6833i −0.0767506 + 0.417476i
\(924\) 6.25307 1.37068i 0.205711 0.0450920i
\(925\) −7.28111 + 12.6113i −0.239402 + 0.414656i
\(926\) 0.211351 0.00694542
\(927\) 4.45218 0.146229
\(928\) −4.18533 + 7.24920i −0.137390 + 0.237967i
\(929\) −8.33555 + 14.4376i −0.273480 + 0.473682i −0.969751 0.244098i \(-0.921508\pi\)
0.696270 + 0.717780i \(0.254842\pi\)
\(930\) −6.74088 11.6755i −0.221042 0.382856i
\(931\) −28.9739 20.4938i −0.949581 0.671657i
\(932\) 14.9590 + 25.9098i 0.490000 + 0.848704i
\(933\) 30.4275 0.996153
\(934\) 4.24898 + 7.35945i 0.139031 + 0.240808i
\(935\) 16.5217 28.6164i 0.540316 0.935855i
\(936\) −9.34388 + 3.32405i −0.305414 + 0.108650i
\(937\) −2.55078 −0.0833303 −0.0416651 0.999132i \(-0.513266\pi\)
−0.0416651 + 0.999132i \(0.513266\pi\)
\(938\) −9.21733 + 28.9930i −0.300957 + 0.946656i
\(939\) 13.6859 23.7047i 0.446623 0.773574i
\(940\) −2.13765 + 3.70251i −0.0697223 + 0.120763i
\(941\) 17.3944 30.1280i 0.567041 0.982144i −0.429815 0.902917i \(-0.641421\pi\)
0.996857 0.0792275i \(-0.0252453\pi\)
\(942\) 0.547937 0.0178527
\(943\) −5.61634 + 9.72778i −0.182893 + 0.316780i
\(944\) −3.99095 −0.129894
\(945\) −2.09772 + 6.59834i −0.0682387 + 0.214644i
\(946\) 0.168393 0.291665i 0.00547493 0.00948285i
\(947\) 14.9857 0.486969 0.243485 0.969905i \(-0.421709\pi\)
0.243485 + 0.969905i \(0.421709\pi\)
\(948\) 4.03288 6.98516i 0.130982 0.226867i
\(949\) −22.1982 + 7.89694i −0.720585 + 0.256345i
\(950\) 3.89483 + 6.74604i 0.126365 + 0.218870i
\(951\) 6.18424 10.7114i 0.200538 0.347342i
\(952\) 33.4994 + 36.7332i 1.08572 + 1.19053i
\(953\) −6.40858 11.1000i −0.207594 0.359564i 0.743362 0.668889i \(-0.233230\pi\)
−0.950956 + 0.309326i \(0.899897\pi\)
\(954\) −1.11344 1.92853i −0.0360489 0.0624386i
\(955\) −4.78810 −0.154939
\(956\) 14.7266 0.476291
\(957\) 1.33913 + 2.31945i 0.0432880 + 0.0749771i
\(958\) −5.28177 9.14829i −0.170646 0.295568i
\(959\) −18.8208 20.6376i −0.607755 0.666423i
\(960\) 5.41559 9.38008i 0.174787 0.302741i
\(961\) −3.70488 6.41704i −0.119512 0.207001i
\(962\) −17.9773 15.3092i −0.579612 0.493588i
\(963\) −3.60694 + 6.24740i −0.116232 + 0.201320i
\(964\) −25.4554 −0.819862
\(965\) −4.13413 + 7.16052i −0.133082 + 0.230505i
\(966\) −0.848134 + 2.66780i −0.0272883 + 0.0858350i
\(967\) 17.8560 0.574209 0.287105 0.957899i \(-0.407307\pi\)
0.287105 + 0.957899i \(0.407307\pi\)
\(968\) 10.4298 18.0649i 0.335225 0.580627i
\(969\) −34.6338 −1.11260
\(970\) −13.2308 + 22.9165i −0.424816 + 0.735803i
\(971\) −17.6534 + 30.5765i −0.566523 + 0.981247i 0.430383 + 0.902646i \(0.358379\pi\)
−0.996906 + 0.0786007i \(0.974955\pi\)
\(972\) −0.654511 + 1.13365i −0.0209934 + 0.0363617i
\(973\) 7.33855 23.0834i 0.235263 0.740018i
\(974\) −17.0256 −0.545537
\(975\) −5.07388 4.32084i −0.162494 0.138378i
\(976\) 1.44606 2.50465i 0.0462872 0.0801718i
\(977\) −9.55272 16.5458i −0.305618 0.529347i 0.671780 0.740750i \(-0.265530\pi\)
−0.977399 + 0.211404i \(0.932197\pi\)
\(978\) 15.1164 0.483368
\(979\) −14.0060 24.2591i −0.447634 0.775325i
\(980\) −21.7807 + 10.0307i −0.695758 + 0.320417i
\(981\) 4.34979 + 7.53406i 0.138878 + 0.240544i
\(982\) 8.24682 14.2839i 0.263167 0.455818i
\(983\) −18.4765 + 32.0022i −0.589308 + 1.02071i 0.405015 + 0.914310i \(0.367266\pi\)
−0.994323 + 0.106402i \(0.966067\pi\)
\(984\) 24.2737 0.773816
\(985\) −29.1839 −0.929877
\(986\) −4.11406 + 7.12576i −0.131018 + 0.226930i
\(987\) −3.22540 + 0.707011i −0.102666 + 0.0225044i
\(988\) 22.5445 8.02012i 0.717236 0.255154i
\(989\) −0.139503 0.241626i −0.00443593 0.00768326i
\(990\) −2.01041 3.48212i −0.0638949 0.110669i
\(991\) −27.9186 48.3564i −0.886863 1.53609i −0.843563 0.537030i \(-0.819546\pi\)
−0.0433004 0.999062i \(-0.513787\pi\)
\(992\) 17.9013 31.0059i 0.568367 0.984440i
\(993\) 12.4062 0.393699
\(994\) 2.38322 7.49640i 0.0755911 0.237771i
\(995\) −27.1503 47.0257i −0.860722 1.49081i
\(996\) 5.67944 + 9.83708i 0.179960 + 0.311700i
\(997\) −22.8782 −0.724560 −0.362280 0.932069i \(-0.618002\pi\)
−0.362280 + 0.932069i \(0.618002\pi\)
\(998\) 11.5892 + 20.0731i 0.366850 + 0.635402i
\(999\) −7.87843 −0.249263
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 273.2.l.b.256.3 yes 16
3.2 odd 2 819.2.s.e.802.6 16
7.2 even 3 273.2.j.b.100.6 16
13.3 even 3 273.2.j.b.172.6 yes 16
21.2 odd 6 819.2.n.e.100.3 16
39.29 odd 6 819.2.n.e.172.3 16
91.16 even 3 inner 273.2.l.b.16.3 yes 16
273.107 odd 6 819.2.s.e.289.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.b.100.6 16 7.2 even 3
273.2.j.b.172.6 yes 16 13.3 even 3
273.2.l.b.16.3 yes 16 91.16 even 3 inner
273.2.l.b.256.3 yes 16 1.1 even 1 trivial
819.2.n.e.100.3 16 21.2 odd 6
819.2.n.e.172.3 16 39.29 odd 6
819.2.s.e.289.6 16 273.107 odd 6
819.2.s.e.802.6 16 3.2 odd 2