Properties

Label 4050.2.a.cb.1.3
Level $4050$
Weight $2$
Character 4050.1
Self dual yes
Analytic conductor $32.339$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4050,2,Mod(1,4050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4050.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4050 = 2 \cdot 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4050.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,4,0,0,0,4,0,0,0,0,0,0,0,4,10,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.3394128186\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{19})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 11x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 810)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.31342\) of defining polynomial
Character \(\chi\) \(=\) 4050.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.31342 q^{7} +1.00000 q^{8} +2.62685 q^{11} -1.73205 q^{13} +1.31342 q^{14} +1.00000 q^{16} -1.27492 q^{17} -2.27492 q^{19} +2.62685 q^{22} +6.27492 q^{23} -1.73205 q^{26} +1.31342 q^{28} -9.13642 q^{29} +8.54983 q^{31} +1.00000 q^{32} -1.27492 q^{34} +9.97368 q^{37} -2.27492 q^{38} +5.61478 q^{41} -2.62685 q^{43} +2.62685 q^{44} +6.27492 q^{46} +10.2749 q^{47} -5.27492 q^{49} -1.73205 q^{52} +8.27492 q^{53} +1.31342 q^{56} -9.13642 q^{58} +8.24163 q^{59} +7.27492 q^{61} +8.54983 q^{62} +1.00000 q^{64} -12.1819 q^{67} -1.27492 q^{68} -6.92820 q^{71} -4.83507 q^{73} +9.97368 q^{74} -2.27492 q^{76} +3.45017 q^{77} +5.61478 q^{82} +4.00000 q^{83} -2.62685 q^{86} +2.62685 q^{88} -3.04547 q^{89} -2.27492 q^{91} +6.27492 q^{92} +10.2749 q^{94} -19.1101 q^{97} -5.27492 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{8} + 4 q^{16} + 10 q^{17} + 6 q^{19} + 10 q^{23} + 4 q^{31} + 4 q^{32} + 10 q^{34} + 6 q^{38} + 10 q^{46} + 26 q^{47} - 6 q^{49} + 18 q^{53} + 14 q^{61} + 4 q^{62} + 4 q^{64}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 1.31342 0.496428 0.248214 0.968705i \(-0.420156\pi\)
0.248214 + 0.968705i \(0.420156\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 2.62685 0.792025 0.396012 0.918245i \(-0.370394\pi\)
0.396012 + 0.918245i \(0.370394\pi\)
\(12\) 0 0
\(13\) −1.73205 −0.480384 −0.240192 0.970725i \(-0.577210\pi\)
−0.240192 + 0.970725i \(0.577210\pi\)
\(14\) 1.31342 0.351027
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.27492 −0.309213 −0.154606 0.987976i \(-0.549411\pi\)
−0.154606 + 0.987976i \(0.549411\pi\)
\(18\) 0 0
\(19\) −2.27492 −0.521902 −0.260951 0.965352i \(-0.584036\pi\)
−0.260951 + 0.965352i \(0.584036\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 2.62685 0.560046
\(23\) 6.27492 1.30841 0.654205 0.756317i \(-0.273003\pi\)
0.654205 + 0.756317i \(0.273003\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −1.73205 −0.339683
\(27\) 0 0
\(28\) 1.31342 0.248214
\(29\) −9.13642 −1.69659 −0.848296 0.529523i \(-0.822371\pi\)
−0.848296 + 0.529523i \(0.822371\pi\)
\(30\) 0 0
\(31\) 8.54983 1.53560 0.767798 0.640692i \(-0.221353\pi\)
0.767798 + 0.640692i \(0.221353\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −1.27492 −0.218646
\(35\) 0 0
\(36\) 0 0
\(37\) 9.97368 1.63966 0.819831 0.572605i \(-0.194067\pi\)
0.819831 + 0.572605i \(0.194067\pi\)
\(38\) −2.27492 −0.369040
\(39\) 0 0
\(40\) 0 0
\(41\) 5.61478 0.876881 0.438441 0.898760i \(-0.355531\pi\)
0.438441 + 0.898760i \(0.355531\pi\)
\(42\) 0 0
\(43\) −2.62685 −0.400591 −0.200295 0.979736i \(-0.564190\pi\)
−0.200295 + 0.979736i \(0.564190\pi\)
\(44\) 2.62685 0.396012
\(45\) 0 0
\(46\) 6.27492 0.925186
\(47\) 10.2749 1.49875 0.749375 0.662145i \(-0.230354\pi\)
0.749375 + 0.662145i \(0.230354\pi\)
\(48\) 0 0
\(49\) −5.27492 −0.753560
\(50\) 0 0
\(51\) 0 0
\(52\) −1.73205 −0.240192
\(53\) 8.27492 1.13665 0.568324 0.822805i \(-0.307592\pi\)
0.568324 + 0.822805i \(0.307592\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.31342 0.175514
\(57\) 0 0
\(58\) −9.13642 −1.19967
\(59\) 8.24163 1.07297 0.536484 0.843910i \(-0.319752\pi\)
0.536484 + 0.843910i \(0.319752\pi\)
\(60\) 0 0
\(61\) 7.27492 0.931458 0.465729 0.884927i \(-0.345792\pi\)
0.465729 + 0.884927i \(0.345792\pi\)
\(62\) 8.54983 1.08583
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −12.1819 −1.48826 −0.744128 0.668037i \(-0.767135\pi\)
−0.744128 + 0.668037i \(0.767135\pi\)
\(68\) −1.27492 −0.154606
\(69\) 0 0
\(70\) 0 0
\(71\) −6.92820 −0.822226 −0.411113 0.911584i \(-0.634860\pi\)
−0.411113 + 0.911584i \(0.634860\pi\)
\(72\) 0 0
\(73\) −4.83507 −0.565902 −0.282951 0.959134i \(-0.591313\pi\)
−0.282951 + 0.959134i \(0.591313\pi\)
\(74\) 9.97368 1.15942
\(75\) 0 0
\(76\) −2.27492 −0.260951
\(77\) 3.45017 0.393183
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 5.61478 0.620049
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −2.62685 −0.283260
\(87\) 0 0
\(88\) 2.62685 0.280023
\(89\) −3.04547 −0.322820 −0.161410 0.986887i \(-0.551604\pi\)
−0.161410 + 0.986887i \(0.551604\pi\)
\(90\) 0 0
\(91\) −2.27492 −0.238476
\(92\) 6.27492 0.654205
\(93\) 0 0
\(94\) 10.2749 1.05978
\(95\) 0 0
\(96\) 0 0
\(97\) −19.1101 −1.94034 −0.970168 0.242432i \(-0.922055\pi\)
−0.970168 + 0.242432i \(0.922055\pi\)
\(98\) −5.27492 −0.532847
\(99\) 0 0
\(100\) 0 0
\(101\) −9.55505 −0.950763 −0.475382 0.879780i \(-0.657690\pi\)
−0.475382 + 0.879780i \(0.657690\pi\)
\(102\) 0 0
\(103\) 6.56712 0.647078 0.323539 0.946215i \(-0.395127\pi\)
0.323539 + 0.946215i \(0.395127\pi\)
\(104\) −1.73205 −0.169842
\(105\) 0 0
\(106\) 8.27492 0.803731
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) 7.82475 0.749475 0.374738 0.927131i \(-0.377733\pi\)
0.374738 + 0.927131i \(0.377733\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.31342 0.124107
\(113\) 0.725083 0.0682101 0.0341050 0.999418i \(-0.489142\pi\)
0.0341050 + 0.999418i \(0.489142\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −9.13642 −0.848296
\(117\) 0 0
\(118\) 8.24163 0.758703
\(119\) −1.67451 −0.153502
\(120\) 0 0
\(121\) −4.09967 −0.372697
\(122\) 7.27492 0.658640
\(123\) 0 0
\(124\) 8.54983 0.767798
\(125\) 0 0
\(126\) 0 0
\(127\) 22.0980 1.96088 0.980442 0.196810i \(-0.0630581\pi\)
0.980442 + 0.196810i \(0.0630581\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 17.7967 1.55490 0.777452 0.628943i \(-0.216512\pi\)
0.777452 + 0.628943i \(0.216512\pi\)
\(132\) 0 0
\(133\) −2.98793 −0.259086
\(134\) −12.1819 −1.05236
\(135\) 0 0
\(136\) −1.27492 −0.109323
\(137\) −3.82475 −0.326771 −0.163385 0.986562i \(-0.552241\pi\)
−0.163385 + 0.986562i \(0.552241\pi\)
\(138\) 0 0
\(139\) −10.2749 −0.871507 −0.435754 0.900066i \(-0.643518\pi\)
−0.435754 + 0.900066i \(0.643518\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −6.92820 −0.581402
\(143\) −4.54983 −0.380476
\(144\) 0 0
\(145\) 0 0
\(146\) −4.83507 −0.400153
\(147\) 0 0
\(148\) 9.97368 0.819831
\(149\) −1.37097 −0.112314 −0.0561570 0.998422i \(-0.517885\pi\)
−0.0561570 + 0.998422i \(0.517885\pi\)
\(150\) 0 0
\(151\) −17.0997 −1.39155 −0.695776 0.718259i \(-0.744939\pi\)
−0.695776 + 0.718259i \(0.744939\pi\)
\(152\) −2.27492 −0.184520
\(153\) 0 0
\(154\) 3.45017 0.278022
\(155\) 0 0
\(156\) 0 0
\(157\) −6.03341 −0.481518 −0.240759 0.970585i \(-0.577396\pi\)
−0.240759 + 0.970585i \(0.577396\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.24163 0.649531
\(162\) 0 0
\(163\) 24.3638 1.90832 0.954160 0.299297i \(-0.0967521\pi\)
0.954160 + 0.299297i \(0.0967521\pi\)
\(164\) 5.61478 0.438441
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) 21.0997 1.63274 0.816371 0.577528i \(-0.195983\pi\)
0.816371 + 0.577528i \(0.195983\pi\)
\(168\) 0 0
\(169\) −10.0000 −0.769231
\(170\) 0 0
\(171\) 0 0
\(172\) −2.62685 −0.200295
\(173\) 20.0997 1.52815 0.764075 0.645128i \(-0.223196\pi\)
0.764075 + 0.645128i \(0.223196\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.62685 0.198006
\(177\) 0 0
\(178\) −3.04547 −0.228268
\(179\) 1.31342 0.0981699 0.0490850 0.998795i \(-0.484369\pi\)
0.0490850 + 0.998795i \(0.484369\pi\)
\(180\) 0 0
\(181\) 6.54983 0.486845 0.243423 0.969920i \(-0.421730\pi\)
0.243423 + 0.969920i \(0.421730\pi\)
\(182\) −2.27492 −0.168628
\(183\) 0 0
\(184\) 6.27492 0.462593
\(185\) 0 0
\(186\) 0 0
\(187\) −3.34901 −0.244904
\(188\) 10.2749 0.749375
\(189\) 0 0
\(190\) 0 0
\(191\) −14.8087 −1.07152 −0.535762 0.844369i \(-0.679975\pi\)
−0.535762 + 0.844369i \(0.679975\pi\)
\(192\) 0 0
\(193\) −8.29917 −0.597387 −0.298694 0.954349i \(-0.596551\pi\)
−0.298694 + 0.954349i \(0.596551\pi\)
\(194\) −19.1101 −1.37203
\(195\) 0 0
\(196\) −5.27492 −0.376780
\(197\) 11.0000 0.783718 0.391859 0.920025i \(-0.371832\pi\)
0.391859 + 0.920025i \(0.371832\pi\)
\(198\) 0 0
\(199\) −7.45017 −0.528128 −0.264064 0.964505i \(-0.585063\pi\)
−0.264064 + 0.964505i \(0.585063\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −9.55505 −0.672291
\(203\) −12.0000 −0.842235
\(204\) 0 0
\(205\) 0 0
\(206\) 6.56712 0.457553
\(207\) 0 0
\(208\) −1.73205 −0.120096
\(209\) −5.97586 −0.413359
\(210\) 0 0
\(211\) −9.72508 −0.669502 −0.334751 0.942307i \(-0.608652\pi\)
−0.334751 + 0.942307i \(0.608652\pi\)
\(212\) 8.27492 0.568324
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) 0 0
\(216\) 0 0
\(217\) 11.2296 0.762312
\(218\) 7.82475 0.529959
\(219\) 0 0
\(220\) 0 0
\(221\) 2.20822 0.148541
\(222\) 0 0
\(223\) −16.4833 −1.10380 −0.551900 0.833910i \(-0.686097\pi\)
−0.551900 + 0.833910i \(0.686097\pi\)
\(224\) 1.31342 0.0877568
\(225\) 0 0
\(226\) 0.725083 0.0482318
\(227\) −0.549834 −0.0364938 −0.0182469 0.999834i \(-0.505808\pi\)
−0.0182469 + 0.999834i \(0.505808\pi\)
\(228\) 0 0
\(229\) 22.3746 1.47855 0.739277 0.673401i \(-0.235167\pi\)
0.739277 + 0.673401i \(0.235167\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −9.13642 −0.599836
\(233\) −0.175248 −0.0114809 −0.00574045 0.999984i \(-0.501827\pi\)
−0.00574045 + 0.999984i \(0.501827\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 8.24163 0.536484
\(237\) 0 0
\(238\) −1.67451 −0.108542
\(239\) 9.55505 0.618065 0.309032 0.951051i \(-0.399995\pi\)
0.309032 + 0.951051i \(0.399995\pi\)
\(240\) 0 0
\(241\) 13.8248 0.890531 0.445265 0.895399i \(-0.353109\pi\)
0.445265 + 0.895399i \(0.353109\pi\)
\(242\) −4.09967 −0.263537
\(243\) 0 0
\(244\) 7.27492 0.465729
\(245\) 0 0
\(246\) 0 0
\(247\) 3.94027 0.250714
\(248\) 8.54983 0.542915
\(249\) 0 0
\(250\) 0 0
\(251\) −2.98793 −0.188597 −0.0942983 0.995544i \(-0.530061\pi\)
−0.0942983 + 0.995544i \(0.530061\pi\)
\(252\) 0 0
\(253\) 16.4833 1.03629
\(254\) 22.0980 1.38655
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 0.725083 0.0452294 0.0226147 0.999744i \(-0.492801\pi\)
0.0226147 + 0.999744i \(0.492801\pi\)
\(258\) 0 0
\(259\) 13.0997 0.813974
\(260\) 0 0
\(261\) 0 0
\(262\) 17.7967 1.09948
\(263\) −19.3746 −1.19469 −0.597344 0.801985i \(-0.703777\pi\)
−0.597344 + 0.801985i \(0.703777\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −2.98793 −0.183202
\(267\) 0 0
\(268\) −12.1819 −0.744128
\(269\) 11.6482 0.710202 0.355101 0.934828i \(-0.384446\pi\)
0.355101 + 0.934828i \(0.384446\pi\)
\(270\) 0 0
\(271\) −12.5498 −0.762348 −0.381174 0.924503i \(-0.624480\pi\)
−0.381174 + 0.924503i \(0.624480\pi\)
\(272\) −1.27492 −0.0773032
\(273\) 0 0
\(274\) −3.82475 −0.231062
\(275\) 0 0
\(276\) 0 0
\(277\) −20.4235 −1.22713 −0.613565 0.789644i \(-0.710265\pi\)
−0.613565 + 0.789644i \(0.710265\pi\)
\(278\) −10.2749 −0.616249
\(279\) 0 0
\(280\) 0 0
\(281\) 2.68439 0.160137 0.0800687 0.996789i \(-0.474486\pi\)
0.0800687 + 0.996789i \(0.474486\pi\)
\(282\) 0 0
\(283\) 9.55505 0.567989 0.283994 0.958826i \(-0.408340\pi\)
0.283994 + 0.958826i \(0.408340\pi\)
\(284\) −6.92820 −0.411113
\(285\) 0 0
\(286\) −4.54983 −0.269037
\(287\) 7.37459 0.435308
\(288\) 0 0
\(289\) −15.3746 −0.904387
\(290\) 0 0
\(291\) 0 0
\(292\) −4.83507 −0.282951
\(293\) 15.0000 0.876309 0.438155 0.898900i \(-0.355632\pi\)
0.438155 + 0.898900i \(0.355632\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 9.97368 0.579708
\(297\) 0 0
\(298\) −1.37097 −0.0794180
\(299\) −10.8685 −0.628540
\(300\) 0 0
\(301\) −3.45017 −0.198864
\(302\) −17.0997 −0.983975
\(303\) 0 0
\(304\) −2.27492 −0.130475
\(305\) 0 0
\(306\) 0 0
\(307\) −0.952341 −0.0543530 −0.0271765 0.999631i \(-0.508652\pi\)
−0.0271765 + 0.999631i \(0.508652\pi\)
\(308\) 3.45017 0.196591
\(309\) 0 0
\(310\) 0 0
\(311\) −21.7370 −1.23259 −0.616295 0.787516i \(-0.711367\pi\)
−0.616295 + 0.787516i \(0.711367\pi\)
\(312\) 0 0
\(313\) 17.8542 1.00918 0.504590 0.863359i \(-0.331644\pi\)
0.504590 + 0.863359i \(0.331644\pi\)
\(314\) −6.03341 −0.340485
\(315\) 0 0
\(316\) 0 0
\(317\) 22.0997 1.24124 0.620621 0.784111i \(-0.286881\pi\)
0.620621 + 0.784111i \(0.286881\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) 0 0
\(322\) 8.24163 0.459288
\(323\) 2.90033 0.161379
\(324\) 0 0
\(325\) 0 0
\(326\) 24.3638 1.34939
\(327\) 0 0
\(328\) 5.61478 0.310024
\(329\) 13.4953 0.744021
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 4.00000 0.219529
\(333\) 0 0
\(334\) 21.0997 1.15452
\(335\) 0 0
\(336\) 0 0
\(337\) 5.25370 0.286187 0.143094 0.989709i \(-0.454295\pi\)
0.143094 + 0.989709i \(0.454295\pi\)
\(338\) −10.0000 −0.543928
\(339\) 0 0
\(340\) 0 0
\(341\) 22.4591 1.21623
\(342\) 0 0
\(343\) −16.1222 −0.870515
\(344\) −2.62685 −0.141630
\(345\) 0 0
\(346\) 20.0997 1.08056
\(347\) 7.45017 0.399946 0.199973 0.979801i \(-0.435915\pi\)
0.199973 + 0.979801i \(0.435915\pi\)
\(348\) 0 0
\(349\) −32.1993 −1.72359 −0.861796 0.507256i \(-0.830660\pi\)
−0.861796 + 0.507256i \(0.830660\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.62685 0.140011
\(353\) −14.5498 −0.774410 −0.387205 0.921994i \(-0.626559\pi\)
−0.387205 + 0.921994i \(0.626559\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −3.04547 −0.161410
\(357\) 0 0
\(358\) 1.31342 0.0694166
\(359\) 21.7370 1.14723 0.573616 0.819124i \(-0.305540\pi\)
0.573616 + 0.819124i \(0.305540\pi\)
\(360\) 0 0
\(361\) −13.8248 −0.727619
\(362\) 6.54983 0.344252
\(363\) 0 0
\(364\) −2.27492 −0.119238
\(365\) 0 0
\(366\) 0 0
\(367\) −2.62685 −0.137120 −0.0685602 0.997647i \(-0.521841\pi\)
−0.0685602 + 0.997647i \(0.521841\pi\)
\(368\) 6.27492 0.327103
\(369\) 0 0
\(370\) 0 0
\(371\) 10.8685 0.564263
\(372\) 0 0
\(373\) −22.6893 −1.17481 −0.587404 0.809294i \(-0.699850\pi\)
−0.587404 + 0.809294i \(0.699850\pi\)
\(374\) −3.34901 −0.173173
\(375\) 0 0
\(376\) 10.2749 0.529888
\(377\) 15.8248 0.815016
\(378\) 0 0
\(379\) −27.3746 −1.40614 −0.703069 0.711122i \(-0.748188\pi\)
−0.703069 + 0.711122i \(0.748188\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −14.8087 −0.757681
\(383\) −3.37459 −0.172433 −0.0862166 0.996276i \(-0.527478\pi\)
−0.0862166 + 0.996276i \(0.527478\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −8.29917 −0.422417
\(387\) 0 0
\(388\) −19.1101 −0.970168
\(389\) −33.9189 −1.71975 −0.859877 0.510501i \(-0.829460\pi\)
−0.859877 + 0.510501i \(0.829460\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) −5.27492 −0.266424
\(393\) 0 0
\(394\) 11.0000 0.554172
\(395\) 0 0
\(396\) 0 0
\(397\) 14.3901 0.722219 0.361110 0.932523i \(-0.382398\pi\)
0.361110 + 0.932523i \(0.382398\pi\)
\(398\) −7.45017 −0.373443
\(399\) 0 0
\(400\) 0 0
\(401\) −21.6794 −1.08262 −0.541309 0.840824i \(-0.682071\pi\)
−0.541309 + 0.840824i \(0.682071\pi\)
\(402\) 0 0
\(403\) −14.8087 −0.737676
\(404\) −9.55505 −0.475382
\(405\) 0 0
\(406\) −12.0000 −0.595550
\(407\) 26.1993 1.29865
\(408\) 0 0
\(409\) −16.0997 −0.796077 −0.398039 0.917369i \(-0.630309\pi\)
−0.398039 + 0.917369i \(0.630309\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 6.56712 0.323539
\(413\) 10.8248 0.532651
\(414\) 0 0
\(415\) 0 0
\(416\) −1.73205 −0.0849208
\(417\) 0 0
\(418\) −5.97586 −0.292289
\(419\) 16.4833 0.805260 0.402630 0.915363i \(-0.368096\pi\)
0.402630 + 0.915363i \(0.368096\pi\)
\(420\) 0 0
\(421\) 9.27492 0.452032 0.226016 0.974124i \(-0.427430\pi\)
0.226016 + 0.974124i \(0.427430\pi\)
\(422\) −9.72508 −0.473410
\(423\) 0 0
\(424\) 8.27492 0.401866
\(425\) 0 0
\(426\) 0 0
\(427\) 9.55505 0.462401
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) 0 0
\(431\) −33.9189 −1.63381 −0.816907 0.576770i \(-0.804313\pi\)
−0.816907 + 0.576770i \(0.804313\pi\)
\(432\) 0 0
\(433\) −10.8109 −0.519540 −0.259770 0.965670i \(-0.583647\pi\)
−0.259770 + 0.965670i \(0.583647\pi\)
\(434\) 11.2296 0.539036
\(435\) 0 0
\(436\) 7.82475 0.374738
\(437\) −14.2749 −0.682862
\(438\) 0 0
\(439\) −36.0000 −1.71819 −0.859093 0.511819i \(-0.828972\pi\)
−0.859093 + 0.511819i \(0.828972\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 2.20822 0.105034
\(443\) 7.45017 0.353968 0.176984 0.984214i \(-0.443366\pi\)
0.176984 + 0.984214i \(0.443366\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −16.4833 −0.780505
\(447\) 0 0
\(448\) 1.31342 0.0620535
\(449\) 10.8685 0.512915 0.256458 0.966555i \(-0.417445\pi\)
0.256458 + 0.966555i \(0.417445\pi\)
\(450\) 0 0
\(451\) 14.7492 0.694511
\(452\) 0.725083 0.0341050
\(453\) 0 0
\(454\) −0.549834 −0.0258050
\(455\) 0 0
\(456\) 0 0
\(457\) 15.9495 0.746088 0.373044 0.927814i \(-0.378314\pi\)
0.373044 + 0.927814i \(0.378314\pi\)
\(458\) 22.3746 1.04550
\(459\) 0 0
\(460\) 0 0
\(461\) −6.92820 −0.322679 −0.161339 0.986899i \(-0.551581\pi\)
−0.161339 + 0.986899i \(0.551581\pi\)
\(462\) 0 0
\(463\) −16.8443 −0.782823 −0.391411 0.920216i \(-0.628013\pi\)
−0.391411 + 0.920216i \(0.628013\pi\)
\(464\) −9.13642 −0.424148
\(465\) 0 0
\(466\) −0.175248 −0.00811822
\(467\) −13.6495 −0.631624 −0.315812 0.948822i \(-0.602277\pi\)
−0.315812 + 0.948822i \(0.602277\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) 0 0
\(472\) 8.24163 0.379352
\(473\) −6.90033 −0.317278
\(474\) 0 0
\(475\) 0 0
\(476\) −1.67451 −0.0767509
\(477\) 0 0
\(478\) 9.55505 0.437038
\(479\) 1.67451 0.0765102 0.0382551 0.999268i \(-0.487820\pi\)
0.0382551 + 0.999268i \(0.487820\pi\)
\(480\) 0 0
\(481\) −17.2749 −0.787668
\(482\) 13.8248 0.629700
\(483\) 0 0
\(484\) −4.09967 −0.186349
\(485\) 0 0
\(486\) 0 0
\(487\) −9.91613 −0.449343 −0.224671 0.974435i \(-0.572131\pi\)
−0.224671 + 0.974435i \(0.572131\pi\)
\(488\) 7.27492 0.329320
\(489\) 0 0
\(490\) 0 0
\(491\) −18.7490 −0.846131 −0.423066 0.906099i \(-0.639046\pi\)
−0.423066 + 0.906099i \(0.639046\pi\)
\(492\) 0 0
\(493\) 11.6482 0.524608
\(494\) 3.94027 0.177281
\(495\) 0 0
\(496\) 8.54983 0.383899
\(497\) −9.09967 −0.408176
\(498\) 0 0
\(499\) 14.2749 0.639033 0.319517 0.947581i \(-0.396480\pi\)
0.319517 + 0.947581i \(0.396480\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −2.98793 −0.133358
\(503\) −33.0997 −1.47584 −0.737921 0.674887i \(-0.764192\pi\)
−0.737921 + 0.674887i \(0.764192\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 16.4833 0.732770
\(507\) 0 0
\(508\) 22.0980 0.980442
\(509\) −6.92820 −0.307087 −0.153544 0.988142i \(-0.549069\pi\)
−0.153544 + 0.988142i \(0.549069\pi\)
\(510\) 0 0
\(511\) −6.35050 −0.280929
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 0.725083 0.0319820
\(515\) 0 0
\(516\) 0 0
\(517\) 26.9906 1.18705
\(518\) 13.0997 0.575566
\(519\) 0 0
\(520\) 0 0
\(521\) 43.8350 1.92045 0.960223 0.279235i \(-0.0900809\pi\)
0.960223 + 0.279235i \(0.0900809\pi\)
\(522\) 0 0
\(523\) 10.5074 0.459456 0.229728 0.973255i \(-0.426216\pi\)
0.229728 + 0.973255i \(0.426216\pi\)
\(524\) 17.7967 0.777452
\(525\) 0 0
\(526\) −19.3746 −0.844772
\(527\) −10.9003 −0.474826
\(528\) 0 0
\(529\) 16.3746 0.711939
\(530\) 0 0
\(531\) 0 0
\(532\) −2.98793 −0.129543
\(533\) −9.72508 −0.421240
\(534\) 0 0
\(535\) 0 0
\(536\) −12.1819 −0.526178
\(537\) 0 0
\(538\) 11.6482 0.502189
\(539\) −13.8564 −0.596838
\(540\) 0 0
\(541\) 10.7251 0.461107 0.230554 0.973060i \(-0.425946\pi\)
0.230554 + 0.973060i \(0.425946\pi\)
\(542\) −12.5498 −0.539062
\(543\) 0 0
\(544\) −1.27492 −0.0546616
\(545\) 0 0
\(546\) 0 0
\(547\) 33.9189 1.45027 0.725133 0.688609i \(-0.241778\pi\)
0.725133 + 0.688609i \(0.241778\pi\)
\(548\) −3.82475 −0.163385
\(549\) 0 0
\(550\) 0 0
\(551\) 20.7846 0.885454
\(552\) 0 0
\(553\) 0 0
\(554\) −20.4235 −0.867713
\(555\) 0 0
\(556\) −10.2749 −0.435754
\(557\) −45.1993 −1.91516 −0.957579 0.288172i \(-0.906953\pi\)
−0.957579 + 0.288172i \(0.906953\pi\)
\(558\) 0 0
\(559\) 4.54983 0.192437
\(560\) 0 0
\(561\) 0 0
\(562\) 2.68439 0.113234
\(563\) 29.0997 1.22640 0.613202 0.789926i \(-0.289881\pi\)
0.613202 + 0.789926i \(0.289881\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 9.55505 0.401629
\(567\) 0 0
\(568\) −6.92820 −0.290701
\(569\) −12.9616 −0.543379 −0.271689 0.962385i \(-0.587582\pi\)
−0.271689 + 0.962385i \(0.587582\pi\)
\(570\) 0 0
\(571\) −17.0997 −0.715599 −0.357799 0.933798i \(-0.616473\pi\)
−0.357799 + 0.933798i \(0.616473\pi\)
\(572\) −4.54983 −0.190238
\(573\) 0 0
\(574\) 7.37459 0.307809
\(575\) 0 0
\(576\) 0 0
\(577\) −29.0838 −1.21077 −0.605387 0.795931i \(-0.706982\pi\)
−0.605387 + 0.795931i \(0.706982\pi\)
\(578\) −15.3746 −0.639498
\(579\) 0 0
\(580\) 0 0
\(581\) 5.25370 0.217960
\(582\) 0 0
\(583\) 21.7370 0.900253
\(584\) −4.83507 −0.200077
\(585\) 0 0
\(586\) 15.0000 0.619644
\(587\) −33.0997 −1.36617 −0.683085 0.730339i \(-0.739362\pi\)
−0.683085 + 0.730339i \(0.739362\pi\)
\(588\) 0 0
\(589\) −19.4502 −0.801430
\(590\) 0 0
\(591\) 0 0
\(592\) 9.97368 0.409916
\(593\) 20.1752 0.828498 0.414249 0.910164i \(-0.364044\pi\)
0.414249 + 0.910164i \(0.364044\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.37097 −0.0561570
\(597\) 0 0
\(598\) −10.8685 −0.444445
\(599\) 6.92820 0.283079 0.141539 0.989933i \(-0.454795\pi\)
0.141539 + 0.989933i \(0.454795\pi\)
\(600\) 0 0
\(601\) 0.450166 0.0183626 0.00918132 0.999958i \(-0.497077\pi\)
0.00918132 + 0.999958i \(0.497077\pi\)
\(602\) −3.45017 −0.140618
\(603\) 0 0
\(604\) −17.0997 −0.695776
\(605\) 0 0
\(606\) 0 0
\(607\) −33.9189 −1.37672 −0.688362 0.725367i \(-0.741670\pi\)
−0.688362 + 0.725367i \(0.741670\pi\)
\(608\) −2.27492 −0.0922601
\(609\) 0 0
\(610\) 0 0
\(611\) −17.7967 −0.719977
\(612\) 0 0
\(613\) −12.5430 −0.506606 −0.253303 0.967387i \(-0.581517\pi\)
−0.253303 + 0.967387i \(0.581517\pi\)
\(614\) −0.952341 −0.0384334
\(615\) 0 0
\(616\) 3.45017 0.139011
\(617\) 7.82475 0.315013 0.157506 0.987518i \(-0.449655\pi\)
0.157506 + 0.987518i \(0.449655\pi\)
\(618\) 0 0
\(619\) 22.2749 0.895305 0.447652 0.894208i \(-0.352260\pi\)
0.447652 + 0.894208i \(0.352260\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −21.7370 −0.871572
\(623\) −4.00000 −0.160257
\(624\) 0 0
\(625\) 0 0
\(626\) 17.8542 0.713598
\(627\) 0 0
\(628\) −6.03341 −0.240759
\(629\) −12.7156 −0.507005
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 22.0997 0.877690
\(635\) 0 0
\(636\) 0 0
\(637\) 9.13642 0.361998
\(638\) −24.0000 −0.950169
\(639\) 0 0
\(640\) 0 0
\(641\) −30.7583 −1.21488 −0.607440 0.794366i \(-0.707803\pi\)
−0.607440 + 0.794366i \(0.707803\pi\)
\(642\) 0 0
\(643\) −0.952341 −0.0375567 −0.0187783 0.999824i \(-0.505978\pi\)
−0.0187783 + 0.999824i \(0.505978\pi\)
\(644\) 8.24163 0.324766
\(645\) 0 0
\(646\) 2.90033 0.114112
\(647\) 21.0997 0.829514 0.414757 0.909932i \(-0.363867\pi\)
0.414757 + 0.909932i \(0.363867\pi\)
\(648\) 0 0
\(649\) 21.6495 0.849817
\(650\) 0 0
\(651\) 0 0
\(652\) 24.3638 0.954160
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 5.61478 0.219220
\(657\) 0 0
\(658\) 13.4953 0.526102
\(659\) −4.66244 −0.181623 −0.0908114 0.995868i \(-0.528946\pi\)
−0.0908114 + 0.995868i \(0.528946\pi\)
\(660\) 0 0
\(661\) 31.2749 1.21645 0.608227 0.793763i \(-0.291881\pi\)
0.608227 + 0.793763i \(0.291881\pi\)
\(662\) −20.0000 −0.777322
\(663\) 0 0
\(664\) 4.00000 0.155230
\(665\) 0 0
\(666\) 0 0
\(667\) −57.3303 −2.21984
\(668\) 21.0997 0.816371
\(669\) 0 0
\(670\) 0 0
\(671\) 19.1101 0.737737
\(672\) 0 0
\(673\) −5.67232 −0.218652 −0.109326 0.994006i \(-0.534869\pi\)
−0.109326 + 0.994006i \(0.534869\pi\)
\(674\) 5.25370 0.202365
\(675\) 0 0
\(676\) −10.0000 −0.384615
\(677\) −23.7251 −0.911829 −0.455915 0.890024i \(-0.650688\pi\)
−0.455915 + 0.890024i \(0.650688\pi\)
\(678\) 0 0
\(679\) −25.0997 −0.963237
\(680\) 0 0
\(681\) 0 0
\(682\) 22.4591 0.860004
\(683\) 26.7492 1.02353 0.511764 0.859126i \(-0.328992\pi\)
0.511764 + 0.859126i \(0.328992\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −16.1222 −0.615547
\(687\) 0 0
\(688\) −2.62685 −0.100148
\(689\) −14.3326 −0.546028
\(690\) 0 0
\(691\) −23.9244 −0.910128 −0.455064 0.890459i \(-0.650384\pi\)
−0.455064 + 0.890459i \(0.650384\pi\)
\(692\) 20.0997 0.764075
\(693\) 0 0
\(694\) 7.45017 0.282804
\(695\) 0 0
\(696\) 0 0
\(697\) −7.15838 −0.271143
\(698\) −32.1993 −1.21876
\(699\) 0 0
\(700\) 0 0
\(701\) 18.6915 0.705967 0.352984 0.935629i \(-0.385167\pi\)
0.352984 + 0.935629i \(0.385167\pi\)
\(702\) 0 0
\(703\) −22.6893 −0.855743
\(704\) 2.62685 0.0990031
\(705\) 0 0
\(706\) −14.5498 −0.547590
\(707\) −12.5498 −0.471985
\(708\) 0 0
\(709\) −3.82475 −0.143642 −0.0718208 0.997418i \(-0.522881\pi\)
−0.0718208 + 0.997418i \(0.522881\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −3.04547 −0.114134
\(713\) 53.6495 2.00919
\(714\) 0 0
\(715\) 0 0
\(716\) 1.31342 0.0490850
\(717\) 0 0
\(718\) 21.7370 0.811216
\(719\) 8.60271 0.320827 0.160413 0.987050i \(-0.448717\pi\)
0.160413 + 0.987050i \(0.448717\pi\)
\(720\) 0 0
\(721\) 8.62541 0.321227
\(722\) −13.8248 −0.514504
\(723\) 0 0
\(724\) 6.54983 0.243423
\(725\) 0 0
\(726\) 0 0
\(727\) −11.8208 −0.438410 −0.219205 0.975679i \(-0.570346\pi\)
−0.219205 + 0.975679i \(0.570346\pi\)
\(728\) −2.27492 −0.0843140
\(729\) 0 0
\(730\) 0 0
\(731\) 3.34901 0.123868
\(732\) 0 0
\(733\) 47.0531 1.73795 0.868973 0.494860i \(-0.164781\pi\)
0.868973 + 0.494860i \(0.164781\pi\)
\(734\) −2.62685 −0.0969587
\(735\) 0 0
\(736\) 6.27492 0.231297
\(737\) −32.0000 −1.17874
\(738\) 0 0
\(739\) −10.9003 −0.400975 −0.200488 0.979696i \(-0.564253\pi\)
−0.200488 + 0.979696i \(0.564253\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 10.8685 0.398994
\(743\) −45.0997 −1.65455 −0.827273 0.561800i \(-0.810109\pi\)
−0.827273 + 0.561800i \(0.810109\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −22.6893 −0.830714
\(747\) 0 0
\(748\) −3.34901 −0.122452
\(749\) 15.7611 0.575898
\(750\) 0 0
\(751\) −32.5498 −1.18776 −0.593880 0.804554i \(-0.702405\pi\)
−0.593880 + 0.804554i \(0.702405\pi\)
\(752\) 10.2749 0.374688
\(753\) 0 0
\(754\) 15.8248 0.576303
\(755\) 0 0
\(756\) 0 0
\(757\) −26.3994 −0.959502 −0.479751 0.877405i \(-0.659273\pi\)
−0.479751 + 0.877405i \(0.659273\pi\)
\(758\) −27.3746 −0.994290
\(759\) 0 0
\(760\) 0 0
\(761\) 17.4931 0.634126 0.317063 0.948405i \(-0.397303\pi\)
0.317063 + 0.948405i \(0.397303\pi\)
\(762\) 0 0
\(763\) 10.2772 0.372060
\(764\) −14.8087 −0.535762
\(765\) 0 0
\(766\) −3.37459 −0.121929
\(767\) −14.2749 −0.515437
\(768\) 0 0
\(769\) 35.2749 1.27205 0.636023 0.771670i \(-0.280578\pi\)
0.636023 + 0.771670i \(0.280578\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −8.29917 −0.298694
\(773\) −45.8248 −1.64820 −0.824101 0.566443i \(-0.808319\pi\)
−0.824101 + 0.566443i \(0.808319\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −19.1101 −0.686013
\(777\) 0 0
\(778\) −33.9189 −1.21605
\(779\) −12.7732 −0.457646
\(780\) 0 0
\(781\) −18.1993 −0.651224
\(782\) −8.00000 −0.286079
\(783\) 0 0
\(784\) −5.27492 −0.188390
\(785\) 0 0
\(786\) 0 0
\(787\) 3.34901 0.119379 0.0596897 0.998217i \(-0.480989\pi\)
0.0596897 + 0.998217i \(0.480989\pi\)
\(788\) 11.0000 0.391859
\(789\) 0 0
\(790\) 0 0
\(791\) 0.952341 0.0338614
\(792\) 0 0
\(793\) −12.6005 −0.447458
\(794\) 14.3901 0.510686
\(795\) 0 0
\(796\) −7.45017 −0.264064
\(797\) −28.3746 −1.00508 −0.502540 0.864554i \(-0.667601\pi\)
−0.502540 + 0.864554i \(0.667601\pi\)
\(798\) 0 0
\(799\) −13.0997 −0.463433
\(800\) 0 0
\(801\) 0 0
\(802\) −21.6794 −0.765526
\(803\) −12.7010 −0.448208
\(804\) 0 0
\(805\) 0 0
\(806\) −14.8087 −0.521616
\(807\) 0 0
\(808\) −9.55505 −0.336146
\(809\) 49.6224 1.74463 0.872315 0.488944i \(-0.162618\pi\)
0.872315 + 0.488944i \(0.162618\pi\)
\(810\) 0 0
\(811\) 6.90033 0.242303 0.121152 0.992634i \(-0.461341\pi\)
0.121152 + 0.992634i \(0.461341\pi\)
\(812\) −12.0000 −0.421117
\(813\) 0 0
\(814\) 26.1993 0.918286
\(815\) 0 0
\(816\) 0 0
\(817\) 5.97586 0.209069
\(818\) −16.0997 −0.562912
\(819\) 0 0
\(820\) 0 0
\(821\) −21.2032 −0.739998 −0.369999 0.929032i \(-0.620642\pi\)
−0.369999 + 0.929032i \(0.620642\pi\)
\(822\) 0 0
\(823\) 42.5216 1.48221 0.741104 0.671390i \(-0.234302\pi\)
0.741104 + 0.671390i \(0.234302\pi\)
\(824\) 6.56712 0.228776
\(825\) 0 0
\(826\) 10.8248 0.376641
\(827\) −27.4502 −0.954536 −0.477268 0.878758i \(-0.658373\pi\)
−0.477268 + 0.878758i \(0.658373\pi\)
\(828\) 0 0
\(829\) 46.5498 1.61674 0.808371 0.588673i \(-0.200349\pi\)
0.808371 + 0.588673i \(0.200349\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.73205 −0.0600481
\(833\) 6.72508 0.233010
\(834\) 0 0
\(835\) 0 0
\(836\) −5.97586 −0.206680
\(837\) 0 0
\(838\) 16.4833 0.569405
\(839\) 48.7276 1.68226 0.841132 0.540830i \(-0.181890\pi\)
0.841132 + 0.540830i \(0.181890\pi\)
\(840\) 0 0
\(841\) 54.4743 1.87842
\(842\) 9.27492 0.319635
\(843\) 0 0
\(844\) −9.72508 −0.334751
\(845\) 0 0
\(846\) 0 0
\(847\) −5.38460 −0.185017
\(848\) 8.27492 0.284162
\(849\) 0 0
\(850\) 0 0
\(851\) 62.5840 2.14535
\(852\) 0 0
\(853\) −10.2772 −0.351885 −0.175943 0.984400i \(-0.556297\pi\)
−0.175943 + 0.984400i \(0.556297\pi\)
\(854\) 9.55505 0.326967
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) −33.8248 −1.15543 −0.577716 0.816238i \(-0.696056\pi\)
−0.577716 + 0.816238i \(0.696056\pi\)
\(858\) 0 0
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −33.9189 −1.15528
\(863\) 9.72508 0.331046 0.165523 0.986206i \(-0.447069\pi\)
0.165523 + 0.986206i \(0.447069\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −10.8109 −0.367370
\(867\) 0 0
\(868\) 11.2296 0.381156
\(869\) 0 0
\(870\) 0 0
\(871\) 21.0997 0.714935
\(872\) 7.82475 0.264980
\(873\) 0 0
\(874\) −14.2749 −0.482856
\(875\) 0 0
\(876\) 0 0
\(877\) 10.3348 0.348980 0.174490 0.984659i \(-0.444172\pi\)
0.174490 + 0.984659i \(0.444172\pi\)
\(878\) −36.0000 −1.21494
\(879\) 0 0
\(880\) 0 0
\(881\) 15.7611 0.531005 0.265502 0.964110i \(-0.414462\pi\)
0.265502 + 0.964110i \(0.414462\pi\)
\(882\) 0 0
\(883\) 0.952341 0.0320488 0.0160244 0.999872i \(-0.494899\pi\)
0.0160244 + 0.999872i \(0.494899\pi\)
\(884\) 2.20822 0.0742705
\(885\) 0 0
\(886\) 7.45017 0.250293
\(887\) −18.8248 −0.632073 −0.316037 0.948747i \(-0.602352\pi\)
−0.316037 + 0.948747i \(0.602352\pi\)
\(888\) 0 0
\(889\) 29.0241 0.973437
\(890\) 0 0
\(891\) 0 0
\(892\) −16.4833 −0.551900
\(893\) −23.3746 −0.782201
\(894\) 0 0
\(895\) 0 0
\(896\) 1.31342 0.0438784
\(897\) 0 0
\(898\) 10.8685 0.362686
\(899\) −78.1149 −2.60528
\(900\) 0 0
\(901\) −10.5498 −0.351466
\(902\) 14.7492 0.491094
\(903\) 0 0
\(904\) 0.725083 0.0241159
\(905\) 0 0
\(906\) 0 0
\(907\) 41.5692 1.38028 0.690142 0.723674i \(-0.257548\pi\)
0.690142 + 0.723674i \(0.257548\pi\)
\(908\) −0.549834 −0.0182469
\(909\) 0 0
\(910\) 0 0
\(911\) 5.97586 0.197989 0.0989946 0.995088i \(-0.468437\pi\)
0.0989946 + 0.995088i \(0.468437\pi\)
\(912\) 0 0
\(913\) 10.5074 0.347744
\(914\) 15.9495 0.527564
\(915\) 0 0
\(916\) 22.3746 0.739277
\(917\) 23.3746 0.771897
\(918\) 0 0
\(919\) 33.0997 1.09186 0.545929 0.837832i \(-0.316177\pi\)
0.545929 + 0.837832i \(0.316177\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −6.92820 −0.228168
\(923\) 12.0000 0.394985
\(924\) 0 0
\(925\) 0 0
\(926\) −16.8443 −0.553539
\(927\) 0 0
\(928\) −9.13642 −0.299918
\(929\) −13.5529 −0.444655 −0.222328 0.974972i \(-0.571365\pi\)
−0.222328 + 0.974972i \(0.571365\pi\)
\(930\) 0 0
\(931\) 12.0000 0.393284
\(932\) −0.175248 −0.00574045
\(933\) 0 0
\(934\) −13.6495 −0.446625
\(935\) 0 0
\(936\) 0 0
\(937\) −5.55724 −0.181547 −0.0907735 0.995872i \(-0.528934\pi\)
−0.0907735 + 0.995872i \(0.528934\pi\)
\(938\) −16.0000 −0.522419
\(939\) 0 0
\(940\) 0 0
\(941\) −10.9260 −0.356178 −0.178089 0.984014i \(-0.556992\pi\)
−0.178089 + 0.984014i \(0.556992\pi\)
\(942\) 0 0
\(943\) 35.2323 1.14732
\(944\) 8.24163 0.268242
\(945\) 0 0
\(946\) −6.90033 −0.224349
\(947\) −16.5498 −0.537797 −0.268899 0.963168i \(-0.586660\pi\)
−0.268899 + 0.963168i \(0.586660\pi\)
\(948\) 0 0
\(949\) 8.37459 0.271851
\(950\) 0 0
\(951\) 0 0
\(952\) −1.67451 −0.0542711
\(953\) −39.2749 −1.27224 −0.636120 0.771590i \(-0.719462\pi\)
−0.636120 + 0.771590i \(0.719462\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 9.55505 0.309032
\(957\) 0 0
\(958\) 1.67451 0.0541009
\(959\) −5.02352 −0.162218
\(960\) 0 0
\(961\) 42.0997 1.35805
\(962\) −17.2749 −0.556966
\(963\) 0 0
\(964\) 13.8248 0.445265
\(965\) 0 0
\(966\) 0 0
\(967\) 9.55505 0.307270 0.153635 0.988128i \(-0.450902\pi\)
0.153635 + 0.988128i \(0.450902\pi\)
\(968\) −4.09967 −0.131768
\(969\) 0 0
\(970\) 0 0
\(971\) −37.6289 −1.20757 −0.603785 0.797147i \(-0.706342\pi\)
−0.603785 + 0.797147i \(0.706342\pi\)
\(972\) 0 0
\(973\) −13.4953 −0.432640
\(974\) −9.91613 −0.317733
\(975\) 0 0
\(976\) 7.27492 0.232864
\(977\) 0.199338 0.00637738 0.00318869 0.999995i \(-0.498985\pi\)
0.00318869 + 0.999995i \(0.498985\pi\)
\(978\) 0 0
\(979\) −8.00000 −0.255681
\(980\) 0 0
\(981\) 0 0
\(982\) −18.7490 −0.598305
\(983\) 32.0000 1.02064 0.510321 0.859984i \(-0.329527\pi\)
0.510321 + 0.859984i \(0.329527\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 11.6482 0.370954
\(987\) 0 0
\(988\) 3.94027 0.125357
\(989\) −16.4833 −0.524137
\(990\) 0 0
\(991\) −47.2990 −1.50250 −0.751251 0.660016i \(-0.770549\pi\)
−0.751251 + 0.660016i \(0.770549\pi\)
\(992\) 8.54983 0.271458
\(993\) 0 0
\(994\) −9.09967 −0.288624
\(995\) 0 0
\(996\) 0 0
\(997\) 46.1583 1.46185 0.730924 0.682459i \(-0.239089\pi\)
0.730924 + 0.682459i \(0.239089\pi\)
\(998\) 14.2749 0.451865
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4050.2.a.cb.1.3 4
3.2 odd 2 4050.2.a.ca.1.3 4
5.2 odd 4 810.2.c.g.649.5 yes 8
5.3 odd 4 810.2.c.g.649.1 8
5.4 even 2 4050.2.a.ca.1.2 4
15.2 even 4 810.2.c.g.649.4 yes 8
15.8 even 4 810.2.c.g.649.8 yes 8
15.14 odd 2 inner 4050.2.a.cb.1.2 4
45.2 even 12 810.2.i.g.109.1 8
45.7 odd 12 810.2.i.g.109.4 8
45.13 odd 12 810.2.i.g.379.4 8
45.22 odd 12 810.2.i.i.379.1 8
45.23 even 12 810.2.i.g.379.1 8
45.32 even 12 810.2.i.i.379.4 8
45.38 even 12 810.2.i.i.109.4 8
45.43 odd 12 810.2.i.i.109.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
810.2.c.g.649.1 8 5.3 odd 4
810.2.c.g.649.4 yes 8 15.2 even 4
810.2.c.g.649.5 yes 8 5.2 odd 4
810.2.c.g.649.8 yes 8 15.8 even 4
810.2.i.g.109.1 8 45.2 even 12
810.2.i.g.109.4 8 45.7 odd 12
810.2.i.g.379.1 8 45.23 even 12
810.2.i.g.379.4 8 45.13 odd 12
810.2.i.i.109.1 8 45.43 odd 12
810.2.i.i.109.4 8 45.38 even 12
810.2.i.i.379.1 8 45.22 odd 12
810.2.i.i.379.4 8 45.32 even 12
4050.2.a.ca.1.2 4 5.4 even 2
4050.2.a.ca.1.3 4 3.2 odd 2
4050.2.a.cb.1.2 4 15.14 odd 2 inner
4050.2.a.cb.1.3 4 1.1 even 1 trivial