Properties

Label 810.2.c.g.649.4
Level $810$
Weight $2$
Character 810.649
Analytic conductor $6.468$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [810,2,Mod(649,810)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(810, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("810.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 810.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.46788256372\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2702336256.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.4
Root \(0.656712 - 2.13746i\) of defining polynomial
Character \(\chi\) \(=\) 810.649
Dual form 810.2.c.g.649.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +(1.52274 + 1.63746i) q^{5} +1.31342i q^{7} +1.00000i q^{8} +(1.63746 - 1.52274i) q^{10} -2.62685 q^{11} +1.73205i q^{13} +1.31342 q^{14} +1.00000 q^{16} +1.27492i q^{17} +2.27492 q^{19} +(-1.52274 - 1.63746i) q^{20} +2.62685i q^{22} +6.27492i q^{23} +(-0.362541 + 4.98684i) q^{25} +1.73205 q^{26} -1.31342i q^{28} -9.13642 q^{29} +8.54983 q^{31} -1.00000i q^{32} +1.27492 q^{34} +(-2.15068 + 2.00000i) q^{35} +9.97368i q^{37} -2.27492i q^{38} +(-1.63746 + 1.52274i) q^{40} -5.61478 q^{41} +2.62685i q^{43} +2.62685 q^{44} +6.27492 q^{46} -10.2749i q^{47} +5.27492 q^{49} +(4.98684 + 0.362541i) q^{50} -1.73205i q^{52} +8.27492i q^{53} +(-4.00000 - 4.30136i) q^{55} -1.31342 q^{56} +9.13642i q^{58} +8.24163 q^{59} +7.27492 q^{61} -8.54983i q^{62} -1.00000 q^{64} +(-2.83616 + 2.63746i) q^{65} -12.1819i q^{67} -1.27492i q^{68} +(2.00000 + 2.15068i) q^{70} +6.92820 q^{71} +4.83507i q^{73} +9.97368 q^{74} -2.27492 q^{76} -3.45017i q^{77} +(1.52274 + 1.63746i) q^{80} +5.61478i q^{82} +4.00000i q^{83} +(-2.08762 + 1.94136i) q^{85} +2.62685 q^{86} -2.62685i q^{88} -3.04547 q^{89} -2.27492 q^{91} -6.27492i q^{92} -10.2749 q^{94} +(3.46410 + 3.72508i) q^{95} -19.1101i q^{97} -5.27492i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 2 q^{10} + 8 q^{16} - 12 q^{19} - 18 q^{25} + 8 q^{31} - 20 q^{34} + 2 q^{40} + 20 q^{46} + 12 q^{49} - 32 q^{55} + 28 q^{61} - 8 q^{64} + 16 q^{70} + 12 q^{76} - 62 q^{85} + 12 q^{91} - 52 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.52274 + 1.63746i 0.680989 + 0.732294i
\(6\) 0 0
\(7\) 1.31342i 0.496428i 0.968705 + 0.248214i \(0.0798436\pi\)
−0.968705 + 0.248214i \(0.920156\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 1.63746 1.52274i 0.517810 0.481532i
\(11\) −2.62685 −0.792025 −0.396012 0.918245i \(-0.629606\pi\)
−0.396012 + 0.918245i \(0.629606\pi\)
\(12\) 0 0
\(13\) 1.73205i 0.480384i 0.970725 + 0.240192i \(0.0772105\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) 1.31342 0.351027
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.27492i 0.309213i 0.987976 + 0.154606i \(0.0494109\pi\)
−0.987976 + 0.154606i \(0.950589\pi\)
\(18\) 0 0
\(19\) 2.27492 0.521902 0.260951 0.965352i \(-0.415964\pi\)
0.260951 + 0.965352i \(0.415964\pi\)
\(20\) −1.52274 1.63746i −0.340494 0.366147i
\(21\) 0 0
\(22\) 2.62685i 0.560046i
\(23\) 6.27492i 1.30841i 0.756317 + 0.654205i \(0.226997\pi\)
−0.756317 + 0.654205i \(0.773003\pi\)
\(24\) 0 0
\(25\) −0.362541 + 4.98684i −0.0725083 + 0.997368i
\(26\) 1.73205 0.339683
\(27\) 0 0
\(28\) 1.31342i 0.248214i
\(29\) −9.13642 −1.69659 −0.848296 0.529523i \(-0.822371\pi\)
−0.848296 + 0.529523i \(0.822371\pi\)
\(30\) 0 0
\(31\) 8.54983 1.53560 0.767798 0.640692i \(-0.221353\pi\)
0.767798 + 0.640692i \(0.221353\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 1.27492 0.218646
\(35\) −2.15068 + 2.00000i −0.363531 + 0.338062i
\(36\) 0 0
\(37\) 9.97368i 1.63966i 0.572605 + 0.819831i \(0.305933\pi\)
−0.572605 + 0.819831i \(0.694067\pi\)
\(38\) 2.27492i 0.369040i
\(39\) 0 0
\(40\) −1.63746 + 1.52274i −0.258905 + 0.240766i
\(41\) −5.61478 −0.876881 −0.438441 0.898760i \(-0.644469\pi\)
−0.438441 + 0.898760i \(0.644469\pi\)
\(42\) 0 0
\(43\) 2.62685i 0.400591i 0.979736 + 0.200295i \(0.0641902\pi\)
−0.979736 + 0.200295i \(0.935810\pi\)
\(44\) 2.62685 0.396012
\(45\) 0 0
\(46\) 6.27492 0.925186
\(47\) 10.2749i 1.49875i −0.662145 0.749375i \(-0.730354\pi\)
0.662145 0.749375i \(-0.269646\pi\)
\(48\) 0 0
\(49\) 5.27492 0.753560
\(50\) 4.98684 + 0.362541i 0.705246 + 0.0512711i
\(51\) 0 0
\(52\) 1.73205i 0.240192i
\(53\) 8.27492i 1.13665i 0.822805 + 0.568324i \(0.192408\pi\)
−0.822805 + 0.568324i \(0.807592\pi\)
\(54\) 0 0
\(55\) −4.00000 4.30136i −0.539360 0.579995i
\(56\) −1.31342 −0.175514
\(57\) 0 0
\(58\) 9.13642i 1.19967i
\(59\) 8.24163 1.07297 0.536484 0.843910i \(-0.319752\pi\)
0.536484 + 0.843910i \(0.319752\pi\)
\(60\) 0 0
\(61\) 7.27492 0.931458 0.465729 0.884927i \(-0.345792\pi\)
0.465729 + 0.884927i \(0.345792\pi\)
\(62\) 8.54983i 1.08583i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −2.83616 + 2.63746i −0.351783 + 0.327136i
\(66\) 0 0
\(67\) 12.1819i 1.48826i −0.668037 0.744128i \(-0.732865\pi\)
0.668037 0.744128i \(-0.267135\pi\)
\(68\) 1.27492i 0.154606i
\(69\) 0 0
\(70\) 2.00000 + 2.15068i 0.239046 + 0.257055i
\(71\) 6.92820 0.822226 0.411113 0.911584i \(-0.365140\pi\)
0.411113 + 0.911584i \(0.365140\pi\)
\(72\) 0 0
\(73\) 4.83507i 0.565902i 0.959134 + 0.282951i \(0.0913134\pi\)
−0.959134 + 0.282951i \(0.908687\pi\)
\(74\) 9.97368 1.15942
\(75\) 0 0
\(76\) −2.27492 −0.260951
\(77\) 3.45017i 0.393183i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 1.52274 + 1.63746i 0.170247 + 0.183073i
\(81\) 0 0
\(82\) 5.61478i 0.620049i
\(83\) 4.00000i 0.439057i 0.975606 + 0.219529i \(0.0704519\pi\)
−0.975606 + 0.219529i \(0.929548\pi\)
\(84\) 0 0
\(85\) −2.08762 + 1.94136i −0.226435 + 0.210571i
\(86\) 2.62685 0.283260
\(87\) 0 0
\(88\) 2.62685i 0.280023i
\(89\) −3.04547 −0.322820 −0.161410 0.986887i \(-0.551604\pi\)
−0.161410 + 0.986887i \(0.551604\pi\)
\(90\) 0 0
\(91\) −2.27492 −0.238476
\(92\) 6.27492i 0.654205i
\(93\) 0 0
\(94\) −10.2749 −1.05978
\(95\) 3.46410 + 3.72508i 0.355409 + 0.382185i
\(96\) 0 0
\(97\) 19.1101i 1.94034i −0.242432 0.970168i \(-0.577945\pi\)
0.242432 0.970168i \(-0.422055\pi\)
\(98\) 5.27492i 0.532847i
\(99\) 0 0
\(100\) 0.362541 4.98684i 0.0362541 0.498684i
\(101\) 9.55505 0.950763 0.475382 0.879780i \(-0.342310\pi\)
0.475382 + 0.879780i \(0.342310\pi\)
\(102\) 0 0
\(103\) 6.56712i 0.647078i −0.946215 0.323539i \(-0.895127\pi\)
0.946215 0.323539i \(-0.104873\pi\)
\(104\) −1.73205 −0.169842
\(105\) 0 0
\(106\) 8.27492 0.803731
\(107\) 12.0000i 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) −7.82475 −0.749475 −0.374738 0.927131i \(-0.622267\pi\)
−0.374738 + 0.927131i \(0.622267\pi\)
\(110\) −4.30136 + 4.00000i −0.410118 + 0.381385i
\(111\) 0 0
\(112\) 1.31342i 0.124107i
\(113\) 0.725083i 0.0682101i 0.999418 + 0.0341050i \(0.0108581\pi\)
−0.999418 + 0.0341050i \(0.989142\pi\)
\(114\) 0 0
\(115\) −10.2749 + 9.55505i −0.958141 + 0.891013i
\(116\) 9.13642 0.848296
\(117\) 0 0
\(118\) 8.24163i 0.758703i
\(119\) −1.67451 −0.153502
\(120\) 0 0
\(121\) −4.09967 −0.372697
\(122\) 7.27492i 0.658640i
\(123\) 0 0
\(124\) −8.54983 −0.767798
\(125\) −8.71780 + 7.00000i −0.779744 + 0.626099i
\(126\) 0 0
\(127\) 22.0980i 1.96088i 0.196810 + 0.980442i \(0.436942\pi\)
−0.196810 + 0.980442i \(0.563058\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 2.63746 + 2.83616i 0.231320 + 0.248748i
\(131\) −17.7967 −1.55490 −0.777452 0.628943i \(-0.783488\pi\)
−0.777452 + 0.628943i \(0.783488\pi\)
\(132\) 0 0
\(133\) 2.98793i 0.259086i
\(134\) −12.1819 −1.05236
\(135\) 0 0
\(136\) −1.27492 −0.109323
\(137\) 3.82475i 0.326771i 0.986562 + 0.163385i \(0.0522414\pi\)
−0.986562 + 0.163385i \(0.947759\pi\)
\(138\) 0 0
\(139\) 10.2749 0.871507 0.435754 0.900066i \(-0.356482\pi\)
0.435754 + 0.900066i \(0.356482\pi\)
\(140\) 2.15068 2.00000i 0.181765 0.169031i
\(141\) 0 0
\(142\) 6.92820i 0.581402i
\(143\) 4.54983i 0.380476i
\(144\) 0 0
\(145\) −13.9124 14.9605i −1.15536 1.24240i
\(146\) 4.83507 0.400153
\(147\) 0 0
\(148\) 9.97368i 0.819831i
\(149\) −1.37097 −0.112314 −0.0561570 0.998422i \(-0.517885\pi\)
−0.0561570 + 0.998422i \(0.517885\pi\)
\(150\) 0 0
\(151\) −17.0997 −1.39155 −0.695776 0.718259i \(-0.744939\pi\)
−0.695776 + 0.718259i \(0.744939\pi\)
\(152\) 2.27492i 0.184520i
\(153\) 0 0
\(154\) −3.45017 −0.278022
\(155\) 13.0192 + 14.0000i 1.04572 + 1.12451i
\(156\) 0 0
\(157\) 6.03341i 0.481518i −0.970585 0.240759i \(-0.922604\pi\)
0.970585 0.240759i \(-0.0773964\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 1.63746 1.52274i 0.129452 0.120383i
\(161\) −8.24163 −0.649531
\(162\) 0 0
\(163\) 24.3638i 1.90832i −0.299297 0.954160i \(-0.596752\pi\)
0.299297 0.954160i \(-0.403248\pi\)
\(164\) 5.61478 0.438441
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) 21.0997i 1.63274i −0.577528 0.816371i \(-0.695983\pi\)
0.577528 0.816371i \(-0.304017\pi\)
\(168\) 0 0
\(169\) 10.0000 0.769231
\(170\) 1.94136 + 2.08762i 0.148896 + 0.160113i
\(171\) 0 0
\(172\) 2.62685i 0.200295i
\(173\) 20.0997i 1.52815i 0.645128 + 0.764075i \(0.276804\pi\)
−0.645128 + 0.764075i \(0.723196\pi\)
\(174\) 0 0
\(175\) −6.54983 0.476171i −0.495121 0.0359951i
\(176\) −2.62685 −0.198006
\(177\) 0 0
\(178\) 3.04547i 0.228268i
\(179\) 1.31342 0.0981699 0.0490850 0.998795i \(-0.484369\pi\)
0.0490850 + 0.998795i \(0.484369\pi\)
\(180\) 0 0
\(181\) 6.54983 0.486845 0.243423 0.969920i \(-0.421730\pi\)
0.243423 + 0.969920i \(0.421730\pi\)
\(182\) 2.27492i 0.168628i
\(183\) 0 0
\(184\) −6.27492 −0.462593
\(185\) −16.3315 + 15.1873i −1.20071 + 1.11659i
\(186\) 0 0
\(187\) 3.34901i 0.244904i
\(188\) 10.2749i 0.749375i
\(189\) 0 0
\(190\) 3.72508 3.46410i 0.270246 0.251312i
\(191\) 14.8087 1.07152 0.535762 0.844369i \(-0.320025\pi\)
0.535762 + 0.844369i \(0.320025\pi\)
\(192\) 0 0
\(193\) 8.29917i 0.597387i 0.954349 + 0.298694i \(0.0965509\pi\)
−0.954349 + 0.298694i \(0.903449\pi\)
\(194\) −19.1101 −1.37203
\(195\) 0 0
\(196\) −5.27492 −0.376780
\(197\) 11.0000i 0.783718i −0.920025 0.391859i \(-0.871832\pi\)
0.920025 0.391859i \(-0.128168\pi\)
\(198\) 0 0
\(199\) 7.45017 0.528128 0.264064 0.964505i \(-0.414937\pi\)
0.264064 + 0.964505i \(0.414937\pi\)
\(200\) −4.98684 0.362541i −0.352623 0.0256355i
\(201\) 0 0
\(202\) 9.55505i 0.672291i
\(203\) 12.0000i 0.842235i
\(204\) 0 0
\(205\) −8.54983 9.19397i −0.597146 0.642135i
\(206\) −6.56712 −0.457553
\(207\) 0 0
\(208\) 1.73205i 0.120096i
\(209\) −5.97586 −0.413359
\(210\) 0 0
\(211\) −9.72508 −0.669502 −0.334751 0.942307i \(-0.608652\pi\)
−0.334751 + 0.942307i \(0.608652\pi\)
\(212\) 8.27492i 0.568324i
\(213\) 0 0
\(214\) −12.0000 −0.820303
\(215\) −4.30136 + 4.00000i −0.293350 + 0.272798i
\(216\) 0 0
\(217\) 11.2296i 0.762312i
\(218\) 7.82475i 0.529959i
\(219\) 0 0
\(220\) 4.00000 + 4.30136i 0.269680 + 0.289997i
\(221\) −2.20822 −0.148541
\(222\) 0 0
\(223\) 16.4833i 1.10380i 0.833910 + 0.551900i \(0.186097\pi\)
−0.833910 + 0.551900i \(0.813903\pi\)
\(224\) 1.31342 0.0877568
\(225\) 0 0
\(226\) 0.725083 0.0482318
\(227\) 0.549834i 0.0364938i 0.999834 + 0.0182469i \(0.00580849\pi\)
−0.999834 + 0.0182469i \(0.994192\pi\)
\(228\) 0 0
\(229\) −22.3746 −1.47855 −0.739277 0.673401i \(-0.764833\pi\)
−0.739277 + 0.673401i \(0.764833\pi\)
\(230\) 9.55505 + 10.2749i 0.630041 + 0.677508i
\(231\) 0 0
\(232\) 9.13642i 0.599836i
\(233\) 0.175248i 0.0114809i −0.999984 0.00574045i \(-0.998173\pi\)
0.999984 0.00574045i \(-0.00182725\pi\)
\(234\) 0 0
\(235\) 16.8248 15.6460i 1.09753 1.02063i
\(236\) −8.24163 −0.536484
\(237\) 0 0
\(238\) 1.67451i 0.108542i
\(239\) 9.55505 0.618065 0.309032 0.951051i \(-0.399995\pi\)
0.309032 + 0.951051i \(0.399995\pi\)
\(240\) 0 0
\(241\) 13.8248 0.890531 0.445265 0.895399i \(-0.353109\pi\)
0.445265 + 0.895399i \(0.353109\pi\)
\(242\) 4.09967i 0.263537i
\(243\) 0 0
\(244\) −7.27492 −0.465729
\(245\) 8.03231 + 8.63746i 0.513166 + 0.551827i
\(246\) 0 0
\(247\) 3.94027i 0.250714i
\(248\) 8.54983i 0.542915i
\(249\) 0 0
\(250\) 7.00000 + 8.71780i 0.442719 + 0.551362i
\(251\) 2.98793 0.188597 0.0942983 0.995544i \(-0.469939\pi\)
0.0942983 + 0.995544i \(0.469939\pi\)
\(252\) 0 0
\(253\) 16.4833i 1.03629i
\(254\) 22.0980 1.38655
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 0.725083i 0.0452294i −0.999744 0.0226147i \(-0.992801\pi\)
0.999744 0.0226147i \(-0.00719910\pi\)
\(258\) 0 0
\(259\) −13.0997 −0.813974
\(260\) 2.83616 2.63746i 0.175891 0.163568i
\(261\) 0 0
\(262\) 17.7967i 1.09948i
\(263\) 19.3746i 1.19469i −0.801985 0.597344i \(-0.796223\pi\)
0.801985 0.597344i \(-0.203777\pi\)
\(264\) 0 0
\(265\) −13.5498 + 12.6005i −0.832360 + 0.774044i
\(266\) 2.98793 0.183202
\(267\) 0 0
\(268\) 12.1819i 0.744128i
\(269\) 11.6482 0.710202 0.355101 0.934828i \(-0.384446\pi\)
0.355101 + 0.934828i \(0.384446\pi\)
\(270\) 0 0
\(271\) −12.5498 −0.762348 −0.381174 0.924503i \(-0.624480\pi\)
−0.381174 + 0.924503i \(0.624480\pi\)
\(272\) 1.27492i 0.0773032i
\(273\) 0 0
\(274\) 3.82475 0.231062
\(275\) 0.952341 13.0997i 0.0574283 0.789940i
\(276\) 0 0
\(277\) 20.4235i 1.22713i −0.789644 0.613565i \(-0.789735\pi\)
0.789644 0.613565i \(-0.210265\pi\)
\(278\) 10.2749i 0.616249i
\(279\) 0 0
\(280\) −2.00000 2.15068i −0.119523 0.128528i
\(281\) −2.68439 −0.160137 −0.0800687 0.996789i \(-0.525514\pi\)
−0.0800687 + 0.996789i \(0.525514\pi\)
\(282\) 0 0
\(283\) 9.55505i 0.567989i −0.958826 0.283994i \(-0.908340\pi\)
0.958826 0.283994i \(-0.0916597\pi\)
\(284\) −6.92820 −0.411113
\(285\) 0 0
\(286\) −4.54983 −0.269037
\(287\) 7.37459i 0.435308i
\(288\) 0 0
\(289\) 15.3746 0.904387
\(290\) −14.9605 + 13.9124i −0.878512 + 0.816963i
\(291\) 0 0
\(292\) 4.83507i 0.282951i
\(293\) 15.0000i 0.876309i 0.898900 + 0.438155i \(0.144368\pi\)
−0.898900 + 0.438155i \(0.855632\pi\)
\(294\) 0 0
\(295\) 12.5498 + 13.4953i 0.730680 + 0.785728i
\(296\) −9.97368 −0.579708
\(297\) 0 0
\(298\) 1.37097i 0.0794180i
\(299\) −10.8685 −0.628540
\(300\) 0 0
\(301\) −3.45017 −0.198864
\(302\) 17.0997i 0.983975i
\(303\) 0 0
\(304\) 2.27492 0.130475
\(305\) 11.0778 + 11.9124i 0.634312 + 0.682101i
\(306\) 0 0
\(307\) 0.952341i 0.0543530i −0.999631 0.0271765i \(-0.991348\pi\)
0.999631 0.0271765i \(-0.00865161\pi\)
\(308\) 3.45017i 0.196591i
\(309\) 0 0
\(310\) 14.0000 13.0192i 0.795147 0.739438i
\(311\) 21.7370 1.23259 0.616295 0.787516i \(-0.288633\pi\)
0.616295 + 0.787516i \(0.288633\pi\)
\(312\) 0 0
\(313\) 17.8542i 1.00918i −0.863359 0.504590i \(-0.831644\pi\)
0.863359 0.504590i \(-0.168356\pi\)
\(314\) −6.03341 −0.340485
\(315\) 0 0
\(316\) 0 0
\(317\) 22.0997i 1.24124i −0.784111 0.620621i \(-0.786881\pi\)
0.784111 0.620621i \(-0.213119\pi\)
\(318\) 0 0
\(319\) 24.0000 1.34374
\(320\) −1.52274 1.63746i −0.0851236 0.0915367i
\(321\) 0 0
\(322\) 8.24163i 0.459288i
\(323\) 2.90033i 0.161379i
\(324\) 0 0
\(325\) −8.63746 0.627940i −0.479120 0.0348319i
\(326\) −24.3638 −1.34939
\(327\) 0 0
\(328\) 5.61478i 0.310024i
\(329\) 13.4953 0.744021
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 4.00000i 0.219529i
\(333\) 0 0
\(334\) −21.0997 −1.15452
\(335\) 19.9474 18.5498i 1.08984 1.01349i
\(336\) 0 0
\(337\) 5.25370i 0.286187i 0.989709 + 0.143094i \(0.0457050\pi\)
−0.989709 + 0.143094i \(0.954295\pi\)
\(338\) 10.0000i 0.543928i
\(339\) 0 0
\(340\) 2.08762 1.94136i 0.113217 0.105285i
\(341\) −22.4591 −1.21623
\(342\) 0 0
\(343\) 16.1222i 0.870515i
\(344\) −2.62685 −0.141630
\(345\) 0 0
\(346\) 20.0997 1.08056
\(347\) 7.45017i 0.399946i −0.979801 0.199973i \(-0.935915\pi\)
0.979801 0.199973i \(-0.0640854\pi\)
\(348\) 0 0
\(349\) 32.1993 1.72359 0.861796 0.507256i \(-0.169340\pi\)
0.861796 + 0.507256i \(0.169340\pi\)
\(350\) −0.476171 + 6.54983i −0.0254524 + 0.350103i
\(351\) 0 0
\(352\) 2.62685i 0.140011i
\(353\) 14.5498i 0.774410i −0.921994 0.387205i \(-0.873441\pi\)
0.921994 0.387205i \(-0.126559\pi\)
\(354\) 0 0
\(355\) 10.5498 + 11.3446i 0.559927 + 0.602111i
\(356\) 3.04547 0.161410
\(357\) 0 0
\(358\) 1.31342i 0.0694166i
\(359\) 21.7370 1.14723 0.573616 0.819124i \(-0.305540\pi\)
0.573616 + 0.819124i \(0.305540\pi\)
\(360\) 0 0
\(361\) −13.8248 −0.727619
\(362\) 6.54983i 0.344252i
\(363\) 0 0
\(364\) 2.27492 0.119238
\(365\) −7.91723 + 7.36254i −0.414407 + 0.385373i
\(366\) 0 0
\(367\) 2.62685i 0.137120i −0.997647 0.0685602i \(-0.978159\pi\)
0.997647 0.0685602i \(-0.0218405\pi\)
\(368\) 6.27492i 0.327103i
\(369\) 0 0
\(370\) 15.1873 + 16.3315i 0.789550 + 0.849033i
\(371\) −10.8685 −0.564263
\(372\) 0 0
\(373\) 22.6893i 1.17481i 0.809294 + 0.587404i \(0.199850\pi\)
−0.809294 + 0.587404i \(0.800150\pi\)
\(374\) −3.34901 −0.173173
\(375\) 0 0
\(376\) 10.2749 0.529888
\(377\) 15.8248i 0.815016i
\(378\) 0 0
\(379\) 27.3746 1.40614 0.703069 0.711122i \(-0.251812\pi\)
0.703069 + 0.711122i \(0.251812\pi\)
\(380\) −3.46410 3.72508i −0.177705 0.191093i
\(381\) 0 0
\(382\) 14.8087i 0.757681i
\(383\) 3.37459i 0.172433i −0.996276 0.0862166i \(-0.972522\pi\)
0.996276 0.0862166i \(-0.0274777\pi\)
\(384\) 0 0
\(385\) 5.64950 5.25370i 0.287925 0.267753i
\(386\) 8.29917 0.422417
\(387\) 0 0
\(388\) 19.1101i 0.970168i
\(389\) −33.9189 −1.71975 −0.859877 0.510501i \(-0.829460\pi\)
−0.859877 + 0.510501i \(0.829460\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 5.27492i 0.266424i
\(393\) 0 0
\(394\) −11.0000 −0.554172
\(395\) 0 0
\(396\) 0 0
\(397\) 14.3901i 0.722219i 0.932523 + 0.361110i \(0.117602\pi\)
−0.932523 + 0.361110i \(0.882398\pi\)
\(398\) 7.45017i 0.373443i
\(399\) 0 0
\(400\) −0.362541 + 4.98684i −0.0181271 + 0.249342i
\(401\) 21.6794 1.08262 0.541309 0.840824i \(-0.317929\pi\)
0.541309 + 0.840824i \(0.317929\pi\)
\(402\) 0 0
\(403\) 14.8087i 0.737676i
\(404\) −9.55505 −0.475382
\(405\) 0 0
\(406\) −12.0000 −0.595550
\(407\) 26.1993i 1.29865i
\(408\) 0 0
\(409\) 16.0997 0.796077 0.398039 0.917369i \(-0.369691\pi\)
0.398039 + 0.917369i \(0.369691\pi\)
\(410\) −9.19397 + 8.54983i −0.454058 + 0.422246i
\(411\) 0 0
\(412\) 6.56712i 0.323539i
\(413\) 10.8248i 0.532651i
\(414\) 0 0
\(415\) −6.54983 + 6.09095i −0.321519 + 0.298993i
\(416\) 1.73205 0.0849208
\(417\) 0 0
\(418\) 5.97586i 0.292289i
\(419\) 16.4833 0.805260 0.402630 0.915363i \(-0.368096\pi\)
0.402630 + 0.915363i \(0.368096\pi\)
\(420\) 0 0
\(421\) 9.27492 0.452032 0.226016 0.974124i \(-0.427430\pi\)
0.226016 + 0.974124i \(0.427430\pi\)
\(422\) 9.72508i 0.473410i
\(423\) 0 0
\(424\) −8.27492 −0.401866
\(425\) −6.35781 0.462210i −0.308399 0.0224205i
\(426\) 0 0
\(427\) 9.55505i 0.462401i
\(428\) 12.0000i 0.580042i
\(429\) 0 0
\(430\) 4.00000 + 4.30136i 0.192897 + 0.207430i
\(431\) 33.9189 1.63381 0.816907 0.576770i \(-0.195687\pi\)
0.816907 + 0.576770i \(0.195687\pi\)
\(432\) 0 0
\(433\) 10.8109i 0.519540i 0.965670 + 0.259770i \(0.0836468\pi\)
−0.965670 + 0.259770i \(0.916353\pi\)
\(434\) 11.2296 0.539036
\(435\) 0 0
\(436\) 7.82475 0.374738
\(437\) 14.2749i 0.682862i
\(438\) 0 0
\(439\) 36.0000 1.71819 0.859093 0.511819i \(-0.171028\pi\)
0.859093 + 0.511819i \(0.171028\pi\)
\(440\) 4.30136 4.00000i 0.205059 0.190693i
\(441\) 0 0
\(442\) 2.20822i 0.105034i
\(443\) 7.45017i 0.353968i 0.984214 + 0.176984i \(0.0566341\pi\)
−0.984214 + 0.176984i \(0.943366\pi\)
\(444\) 0 0
\(445\) −4.63746 4.98684i −0.219837 0.236399i
\(446\) 16.4833 0.780505
\(447\) 0 0
\(448\) 1.31342i 0.0620535i
\(449\) 10.8685 0.512915 0.256458 0.966555i \(-0.417445\pi\)
0.256458 + 0.966555i \(0.417445\pi\)
\(450\) 0 0
\(451\) 14.7492 0.694511
\(452\) 0.725083i 0.0341050i
\(453\) 0 0
\(454\) 0.549834 0.0258050
\(455\) −3.46410 3.72508i −0.162400 0.174635i
\(456\) 0 0
\(457\) 15.9495i 0.746088i 0.927814 + 0.373044i \(0.121686\pi\)
−0.927814 + 0.373044i \(0.878314\pi\)
\(458\) 22.3746i 1.04550i
\(459\) 0 0
\(460\) 10.2749 9.55505i 0.479070 0.445507i
\(461\) 6.92820 0.322679 0.161339 0.986899i \(-0.448419\pi\)
0.161339 + 0.986899i \(0.448419\pi\)
\(462\) 0 0
\(463\) 16.8443i 0.782823i 0.920216 + 0.391411i \(0.128013\pi\)
−0.920216 + 0.391411i \(0.871987\pi\)
\(464\) −9.13642 −0.424148
\(465\) 0 0
\(466\) −0.175248 −0.00811822
\(467\) 13.6495i 0.631624i 0.948822 + 0.315812i \(0.102277\pi\)
−0.948822 + 0.315812i \(0.897723\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) −15.6460 16.8248i −0.721696 0.776068i
\(471\) 0 0
\(472\) 8.24163i 0.379352i
\(473\) 6.90033i 0.317278i
\(474\) 0 0
\(475\) −0.824752 + 11.3446i −0.0378422 + 0.520528i
\(476\) 1.67451 0.0767509
\(477\) 0 0
\(478\) 9.55505i 0.437038i
\(479\) 1.67451 0.0765102 0.0382551 0.999268i \(-0.487820\pi\)
0.0382551 + 0.999268i \(0.487820\pi\)
\(480\) 0 0
\(481\) −17.2749 −0.787668
\(482\) 13.8248i 0.629700i
\(483\) 0 0
\(484\) 4.09967 0.186349
\(485\) 31.2920 29.0997i 1.42090 1.32135i
\(486\) 0 0
\(487\) 9.91613i 0.449343i −0.974435 0.224671i \(-0.927869\pi\)
0.974435 0.224671i \(-0.0721309\pi\)
\(488\) 7.27492i 0.329320i
\(489\) 0 0
\(490\) 8.63746 8.03231i 0.390201 0.362863i
\(491\) 18.7490 0.846131 0.423066 0.906099i \(-0.360954\pi\)
0.423066 + 0.906099i \(0.360954\pi\)
\(492\) 0 0
\(493\) 11.6482i 0.524608i
\(494\) 3.94027 0.177281
\(495\) 0 0
\(496\) 8.54983 0.383899
\(497\) 9.09967i 0.408176i
\(498\) 0 0
\(499\) −14.2749 −0.639033 −0.319517 0.947581i \(-0.603520\pi\)
−0.319517 + 0.947581i \(0.603520\pi\)
\(500\) 8.71780 7.00000i 0.389872 0.313050i
\(501\) 0 0
\(502\) 2.98793i 0.133358i
\(503\) 33.0997i 1.47584i −0.674887 0.737921i \(-0.735808\pi\)
0.674887 0.737921i \(-0.264192\pi\)
\(504\) 0 0
\(505\) 14.5498 + 15.6460i 0.647459 + 0.696238i
\(506\) −16.4833 −0.732770
\(507\) 0 0
\(508\) 22.0980i 0.980442i
\(509\) −6.92820 −0.307087 −0.153544 0.988142i \(-0.549069\pi\)
−0.153544 + 0.988142i \(0.549069\pi\)
\(510\) 0 0
\(511\) −6.35050 −0.280929
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −0.725083 −0.0319820
\(515\) 10.7534 10.0000i 0.473851 0.440653i
\(516\) 0 0
\(517\) 26.9906i 1.18705i
\(518\) 13.0997i 0.575566i
\(519\) 0 0
\(520\) −2.63746 2.83616i −0.115660 0.124374i
\(521\) −43.8350 −1.92045 −0.960223 0.279235i \(-0.909919\pi\)
−0.960223 + 0.279235i \(0.909919\pi\)
\(522\) 0 0
\(523\) 10.5074i 0.459456i −0.973255 0.229728i \(-0.926216\pi\)
0.973255 0.229728i \(-0.0737837\pi\)
\(524\) 17.7967 0.777452
\(525\) 0 0
\(526\) −19.3746 −0.844772
\(527\) 10.9003i 0.474826i
\(528\) 0 0
\(529\) −16.3746 −0.711939
\(530\) 12.6005 + 13.5498i 0.547332 + 0.588567i
\(531\) 0 0
\(532\) 2.98793i 0.129543i
\(533\) 9.72508i 0.421240i
\(534\) 0 0
\(535\) 19.6495 18.2728i 0.849522 0.790004i
\(536\) 12.1819 0.526178
\(537\) 0 0
\(538\) 11.6482i 0.502189i
\(539\) −13.8564 −0.596838
\(540\) 0 0
\(541\) 10.7251 0.461107 0.230554 0.973060i \(-0.425946\pi\)
0.230554 + 0.973060i \(0.425946\pi\)
\(542\) 12.5498i 0.539062i
\(543\) 0 0
\(544\) 1.27492 0.0546616
\(545\) −11.9150 12.8127i −0.510384 0.548836i
\(546\) 0 0
\(547\) 33.9189i 1.45027i 0.688609 + 0.725133i \(0.258222\pi\)
−0.688609 + 0.725133i \(0.741778\pi\)
\(548\) 3.82475i 0.163385i
\(549\) 0 0
\(550\) −13.0997 0.952341i −0.558572 0.0406080i
\(551\) −20.7846 −0.885454
\(552\) 0 0
\(553\) 0 0
\(554\) −20.4235 −0.867713
\(555\) 0 0
\(556\) −10.2749 −0.435754
\(557\) 45.1993i 1.91516i 0.288172 + 0.957579i \(0.406953\pi\)
−0.288172 + 0.957579i \(0.593047\pi\)
\(558\) 0 0
\(559\) −4.54983 −0.192437
\(560\) −2.15068 + 2.00000i −0.0908827 + 0.0845154i
\(561\) 0 0
\(562\) 2.68439i 0.113234i
\(563\) 29.0997i 1.22640i 0.789926 + 0.613202i \(0.210119\pi\)
−0.789926 + 0.613202i \(0.789881\pi\)
\(564\) 0 0
\(565\) −1.18729 + 1.10411i −0.0499498 + 0.0464503i
\(566\) −9.55505 −0.401629
\(567\) 0 0
\(568\) 6.92820i 0.290701i
\(569\) −12.9616 −0.543379 −0.271689 0.962385i \(-0.587582\pi\)
−0.271689 + 0.962385i \(0.587582\pi\)
\(570\) 0 0
\(571\) −17.0997 −0.715599 −0.357799 0.933798i \(-0.616473\pi\)
−0.357799 + 0.933798i \(0.616473\pi\)
\(572\) 4.54983i 0.190238i
\(573\) 0 0
\(574\) −7.37459 −0.307809
\(575\) −31.2920 2.27492i −1.30497 0.0948706i
\(576\) 0 0
\(577\) 29.0838i 1.21077i −0.795931 0.605387i \(-0.793018\pi\)
0.795931 0.605387i \(-0.206982\pi\)
\(578\) 15.3746i 0.639498i
\(579\) 0 0
\(580\) 13.9124 + 14.9605i 0.577680 + 0.621202i
\(581\) −5.25370 −0.217960
\(582\) 0 0
\(583\) 21.7370i 0.900253i
\(584\) −4.83507 −0.200077
\(585\) 0 0
\(586\) 15.0000 0.619644
\(587\) 33.0997i 1.36617i 0.730339 + 0.683085i \(0.239362\pi\)
−0.730339 + 0.683085i \(0.760638\pi\)
\(588\) 0 0
\(589\) 19.4502 0.801430
\(590\) 13.4953 12.5498i 0.555594 0.516669i
\(591\) 0 0
\(592\) 9.97368i 0.409916i
\(593\) 20.1752i 0.828498i 0.910164 + 0.414249i \(0.135956\pi\)
−0.910164 + 0.414249i \(0.864044\pi\)
\(594\) 0 0
\(595\) −2.54983 2.74194i −0.104533 0.112408i
\(596\) 1.37097 0.0561570
\(597\) 0 0
\(598\) 10.8685i 0.444445i
\(599\) 6.92820 0.283079 0.141539 0.989933i \(-0.454795\pi\)
0.141539 + 0.989933i \(0.454795\pi\)
\(600\) 0 0
\(601\) 0.450166 0.0183626 0.00918132 0.999958i \(-0.497077\pi\)
0.00918132 + 0.999958i \(0.497077\pi\)
\(602\) 3.45017i 0.140618i
\(603\) 0 0
\(604\) 17.0997 0.695776
\(605\) −6.24272 6.71304i −0.253803 0.272924i
\(606\) 0 0
\(607\) 33.9189i 1.37672i −0.725367 0.688362i \(-0.758330\pi\)
0.725367 0.688362i \(-0.241670\pi\)
\(608\) 2.27492i 0.0922601i
\(609\) 0 0
\(610\) 11.9124 11.0778i 0.482318 0.448527i
\(611\) 17.7967 0.719977
\(612\) 0 0
\(613\) 12.5430i 0.506606i 0.967387 + 0.253303i \(0.0815170\pi\)
−0.967387 + 0.253303i \(0.918483\pi\)
\(614\) −0.952341 −0.0384334
\(615\) 0 0
\(616\) 3.45017 0.139011
\(617\) 7.82475i 0.315013i −0.987518 0.157506i \(-0.949655\pi\)
0.987518 0.157506i \(-0.0503455\pi\)
\(618\) 0 0
\(619\) −22.2749 −0.895305 −0.447652 0.894208i \(-0.647740\pi\)
−0.447652 + 0.894208i \(0.647740\pi\)
\(620\) −13.0192 14.0000i −0.522862 0.562254i
\(621\) 0 0
\(622\) 21.7370i 0.871572i
\(623\) 4.00000i 0.160257i
\(624\) 0 0
\(625\) −24.7371 3.61587i −0.989485 0.144635i
\(626\) −17.8542 −0.713598
\(627\) 0 0
\(628\) 6.03341i 0.240759i
\(629\) −12.7156 −0.507005
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −22.0997 −0.877690
\(635\) −36.1846 + 33.6495i −1.43594 + 1.33534i
\(636\) 0 0
\(637\) 9.13642i 0.361998i
\(638\) 24.0000i 0.950169i
\(639\) 0 0
\(640\) −1.63746 + 1.52274i −0.0647262 + 0.0601915i
\(641\) 30.7583 1.21488 0.607440 0.794366i \(-0.292197\pi\)
0.607440 + 0.794366i \(0.292197\pi\)
\(642\) 0 0
\(643\) 0.952341i 0.0375567i 0.999824 + 0.0187783i \(0.00597768\pi\)
−0.999824 + 0.0187783i \(0.994022\pi\)
\(644\) 8.24163 0.324766
\(645\) 0 0
\(646\) 2.90033 0.114112
\(647\) 21.0997i 0.829514i −0.909932 0.414757i \(-0.863867\pi\)
0.909932 0.414757i \(-0.136133\pi\)
\(648\) 0 0
\(649\) −21.6495 −0.849817
\(650\) −0.627940 + 8.63746i −0.0246298 + 0.338789i
\(651\) 0 0
\(652\) 24.3638i 0.954160i
\(653\) 14.0000i 0.547862i −0.961749 0.273931i \(-0.911676\pi\)
0.961749 0.273931i \(-0.0883240\pi\)
\(654\) 0 0
\(655\) −27.0997 29.1413i −1.05887 1.13865i
\(656\) −5.61478 −0.219220
\(657\) 0 0
\(658\) 13.4953i 0.526102i
\(659\) −4.66244 −0.181623 −0.0908114 0.995868i \(-0.528946\pi\)
−0.0908114 + 0.995868i \(0.528946\pi\)
\(660\) 0 0
\(661\) 31.2749 1.21645 0.608227 0.793763i \(-0.291881\pi\)
0.608227 + 0.793763i \(0.291881\pi\)
\(662\) 20.0000i 0.777322i
\(663\) 0 0
\(664\) −4.00000 −0.155230
\(665\) −4.89261 + 4.54983i −0.189727 + 0.176435i
\(666\) 0 0
\(667\) 57.3303i 2.21984i
\(668\) 21.0997i 0.816371i
\(669\) 0 0
\(670\) −18.5498 19.9474i −0.716643 0.770634i
\(671\) −19.1101 −0.737737
\(672\) 0 0
\(673\) 5.67232i 0.218652i 0.994006 + 0.109326i \(0.0348692\pi\)
−0.994006 + 0.109326i \(0.965131\pi\)
\(674\) 5.25370 0.202365
\(675\) 0 0
\(676\) −10.0000 −0.384615
\(677\) 23.7251i 0.911829i 0.890024 + 0.455915i \(0.150688\pi\)
−0.890024 + 0.455915i \(0.849312\pi\)
\(678\) 0 0
\(679\) 25.0997 0.963237
\(680\) −1.94136 2.08762i −0.0744479 0.0800567i
\(681\) 0 0
\(682\) 22.4591i 0.860004i
\(683\) 26.7492i 1.02353i 0.859126 + 0.511764i \(0.171008\pi\)
−0.859126 + 0.511764i \(0.828992\pi\)
\(684\) 0 0
\(685\) −6.26287 + 5.82409i −0.239292 + 0.222527i
\(686\) 16.1222 0.615547
\(687\) 0 0
\(688\) 2.62685i 0.100148i
\(689\) −14.3326 −0.546028
\(690\) 0 0
\(691\) −23.9244 −0.910128 −0.455064 0.890459i \(-0.650384\pi\)
−0.455064 + 0.890459i \(0.650384\pi\)
\(692\) 20.0997i 0.764075i
\(693\) 0 0
\(694\) −7.45017 −0.282804
\(695\) 15.6460 + 16.8248i 0.593487 + 0.638199i
\(696\) 0 0
\(697\) 7.15838i 0.271143i
\(698\) 32.1993i 1.21876i
\(699\) 0 0
\(700\) 6.54983 + 0.476171i 0.247560 + 0.0179976i
\(701\) −18.6915 −0.705967 −0.352984 0.935629i \(-0.614833\pi\)
−0.352984 + 0.935629i \(0.614833\pi\)
\(702\) 0 0
\(703\) 22.6893i 0.855743i
\(704\) 2.62685 0.0990031
\(705\) 0 0
\(706\) −14.5498 −0.547590
\(707\) 12.5498i 0.471985i
\(708\) 0 0
\(709\) 3.82475 0.143642 0.0718208 0.997418i \(-0.477119\pi\)
0.0718208 + 0.997418i \(0.477119\pi\)
\(710\) 11.3446 10.5498i 0.425757 0.395928i
\(711\) 0 0
\(712\) 3.04547i 0.114134i
\(713\) 53.6495i 2.00919i
\(714\) 0 0
\(715\) 7.45017 6.92820i 0.278620 0.259100i
\(716\) −1.31342 −0.0490850
\(717\) 0 0
\(718\) 21.7370i 0.811216i
\(719\) 8.60271 0.320827 0.160413 0.987050i \(-0.448717\pi\)
0.160413 + 0.987050i \(0.448717\pi\)
\(720\) 0 0
\(721\) 8.62541 0.321227
\(722\) 13.8248i 0.514504i
\(723\) 0 0
\(724\) −6.54983 −0.243423
\(725\) 3.31233 45.5619i 0.123017 1.69213i
\(726\) 0 0
\(727\) 11.8208i 0.438410i −0.975679 0.219205i \(-0.929654\pi\)
0.975679 0.219205i \(-0.0703463\pi\)
\(728\) 2.27492i 0.0843140i
\(729\) 0 0
\(730\) 7.36254 + 7.91723i 0.272500 + 0.293030i
\(731\) −3.34901 −0.123868
\(732\) 0 0
\(733\) 47.0531i 1.73795i −0.494860 0.868973i \(-0.664781\pi\)
0.494860 0.868973i \(-0.335219\pi\)
\(734\) −2.62685 −0.0969587
\(735\) 0 0
\(736\) 6.27492 0.231297
\(737\) 32.0000i 1.17874i
\(738\) 0 0
\(739\) 10.9003 0.400975 0.200488 0.979696i \(-0.435747\pi\)
0.200488 + 0.979696i \(0.435747\pi\)
\(740\) 16.3315 15.1873i 0.600357 0.558296i
\(741\) 0 0
\(742\) 10.8685i 0.398994i
\(743\) 45.0997i 1.65455i −0.561800 0.827273i \(-0.689891\pi\)
0.561800 0.827273i \(-0.310109\pi\)
\(744\) 0 0
\(745\) −2.08762 2.24490i −0.0764846 0.0822469i
\(746\) 22.6893 0.830714
\(747\) 0 0
\(748\) 3.34901i 0.122452i
\(749\) 15.7611 0.575898
\(750\) 0 0
\(751\) −32.5498 −1.18776 −0.593880 0.804554i \(-0.702405\pi\)
−0.593880 + 0.804554i \(0.702405\pi\)
\(752\) 10.2749i 0.374688i
\(753\) 0 0
\(754\) −15.8248 −0.576303
\(755\) −26.0383 28.0000i −0.947631 1.01902i
\(756\) 0 0
\(757\) 26.3994i 0.959502i −0.877405 0.479751i \(-0.840727\pi\)
0.877405 0.479751i \(-0.159273\pi\)
\(758\) 27.3746i 0.994290i
\(759\) 0 0
\(760\) −3.72508 + 3.46410i −0.135123 + 0.125656i
\(761\) −17.4931 −0.634126 −0.317063 0.948405i \(-0.602697\pi\)
−0.317063 + 0.948405i \(0.602697\pi\)
\(762\) 0 0
\(763\) 10.2772i 0.372060i
\(764\) −14.8087 −0.535762
\(765\) 0 0
\(766\) −3.37459 −0.121929
\(767\) 14.2749i 0.515437i
\(768\) 0 0
\(769\) −35.2749 −1.27205 −0.636023 0.771670i \(-0.719422\pi\)
−0.636023 + 0.771670i \(0.719422\pi\)
\(770\) −5.25370 5.64950i −0.189330 0.203594i
\(771\) 0 0
\(772\) 8.29917i 0.298694i
\(773\) 45.8248i 1.64820i −0.566443 0.824101i \(-0.691681\pi\)
0.566443 0.824101i \(-0.308319\pi\)
\(774\) 0 0
\(775\) −3.09967 + 42.6366i −0.111343 + 1.53155i
\(776\) 19.1101 0.686013
\(777\) 0 0
\(778\) 33.9189i 1.21605i
\(779\) −12.7732 −0.457646
\(780\) 0 0
\(781\) −18.1993 −0.651224
\(782\) 8.00000i 0.286079i
\(783\) 0 0
\(784\) 5.27492 0.188390
\(785\) 9.87945 9.18729i 0.352613 0.327909i
\(786\) 0 0
\(787\) 3.34901i 0.119379i 0.998217 + 0.0596897i \(0.0190111\pi\)
−0.998217 + 0.0596897i \(0.980989\pi\)
\(788\) 11.0000i 0.391859i
\(789\) 0 0
\(790\) 0 0
\(791\) −0.952341 −0.0338614
\(792\) 0 0
\(793\) 12.6005i 0.447458i
\(794\) 14.3901 0.510686
\(795\) 0 0
\(796\) −7.45017 −0.264064
\(797\) 28.3746i 1.00508i 0.864554 + 0.502540i \(0.167601\pi\)
−0.864554 + 0.502540i \(0.832399\pi\)
\(798\) 0 0
\(799\) 13.0997 0.463433
\(800\) 4.98684 + 0.362541i 0.176311 + 0.0128178i
\(801\) 0 0
\(802\) 21.6794i 0.765526i
\(803\) 12.7010i 0.448208i
\(804\) 0 0
\(805\) −12.5498 13.4953i −0.442324 0.475648i
\(806\) 14.8087 0.521616
\(807\) 0 0
\(808\) 9.55505i 0.336146i
\(809\) 49.6224 1.74463 0.872315 0.488944i \(-0.162618\pi\)
0.872315 + 0.488944i \(0.162618\pi\)
\(810\) 0 0
\(811\) 6.90033 0.242303 0.121152 0.992634i \(-0.461341\pi\)
0.121152 + 0.992634i \(0.461341\pi\)
\(812\) 12.0000i 0.421117i
\(813\) 0 0
\(814\) −26.1993 −0.918286
\(815\) 39.8947 37.0997i 1.39745 1.29954i
\(816\) 0 0
\(817\) 5.97586i 0.209069i
\(818\) 16.0997i 0.562912i
\(819\) 0 0
\(820\) 8.54983 + 9.19397i 0.298573 + 0.321067i
\(821\) 21.2032 0.739998 0.369999 0.929032i \(-0.379358\pi\)
0.369999 + 0.929032i \(0.379358\pi\)
\(822\) 0 0
\(823\) 42.5216i 1.48221i −0.671390 0.741104i \(-0.734302\pi\)
0.671390 0.741104i \(-0.265698\pi\)
\(824\) 6.56712 0.228776
\(825\) 0 0
\(826\) 10.8248 0.376641
\(827\) 27.4502i 0.954536i 0.878758 + 0.477268i \(0.158373\pi\)
−0.878758 + 0.477268i \(0.841627\pi\)
\(828\) 0 0
\(829\) −46.5498 −1.61674 −0.808371 0.588673i \(-0.799651\pi\)
−0.808371 + 0.588673i \(0.799651\pi\)
\(830\) 6.09095 + 6.54983i 0.211420 + 0.227348i
\(831\) 0 0
\(832\) 1.73205i 0.0600481i
\(833\) 6.72508i 0.233010i
\(834\) 0 0
\(835\) 34.5498 32.1293i 1.19565 1.11188i
\(836\) 5.97586 0.206680
\(837\) 0 0
\(838\) 16.4833i 0.569405i
\(839\) 48.7276 1.68226 0.841132 0.540830i \(-0.181890\pi\)
0.841132 + 0.540830i \(0.181890\pi\)
\(840\) 0 0
\(841\) 54.4743 1.87842
\(842\) 9.27492i 0.319635i
\(843\) 0 0
\(844\) 9.72508 0.334751
\(845\) 15.2274 + 16.3746i 0.523838 + 0.563303i
\(846\) 0 0
\(847\) 5.38460i 0.185017i
\(848\) 8.27492i 0.284162i
\(849\) 0 0
\(850\) −0.462210 + 6.35781i −0.0158537 + 0.218071i
\(851\) −62.5840 −2.14535
\(852\) 0 0
\(853\) 10.2772i 0.351885i 0.984400 + 0.175943i \(0.0562973\pi\)
−0.984400 + 0.175943i \(0.943703\pi\)
\(854\) 9.55505 0.326967
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) 33.8248i 1.15543i 0.816238 + 0.577716i \(0.196056\pi\)
−0.816238 + 0.577716i \(0.803944\pi\)
\(858\) 0 0
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 4.30136 4.00000i 0.146675 0.136399i
\(861\) 0 0
\(862\) 33.9189i 1.15528i
\(863\) 9.72508i 0.331046i 0.986206 + 0.165523i \(0.0529312\pi\)
−0.986206 + 0.165523i \(0.947069\pi\)
\(864\) 0 0
\(865\) −32.9124 + 30.6065i −1.11905 + 1.04065i
\(866\) 10.8109 0.367370
\(867\) 0 0
\(868\) 11.2296i 0.381156i
\(869\) 0 0
\(870\) 0 0
\(871\) 21.0997 0.714935
\(872\) 7.82475i 0.264980i
\(873\) 0 0
\(874\) 14.2749 0.482856
\(875\) −9.19397 11.4502i −0.310813 0.387086i
\(876\) 0 0
\(877\) 10.3348i 0.348980i 0.984659 + 0.174490i \(0.0558277\pi\)
−0.984659 + 0.174490i \(0.944172\pi\)
\(878\) 36.0000i 1.21494i
\(879\) 0 0
\(880\) −4.00000 4.30136i −0.134840 0.144999i
\(881\) −15.7611 −0.531005 −0.265502 0.964110i \(-0.585538\pi\)
−0.265502 + 0.964110i \(0.585538\pi\)
\(882\) 0 0
\(883\) 0.952341i 0.0320488i −0.999872 0.0160244i \(-0.994899\pi\)
0.999872 0.0160244i \(-0.00510095\pi\)
\(884\) 2.20822 0.0742705
\(885\) 0 0
\(886\) 7.45017 0.250293
\(887\) 18.8248i 0.632073i 0.948747 + 0.316037i \(0.102352\pi\)
−0.948747 + 0.316037i \(0.897648\pi\)
\(888\) 0 0
\(889\) −29.0241 −0.973437
\(890\) −4.98684 + 4.63746i −0.167159 + 0.155448i
\(891\) 0 0
\(892\) 16.4833i 0.551900i
\(893\) 23.3746i 0.782201i
\(894\) 0 0
\(895\) 2.00000 + 2.15068i 0.0668526 + 0.0718892i
\(896\) −1.31342 −0.0438784
\(897\) 0 0
\(898\) 10.8685i 0.362686i
\(899\) −78.1149 −2.60528
\(900\) 0 0
\(901\) −10.5498 −0.351466
\(902\) 14.7492i 0.491094i
\(903\) 0 0
\(904\) −0.725083 −0.0241159
\(905\) 9.97368 + 10.7251i 0.331536 + 0.356514i
\(906\) 0 0
\(907\) 41.5692i 1.38028i 0.723674 + 0.690142i \(0.242452\pi\)
−0.723674 + 0.690142i \(0.757548\pi\)
\(908\) 0.549834i 0.0182469i
\(909\) 0 0
\(910\) −3.72508 + 3.46410i −0.123485 + 0.114834i
\(911\) −5.97586 −0.197989 −0.0989946 0.995088i \(-0.531563\pi\)
−0.0989946 + 0.995088i \(0.531563\pi\)
\(912\) 0 0
\(913\) 10.5074i 0.347744i
\(914\) 15.9495 0.527564
\(915\) 0 0
\(916\) 22.3746 0.739277
\(917\) 23.3746i 0.771897i
\(918\) 0 0
\(919\) −33.0997 −1.09186 −0.545929 0.837832i \(-0.683823\pi\)
−0.545929 + 0.837832i \(0.683823\pi\)
\(920\) −9.55505 10.2749i −0.315021 0.338754i
\(921\) 0 0
\(922\) 6.92820i 0.228168i
\(923\) 12.0000i 0.394985i
\(924\) 0 0
\(925\) −49.7371 3.61587i −1.63535 0.118889i
\(926\) 16.8443 0.553539
\(927\) 0 0
\(928\) 9.13642i 0.299918i
\(929\) −13.5529 −0.444655 −0.222328 0.974972i \(-0.571365\pi\)
−0.222328 + 0.974972i \(0.571365\pi\)
\(930\) 0 0
\(931\) 12.0000 0.393284
\(932\) 0.175248i 0.00574045i
\(933\) 0 0
\(934\) 13.6495 0.446625
\(935\) 5.48387 5.09967i 0.179342 0.166777i
\(936\) 0 0
\(937\) 5.55724i 0.181547i −0.995872 0.0907735i \(-0.971066\pi\)
0.995872 0.0907735i \(-0.0289339\pi\)
\(938\) 16.0000i 0.522419i
\(939\) 0 0
\(940\) −16.8248 + 15.6460i −0.548763 + 0.510316i
\(941\) 10.9260 0.356178 0.178089 0.984014i \(-0.443008\pi\)
0.178089 + 0.984014i \(0.443008\pi\)
\(942\) 0 0
\(943\) 35.2323i 1.14732i
\(944\) 8.24163 0.268242
\(945\) 0 0
\(946\) −6.90033 −0.224349
\(947\) 16.5498i 0.537797i 0.963168 + 0.268899i \(0.0866597\pi\)
−0.963168 + 0.268899i \(0.913340\pi\)
\(948\) 0 0
\(949\) −8.37459 −0.271851
\(950\) 11.3446 + 0.824752i 0.368069 + 0.0267585i
\(951\) 0 0
\(952\) 1.67451i 0.0542711i
\(953\) 39.2749i 1.27224i −0.771590 0.636120i \(-0.780538\pi\)
0.771590 0.636120i \(-0.219462\pi\)
\(954\) 0 0
\(955\) 22.5498 + 24.2487i 0.729696 + 0.784670i
\(956\) −9.55505 −0.309032
\(957\) 0 0
\(958\) 1.67451i 0.0541009i
\(959\) −5.02352 −0.162218
\(960\) 0 0
\(961\) 42.0997 1.35805
\(962\) 17.2749i 0.556966i
\(963\) 0 0
\(964\) −13.8248 −0.445265
\(965\) −13.5895 + 12.6375i −0.437463 + 0.406814i
\(966\) 0 0
\(967\) 9.55505i 0.307270i 0.988128 + 0.153635i \(0.0490980\pi\)
−0.988128 + 0.153635i \(0.950902\pi\)
\(968\) 4.09967i 0.131768i
\(969\) 0 0
\(970\) −29.0997 31.2920i −0.934334 1.00473i
\(971\) 37.6289 1.20757 0.603785 0.797147i \(-0.293658\pi\)
0.603785 + 0.797147i \(0.293658\pi\)
\(972\) 0 0
\(973\) 13.4953i 0.432640i
\(974\) −9.91613 −0.317733
\(975\) 0 0
\(976\) 7.27492 0.232864
\(977\) 0.199338i 0.00637738i −0.999995 0.00318869i \(-0.998985\pi\)
0.999995 0.00318869i \(-0.00101499\pi\)
\(978\) 0 0
\(979\) 8.00000 0.255681
\(980\) −8.03231 8.63746i −0.256583 0.275913i
\(981\) 0 0
\(982\) 18.7490i 0.598305i
\(983\) 32.0000i 1.02064i 0.859984 + 0.510321i \(0.170473\pi\)
−0.859984 + 0.510321i \(0.829527\pi\)
\(984\) 0 0
\(985\) 18.0120 16.7501i 0.573911 0.533703i
\(986\) −11.6482 −0.370954
\(987\) 0 0
\(988\) 3.94027i 0.125357i
\(989\) −16.4833 −0.524137
\(990\) 0 0
\(991\) −47.2990 −1.50250 −0.751251 0.660016i \(-0.770549\pi\)
−0.751251 + 0.660016i \(0.770549\pi\)
\(992\) 8.54983i 0.271458i
\(993\) 0 0
\(994\) 9.09967 0.288624
\(995\) 11.3446 + 12.1993i 0.359649 + 0.386745i
\(996\) 0 0
\(997\) 46.1583i 1.46185i 0.682459 + 0.730924i \(0.260911\pi\)
−0.682459 + 0.730924i \(0.739089\pi\)
\(998\) 14.2749i 0.451865i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.2.c.g.649.4 yes 8
3.2 odd 2 inner 810.2.c.g.649.5 yes 8
5.2 odd 4 4050.2.a.cb.1.2 4
5.3 odd 4 4050.2.a.ca.1.3 4
5.4 even 2 inner 810.2.c.g.649.8 yes 8
9.2 odd 6 810.2.i.g.109.4 8
9.4 even 3 810.2.i.i.379.4 8
9.5 odd 6 810.2.i.i.379.1 8
9.7 even 3 810.2.i.g.109.1 8
15.2 even 4 4050.2.a.ca.1.2 4
15.8 even 4 4050.2.a.cb.1.3 4
15.14 odd 2 inner 810.2.c.g.649.1 8
45.4 even 6 810.2.i.g.379.1 8
45.14 odd 6 810.2.i.g.379.4 8
45.29 odd 6 810.2.i.i.109.1 8
45.34 even 6 810.2.i.i.109.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
810.2.c.g.649.1 8 15.14 odd 2 inner
810.2.c.g.649.4 yes 8 1.1 even 1 trivial
810.2.c.g.649.5 yes 8 3.2 odd 2 inner
810.2.c.g.649.8 yes 8 5.4 even 2 inner
810.2.i.g.109.1 8 9.7 even 3
810.2.i.g.109.4 8 9.2 odd 6
810.2.i.g.379.1 8 45.4 even 6
810.2.i.g.379.4 8 45.14 odd 6
810.2.i.i.109.1 8 45.29 odd 6
810.2.i.i.109.4 8 45.34 even 6
810.2.i.i.379.1 8 9.5 odd 6
810.2.i.i.379.4 8 9.4 even 3
4050.2.a.ca.1.2 4 15.2 even 4
4050.2.a.ca.1.3 4 5.3 odd 4
4050.2.a.cb.1.2 4 5.2 odd 4
4050.2.a.cb.1.3 4 15.8 even 4