Defining parameters
Level: | \( N \) | \(=\) | \( 4050 = 2 \cdot 3^{4} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4050.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 54 \) | ||
Sturm bound: | \(1620\) | ||
Trace bound: | \(19\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(13\), \(17\), \(23\), \(41\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4050))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 882 | 76 | 806 |
Cusp forms | 739 | 76 | 663 |
Eisenstein series | 143 | 0 | 143 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(105\) | \(8\) | \(97\) | \(88\) | \(8\) | \(80\) | \(17\) | \(0\) | \(17\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(114\) | \(10\) | \(104\) | \(96\) | \(10\) | \(86\) | \(18\) | \(0\) | \(18\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(114\) | \(10\) | \(104\) | \(96\) | \(10\) | \(86\) | \(18\) | \(0\) | \(18\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(108\) | \(10\) | \(98\) | \(90\) | \(10\) | \(80\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(111\) | \(11\) | \(100\) | \(93\) | \(11\) | \(82\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(108\) | \(8\) | \(100\) | \(90\) | \(8\) | \(82\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(111\) | \(7\) | \(104\) | \(93\) | \(7\) | \(86\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(111\) | \(12\) | \(99\) | \(93\) | \(12\) | \(81\) | \(18\) | \(0\) | \(18\) | |||
Plus space | \(+\) | \(432\) | \(33\) | \(399\) | \(361\) | \(33\) | \(328\) | \(71\) | \(0\) | \(71\) | |||||
Minus space | \(-\) | \(450\) | \(43\) | \(407\) | \(378\) | \(43\) | \(335\) | \(72\) | \(0\) | \(72\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4050))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4050))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4050)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(135))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(162))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(270))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(405))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(450))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(675))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(810))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1350))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2025))\)\(^{\oplus 2}\)