Properties

Label 810.2.i.g.109.4
Level $810$
Weight $2$
Character 810.109
Analytic conductor $6.468$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [810,2,Mod(109,810)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(810, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("810.109"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 810.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,4,0,0,-6,0,0,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.46788256372\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.2702336256.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 109.4
Root \(-1.52274 - 1.63746i\) of defining polynomial
Character \(\chi\) \(=\) 810.109
Dual form 810.2.i.g.379.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(2.17945 - 0.500000i) q^{5} +(1.13746 - 0.656712i) q^{7} -1.00000i q^{8} +(1.63746 - 1.52274i) q^{10} +(-1.31342 - 2.27492i) q^{11} +(-1.50000 - 0.866025i) q^{13} +(0.656712 - 1.13746i) q^{14} +(-0.500000 - 0.866025i) q^{16} -1.27492i q^{17} +2.27492 q^{19} +(0.656712 - 2.13746i) q^{20} +(-2.27492 - 1.31342i) q^{22} +(5.43424 + 3.13746i) q^{23} +(4.50000 - 2.17945i) q^{25} -1.73205 q^{26} -1.31342i q^{28} +(-4.56821 - 7.91238i) q^{29} +(-4.27492 + 7.40437i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(-0.637459 - 1.10411i) q^{34} +(2.15068 - 2.00000i) q^{35} +9.97368i q^{37} +(1.97014 - 1.13746i) q^{38} +(-0.500000 - 2.17945i) q^{40} +(-2.80739 + 4.86254i) q^{41} +(2.27492 - 1.31342i) q^{43} -2.62685 q^{44} +6.27492 q^{46} +(8.89834 - 5.13746i) q^{47} +(-2.63746 + 4.56821i) q^{49} +(2.80739 - 4.13746i) q^{50} +(-1.50000 + 0.866025i) q^{52} -8.27492i q^{53} +(-4.00000 - 4.30136i) q^{55} +(-0.656712 - 1.13746i) q^{56} +(-7.91238 - 4.56821i) q^{58} +(4.12081 - 7.13746i) q^{59} +(-3.63746 - 6.30026i) q^{61} +8.54983i q^{62} -1.00000 q^{64} +(-3.70219 - 1.13746i) q^{65} +(10.5498 + 6.09095i) q^{67} +(-1.10411 - 0.637459i) q^{68} +(0.862541 - 2.80739i) q^{70} -6.92820 q^{71} +4.83507i q^{73} +(4.98684 + 8.63746i) q^{74} +(1.13746 - 1.97014i) q^{76} +(-2.98793 - 1.72508i) q^{77} +(-1.52274 - 1.63746i) q^{80} +5.61478i q^{82} +(-3.46410 + 2.00000i) q^{83} +(-0.637459 - 2.77862i) q^{85} +(1.31342 - 2.27492i) q^{86} +(-2.27492 + 1.31342i) q^{88} +3.04547 q^{89} -2.27492 q^{91} +(5.43424 - 3.13746i) q^{92} +(5.13746 - 8.89834i) q^{94} +(4.95807 - 1.13746i) q^{95} +(-16.5498 + 9.55505i) q^{97} +5.27492i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} - 6 q^{7} - 2 q^{10} - 12 q^{13} - 4 q^{16} - 12 q^{19} + 12 q^{22} + 36 q^{25} - 4 q^{31} + 10 q^{34} - 4 q^{40} - 12 q^{43} + 20 q^{46} - 6 q^{49} - 12 q^{52} - 32 q^{55} - 18 q^{58} - 14 q^{61}+ \cdots - 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 2.17945 0.500000i 0.974679 0.223607i
\(6\) 0 0
\(7\) 1.13746 0.656712i 0.429919 0.248214i −0.269393 0.963030i \(-0.586823\pi\)
0.699312 + 0.714816i \(0.253490\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 1.63746 1.52274i 0.517810 0.481532i
\(11\) −1.31342 2.27492i −0.396012 0.685913i 0.597218 0.802079i \(-0.296273\pi\)
−0.993230 + 0.116166i \(0.962940\pi\)
\(12\) 0 0
\(13\) −1.50000 0.866025i −0.416025 0.240192i 0.277350 0.960769i \(-0.410544\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0.656712 1.13746i 0.175514 0.303999i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.27492i 0.309213i −0.987976 0.154606i \(-0.950589\pi\)
0.987976 0.154606i \(-0.0494109\pi\)
\(18\) 0 0
\(19\) 2.27492 0.521902 0.260951 0.965352i \(-0.415964\pi\)
0.260951 + 0.965352i \(0.415964\pi\)
\(20\) 0.656712 2.13746i 0.146845 0.477950i
\(21\) 0 0
\(22\) −2.27492 1.31342i −0.485014 0.280023i
\(23\) 5.43424 + 3.13746i 1.13312 + 0.654205i 0.944717 0.327887i \(-0.106337\pi\)
0.188400 + 0.982092i \(0.439670\pi\)
\(24\) 0 0
\(25\) 4.50000 2.17945i 0.900000 0.435890i
\(26\) −1.73205 −0.339683
\(27\) 0 0
\(28\) 1.31342i 0.248214i
\(29\) −4.56821 7.91238i −0.848296 1.46929i −0.882728 0.469884i \(-0.844296\pi\)
0.0344323 0.999407i \(-0.489038\pi\)
\(30\) 0 0
\(31\) −4.27492 + 7.40437i −0.767798 + 1.32986i 0.170957 + 0.985279i \(0.445314\pi\)
−0.938755 + 0.344586i \(0.888019\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) −0.637459 1.10411i −0.109323 0.189353i
\(35\) 2.15068 2.00000i 0.363531 0.338062i
\(36\) 0 0
\(37\) 9.97368i 1.63966i 0.572605 + 0.819831i \(0.305933\pi\)
−0.572605 + 0.819831i \(0.694067\pi\)
\(38\) 1.97014 1.13746i 0.319598 0.184520i
\(39\) 0 0
\(40\) −0.500000 2.17945i −0.0790569 0.344601i
\(41\) −2.80739 + 4.86254i −0.438441 + 0.759401i −0.997569 0.0696794i \(-0.977802\pi\)
0.559129 + 0.829081i \(0.311136\pi\)
\(42\) 0 0
\(43\) 2.27492 1.31342i 0.346922 0.200295i −0.316407 0.948624i \(-0.602477\pi\)
0.663329 + 0.748328i \(0.269143\pi\)
\(44\) −2.62685 −0.396012
\(45\) 0 0
\(46\) 6.27492 0.925186
\(47\) 8.89834 5.13746i 1.29796 0.749375i 0.317905 0.948122i \(-0.397021\pi\)
0.980051 + 0.198747i \(0.0636872\pi\)
\(48\) 0 0
\(49\) −2.63746 + 4.56821i −0.376780 + 0.652602i
\(50\) 2.80739 4.13746i 0.397025 0.585125i
\(51\) 0 0
\(52\) −1.50000 + 0.866025i −0.208013 + 0.120096i
\(53\) 8.27492i 1.13665i −0.822805 0.568324i \(-0.807592\pi\)
0.822805 0.568324i \(-0.192408\pi\)
\(54\) 0 0
\(55\) −4.00000 4.30136i −0.539360 0.579995i
\(56\) −0.656712 1.13746i −0.0877568 0.151999i
\(57\) 0 0
\(58\) −7.91238 4.56821i −1.03895 0.599836i
\(59\) 4.12081 7.13746i 0.536484 0.929218i −0.462606 0.886564i \(-0.653085\pi\)
0.999090 0.0426538i \(-0.0135813\pi\)
\(60\) 0 0
\(61\) −3.63746 6.30026i −0.465729 0.806666i 0.533505 0.845797i \(-0.320874\pi\)
−0.999234 + 0.0391307i \(0.987541\pi\)
\(62\) 8.54983i 1.08583i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −3.70219 1.13746i −0.459200 0.141084i
\(66\) 0 0
\(67\) 10.5498 + 6.09095i 1.28887 + 0.744128i 0.978452 0.206473i \(-0.0661986\pi\)
0.310415 + 0.950601i \(0.399532\pi\)
\(68\) −1.10411 0.637459i −0.133893 0.0773032i
\(69\) 0 0
\(70\) 0.862541 2.80739i 0.103093 0.335547i
\(71\) −6.92820 −0.822226 −0.411113 0.911584i \(-0.634860\pi\)
−0.411113 + 0.911584i \(0.634860\pi\)
\(72\) 0 0
\(73\) 4.83507i 0.565902i 0.959134 + 0.282951i \(0.0913134\pi\)
−0.959134 + 0.282951i \(0.908687\pi\)
\(74\) 4.98684 + 8.63746i 0.579708 + 1.00408i
\(75\) 0 0
\(76\) 1.13746 1.97014i 0.130475 0.225990i
\(77\) −2.98793 1.72508i −0.340506 0.196591i
\(78\) 0 0
\(79\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(80\) −1.52274 1.63746i −0.170247 0.183073i
\(81\) 0 0
\(82\) 5.61478i 0.620049i
\(83\) −3.46410 + 2.00000i −0.380235 + 0.219529i −0.677920 0.735135i \(-0.737119\pi\)
0.297686 + 0.954664i \(0.403785\pi\)
\(84\) 0 0
\(85\) −0.637459 2.77862i −0.0691421 0.301383i
\(86\) 1.31342 2.27492i 0.141630 0.245311i
\(87\) 0 0
\(88\) −2.27492 + 1.31342i −0.242507 + 0.140011i
\(89\) 3.04547 0.322820 0.161410 0.986887i \(-0.448396\pi\)
0.161410 + 0.986887i \(0.448396\pi\)
\(90\) 0 0
\(91\) −2.27492 −0.238476
\(92\) 5.43424 3.13746i 0.566558 0.327103i
\(93\) 0 0
\(94\) 5.13746 8.89834i 0.529888 0.917794i
\(95\) 4.95807 1.13746i 0.508687 0.116701i
\(96\) 0 0
\(97\) −16.5498 + 9.55505i −1.68038 + 0.970168i −0.718975 + 0.695036i \(0.755388\pi\)
−0.961406 + 0.275132i \(0.911278\pi\)
\(98\) 5.27492i 0.532847i
\(99\) 0 0
\(100\) 0.362541 4.98684i 0.0362541 0.498684i
\(101\) 4.77753 + 8.27492i 0.475382 + 0.823385i 0.999602 0.0281973i \(-0.00897668\pi\)
−0.524221 + 0.851582i \(0.675643\pi\)
\(102\) 0 0
\(103\) 5.68729 + 3.28356i 0.560386 + 0.323539i 0.753300 0.657677i \(-0.228461\pi\)
−0.192915 + 0.981216i \(0.561794\pi\)
\(104\) −0.866025 + 1.50000i −0.0849208 + 0.147087i
\(105\) 0 0
\(106\) −4.13746 7.16629i −0.401866 0.696051i
\(107\) 12.0000i 1.16008i 0.814587 + 0.580042i \(0.196964\pi\)
−0.814587 + 0.580042i \(0.803036\pi\)
\(108\) 0 0
\(109\) −7.82475 −0.749475 −0.374738 0.927131i \(-0.622267\pi\)
−0.374738 + 0.927131i \(0.622267\pi\)
\(110\) −5.61478 1.72508i −0.535348 0.164480i
\(111\) 0 0
\(112\) −1.13746 0.656712i −0.107480 0.0620535i
\(113\) 0.627940 + 0.362541i 0.0590716 + 0.0341050i 0.529245 0.848469i \(-0.322475\pi\)
−0.470173 + 0.882574i \(0.655809\pi\)
\(114\) 0 0
\(115\) 13.4124 + 4.12081i 1.25071 + 0.384268i
\(116\) −9.13642 −0.848296
\(117\) 0 0
\(118\) 8.24163i 0.758703i
\(119\) −0.837253 1.45017i −0.0767509 0.132936i
\(120\) 0 0
\(121\) 2.04983 3.55042i 0.186349 0.322765i
\(122\) −6.30026 3.63746i −0.570399 0.329320i
\(123\) 0 0
\(124\) 4.27492 + 7.40437i 0.383899 + 0.664932i
\(125\) 8.71780 7.00000i 0.779744 0.626099i
\(126\) 0 0
\(127\) 22.0980i 1.96088i 0.196810 + 0.980442i \(0.436942\pi\)
−0.196810 + 0.980442i \(0.563058\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −3.77492 + 0.866025i −0.331082 + 0.0759555i
\(131\) −8.89834 + 15.4124i −0.777452 + 1.34659i 0.155955 + 0.987764i \(0.450155\pi\)
−0.933406 + 0.358821i \(0.883179\pi\)
\(132\) 0 0
\(133\) 2.58762 1.49397i 0.224375 0.129543i
\(134\) 12.1819 1.05236
\(135\) 0 0
\(136\) −1.27492 −0.109323
\(137\) −3.31233 + 1.91238i −0.282992 + 0.163385i −0.634777 0.772695i \(-0.718908\pi\)
0.351785 + 0.936081i \(0.385575\pi\)
\(138\) 0 0
\(139\) −5.13746 + 8.89834i −0.435754 + 0.754747i −0.997357 0.0726594i \(-0.976851\pi\)
0.561603 + 0.827407i \(0.310185\pi\)
\(140\) −0.656712 2.86254i −0.0555023 0.241929i
\(141\) 0 0
\(142\) −6.00000 + 3.46410i −0.503509 + 0.290701i
\(143\) 4.54983i 0.380476i
\(144\) 0 0
\(145\) −13.9124 14.9605i −1.15536 1.24240i
\(146\) 2.41753 + 4.18729i 0.200077 + 0.346543i
\(147\) 0 0
\(148\) 8.63746 + 4.98684i 0.709995 + 0.409916i
\(149\) −0.685484 + 1.18729i −0.0561570 + 0.0972668i −0.892737 0.450578i \(-0.851218\pi\)
0.836580 + 0.547844i \(0.184551\pi\)
\(150\) 0 0
\(151\) 8.54983 + 14.8087i 0.695776 + 1.20512i 0.969919 + 0.243430i \(0.0782726\pi\)
−0.274143 + 0.961689i \(0.588394\pi\)
\(152\) 2.27492i 0.184520i
\(153\) 0 0
\(154\) −3.45017 −0.278022
\(155\) −5.61478 + 18.2749i −0.450990 + 1.46788i
\(156\) 0 0
\(157\) 5.22508 + 3.01670i 0.417007 + 0.240759i 0.693796 0.720172i \(-0.255937\pi\)
−0.276789 + 0.960931i \(0.589270\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −2.13746 0.656712i −0.168981 0.0519176i
\(161\) 8.24163 0.649531
\(162\) 0 0
\(163\) 24.3638i 1.90832i −0.299297 0.954160i \(-0.596752\pi\)
0.299297 0.954160i \(-0.403248\pi\)
\(164\) 2.80739 + 4.86254i 0.219220 + 0.379701i
\(165\) 0 0
\(166\) −2.00000 + 3.46410i −0.155230 + 0.268866i
\(167\) −18.2728 10.5498i −1.41400 0.816371i −0.418234 0.908339i \(-0.637351\pi\)
−0.995762 + 0.0919688i \(0.970684\pi\)
\(168\) 0 0
\(169\) −5.00000 8.66025i −0.384615 0.666173i
\(170\) −1.94136 2.08762i −0.148896 0.160113i
\(171\) 0 0
\(172\) 2.62685i 0.200295i
\(173\) −17.4068 + 10.0498i −1.32342 + 0.764075i −0.984272 0.176660i \(-0.943471\pi\)
−0.339144 + 0.940734i \(0.610137\pi\)
\(174\) 0 0
\(175\) 3.68729 5.43424i 0.278733 0.410790i
\(176\) −1.31342 + 2.27492i −0.0990031 + 0.171478i
\(177\) 0 0
\(178\) 2.63746 1.52274i 0.197686 0.114134i
\(179\) −1.31342 −0.0981699 −0.0490850 0.998795i \(-0.515631\pi\)
−0.0490850 + 0.998795i \(0.515631\pi\)
\(180\) 0 0
\(181\) 6.54983 0.486845 0.243423 0.969920i \(-0.421730\pi\)
0.243423 + 0.969920i \(0.421730\pi\)
\(182\) −1.97014 + 1.13746i −0.146036 + 0.0843140i
\(183\) 0 0
\(184\) 3.13746 5.43424i 0.231297 0.400617i
\(185\) 4.98684 + 21.7371i 0.366640 + 1.59815i
\(186\) 0 0
\(187\) −2.90033 + 1.67451i −0.212093 + 0.122452i
\(188\) 10.2749i 0.749375i
\(189\) 0 0
\(190\) 3.72508 3.46410i 0.270246 0.251312i
\(191\) 7.40437 + 12.8248i 0.535762 + 0.927966i 0.999126 + 0.0417986i \(0.0133088\pi\)
−0.463364 + 0.886168i \(0.653358\pi\)
\(192\) 0 0
\(193\) −7.18729 4.14959i −0.517353 0.298694i 0.218498 0.975837i \(-0.429884\pi\)
−0.735851 + 0.677144i \(0.763218\pi\)
\(194\) −9.55505 + 16.5498i −0.686013 + 1.18821i
\(195\) 0 0
\(196\) 2.63746 + 4.56821i 0.188390 + 0.326301i
\(197\) 11.0000i 0.783718i 0.920025 + 0.391859i \(0.128168\pi\)
−0.920025 + 0.391859i \(0.871832\pi\)
\(198\) 0 0
\(199\) 7.45017 0.528128 0.264064 0.964505i \(-0.414937\pi\)
0.264064 + 0.964505i \(0.414937\pi\)
\(200\) −2.17945 4.50000i −0.154110 0.318198i
\(201\) 0 0
\(202\) 8.27492 + 4.77753i 0.582221 + 0.336146i
\(203\) −10.3923 6.00000i −0.729397 0.421117i
\(204\) 0 0
\(205\) −3.68729 + 12.0014i −0.257532 + 0.838211i
\(206\) 6.56712 0.457553
\(207\) 0 0
\(208\) 1.73205i 0.120096i
\(209\) −2.98793 5.17525i −0.206680 0.357979i
\(210\) 0 0
\(211\) 4.86254 8.42217i 0.334751 0.579806i −0.648686 0.761056i \(-0.724681\pi\)
0.983437 + 0.181250i \(0.0580144\pi\)
\(212\) −7.16629 4.13746i −0.492183 0.284162i
\(213\) 0 0
\(214\) 6.00000 + 10.3923i 0.410152 + 0.710403i
\(215\) 4.30136 4.00000i 0.293350 0.272798i
\(216\) 0 0
\(217\) 11.2296i 0.762312i
\(218\) −6.77643 + 3.91238i −0.458958 + 0.264980i
\(219\) 0 0
\(220\) −5.72508 + 1.31342i −0.385985 + 0.0885510i
\(221\) −1.10411 + 1.91238i −0.0742705 + 0.128640i
\(222\) 0 0
\(223\) 14.2749 8.24163i 0.955919 0.551900i 0.0610045 0.998137i \(-0.480570\pi\)
0.894915 + 0.446237i \(0.147236\pi\)
\(224\) −1.31342 −0.0877568
\(225\) 0 0
\(226\) 0.725083 0.0482318
\(227\) −0.476171 + 0.274917i −0.0316046 + 0.0182469i −0.515719 0.856758i \(-0.672475\pi\)
0.484114 + 0.875005i \(0.339142\pi\)
\(228\) 0 0
\(229\) 11.1873 19.3770i 0.739277 1.28047i −0.213544 0.976933i \(-0.568501\pi\)
0.952821 0.303532i \(-0.0981660\pi\)
\(230\) 13.6759 3.13746i 0.901760 0.206878i
\(231\) 0 0
\(232\) −7.91238 + 4.56821i −0.519473 + 0.299918i
\(233\) 0.175248i 0.0114809i 0.999984 + 0.00574045i \(0.00182725\pi\)
−0.999984 + 0.00574045i \(0.998173\pi\)
\(234\) 0 0
\(235\) 16.8248 15.6460i 1.09753 1.02063i
\(236\) −4.12081 7.13746i −0.268242 0.464609i
\(237\) 0 0
\(238\) −1.45017 0.837253i −0.0940003 0.0542711i
\(239\) 4.77753 8.27492i 0.309032 0.535260i −0.669119 0.743156i \(-0.733328\pi\)
0.978151 + 0.207896i \(0.0666615\pi\)
\(240\) 0 0
\(241\) −6.91238 11.9726i −0.445265 0.771222i 0.552805 0.833310i \(-0.313557\pi\)
−0.998071 + 0.0620883i \(0.980224\pi\)
\(242\) 4.09967i 0.263537i
\(243\) 0 0
\(244\) −7.27492 −0.465729
\(245\) −3.46410 + 11.2749i −0.221313 + 0.720328i
\(246\) 0 0
\(247\) −3.41238 1.97014i −0.217124 0.125357i
\(248\) 7.40437 + 4.27492i 0.470178 + 0.271458i
\(249\) 0 0
\(250\) 4.04983 10.4211i 0.256134 0.659087i
\(251\) −2.98793 −0.188597 −0.0942983 0.995544i \(-0.530061\pi\)
−0.0942983 + 0.995544i \(0.530061\pi\)
\(252\) 0 0
\(253\) 16.4833i 1.03629i
\(254\) 11.0490 + 19.1375i 0.693277 + 1.20079i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −0.627940 0.362541i −0.0391698 0.0226147i 0.480287 0.877111i \(-0.340532\pi\)
−0.519457 + 0.854497i \(0.673866\pi\)
\(258\) 0 0
\(259\) 6.54983 + 11.3446i 0.406987 + 0.704922i
\(260\) −2.83616 + 2.63746i −0.175891 + 0.163568i
\(261\) 0 0
\(262\) 17.7967i 1.09948i
\(263\) 16.7789 9.68729i 1.03463 0.597344i 0.116323 0.993211i \(-0.462889\pi\)
0.918308 + 0.395867i \(0.129556\pi\)
\(264\) 0 0
\(265\) −4.13746 18.0348i −0.254162 1.10787i
\(266\) 1.49397 2.58762i 0.0916009 0.158657i
\(267\) 0 0
\(268\) 10.5498 6.09095i 0.644434 0.372064i
\(269\) −11.6482 −0.710202 −0.355101 0.934828i \(-0.615554\pi\)
−0.355101 + 0.934828i \(0.615554\pi\)
\(270\) 0 0
\(271\) −12.5498 −0.762348 −0.381174 0.924503i \(-0.624480\pi\)
−0.381174 + 0.924503i \(0.624480\pi\)
\(272\) −1.10411 + 0.637459i −0.0669465 + 0.0386516i
\(273\) 0 0
\(274\) −1.91238 + 3.31233i −0.115531 + 0.200105i
\(275\) −10.8685 7.37459i −0.655394 0.444704i
\(276\) 0 0
\(277\) −17.6873 + 10.2118i −1.06273 + 0.613565i −0.926185 0.377069i \(-0.876932\pi\)
−0.136541 + 0.990634i \(0.543599\pi\)
\(278\) 10.2749i 0.616249i
\(279\) 0 0
\(280\) −2.00000 2.15068i −0.119523 0.128528i
\(281\) −1.34220 2.32475i −0.0800687 0.138683i 0.823211 0.567736i \(-0.192181\pi\)
−0.903279 + 0.429053i \(0.858847\pi\)
\(282\) 0 0
\(283\) 8.27492 + 4.77753i 0.491893 + 0.283994i 0.725359 0.688370i \(-0.241674\pi\)
−0.233467 + 0.972365i \(0.575007\pi\)
\(284\) −3.46410 + 6.00000i −0.205557 + 0.356034i
\(285\) 0 0
\(286\) 2.27492 + 3.94027i 0.134519 + 0.232993i
\(287\) 7.37459i 0.435308i
\(288\) 0 0
\(289\) 15.3746 0.904387
\(290\) −19.5287 6.00000i −1.14677 0.352332i
\(291\) 0 0
\(292\) 4.18729 + 2.41753i 0.245043 + 0.141476i
\(293\) 12.9904 + 7.50000i 0.758906 + 0.438155i 0.828903 0.559393i \(-0.188966\pi\)
−0.0699967 + 0.997547i \(0.522299\pi\)
\(294\) 0 0
\(295\) 5.41238 17.6161i 0.315121 1.02565i
\(296\) 9.97368 0.579708
\(297\) 0 0
\(298\) 1.37097i 0.0794180i
\(299\) −5.43424 9.41238i −0.314270 0.544332i
\(300\) 0 0
\(301\) 1.72508 2.98793i 0.0994321 0.172221i
\(302\) 14.8087 + 8.54983i 0.852148 + 0.491988i
\(303\) 0 0
\(304\) −1.13746 1.97014i −0.0652377 0.112995i
\(305\) −11.0778 11.9124i −0.634312 0.682101i
\(306\) 0 0
\(307\) 0.952341i 0.0543530i −0.999631 0.0271765i \(-0.991348\pi\)
0.999631 0.0271765i \(-0.00865161\pi\)
\(308\) −2.98793 + 1.72508i −0.170253 + 0.0982957i
\(309\) 0 0
\(310\) 4.27492 + 18.6339i 0.242799 + 1.05834i
\(311\) 10.8685 18.8248i 0.616295 1.06745i −0.373861 0.927485i \(-0.621966\pi\)
0.990156 0.139969i \(-0.0447003\pi\)
\(312\) 0 0
\(313\) −15.4622 + 8.92711i −0.873976 + 0.504590i −0.868667 0.495396i \(-0.835023\pi\)
−0.00530840 + 0.999986i \(0.501690\pi\)
\(314\) 6.03341 0.340485
\(315\) 0 0
\(316\) 0 0
\(317\) 19.1389 11.0498i 1.07495 0.620621i 0.145418 0.989370i \(-0.453547\pi\)
0.929529 + 0.368750i \(0.120214\pi\)
\(318\) 0 0
\(319\) −12.0000 + 20.7846i −0.671871 + 1.16371i
\(320\) −2.17945 + 0.500000i −0.121835 + 0.0279508i
\(321\) 0 0
\(322\) 7.13746 4.12081i 0.397755 0.229644i
\(323\) 2.90033i 0.161379i
\(324\) 0 0
\(325\) −8.63746 0.627940i −0.479120 0.0348319i
\(326\) −12.1819 21.0997i −0.674693 1.16860i
\(327\) 0 0
\(328\) 4.86254 + 2.80739i 0.268489 + 0.155012i
\(329\) 6.74766 11.6873i 0.372011 0.644341i
\(330\) 0 0
\(331\) 10.0000 + 17.3205i 0.549650 + 0.952021i 0.998298 + 0.0583130i \(0.0185721\pi\)
−0.448649 + 0.893708i \(0.648095\pi\)
\(332\) 4.00000i 0.219529i
\(333\) 0 0
\(334\) −21.0997 −1.15452
\(335\) 26.0383 + 8.00000i 1.42262 + 0.437087i
\(336\) 0 0
\(337\) −4.54983 2.62685i −0.247845 0.143094i 0.370932 0.928660i \(-0.379038\pi\)
−0.618777 + 0.785567i \(0.712372\pi\)
\(338\) −8.66025 5.00000i −0.471056 0.271964i
\(339\) 0 0
\(340\) −2.72508 0.837253i −0.147788 0.0454064i
\(341\) 22.4591 1.21623
\(342\) 0 0
\(343\) 16.1222i 0.870515i
\(344\) −1.31342 2.27492i −0.0708151 0.122655i
\(345\) 0 0
\(346\) −10.0498 + 17.4068i −0.540282 + 0.935797i
\(347\) −6.45203 3.72508i −0.346363 0.199973i 0.316719 0.948519i \(-0.397419\pi\)
−0.663082 + 0.748546i \(0.730752\pi\)
\(348\) 0 0
\(349\) −16.0997 27.8854i −0.861796 1.49267i −0.870194 0.492709i \(-0.836007\pi\)
0.00839869 0.999965i \(-0.497327\pi\)
\(350\) 0.476171 6.54983i 0.0254524 0.350103i
\(351\) 0 0
\(352\) 2.62685i 0.140011i
\(353\) 12.6005 7.27492i 0.670658 0.387205i −0.125668 0.992072i \(-0.540107\pi\)
0.796326 + 0.604868i \(0.206774\pi\)
\(354\) 0 0
\(355\) −15.0997 + 3.46410i −0.801407 + 0.183855i
\(356\) 1.52274 2.63746i 0.0807049 0.139785i
\(357\) 0 0
\(358\) −1.13746 + 0.656712i −0.0601166 + 0.0347083i
\(359\) −21.7370 −1.14723 −0.573616 0.819124i \(-0.694460\pi\)
−0.573616 + 0.819124i \(0.694460\pi\)
\(360\) 0 0
\(361\) −13.8248 −0.727619
\(362\) 5.67232 3.27492i 0.298131 0.172126i
\(363\) 0 0
\(364\) −1.13746 + 1.97014i −0.0596190 + 0.103263i
\(365\) 2.41753 + 10.5378i 0.126540 + 0.551573i
\(366\) 0 0
\(367\) −2.27492 + 1.31342i −0.118750 + 0.0685602i −0.558198 0.829708i \(-0.688507\pi\)
0.439449 + 0.898268i \(0.355174\pi\)
\(368\) 6.27492i 0.327103i
\(369\) 0 0
\(370\) 15.1873 + 16.3315i 0.789550 + 0.849033i
\(371\) −5.43424 9.41238i −0.282132 0.488666i
\(372\) 0 0
\(373\) −19.6495 11.3446i −1.01741 0.587404i −0.104059 0.994571i \(-0.533183\pi\)
−0.913353 + 0.407168i \(0.866516\pi\)
\(374\) −1.67451 + 2.90033i −0.0865867 + 0.149973i
\(375\) 0 0
\(376\) −5.13746 8.89834i −0.264944 0.458897i
\(377\) 15.8248i 0.815016i
\(378\) 0 0
\(379\) 27.3746 1.40614 0.703069 0.711122i \(-0.251812\pi\)
0.703069 + 0.711122i \(0.251812\pi\)
\(380\) 1.49397 4.86254i 0.0766388 0.249443i
\(381\) 0 0
\(382\) 12.8248 + 7.40437i 0.656171 + 0.378841i
\(383\) −2.92248 1.68729i −0.149332 0.0862166i 0.423472 0.905909i \(-0.360811\pi\)
−0.572804 + 0.819692i \(0.694144\pi\)
\(384\) 0 0
\(385\) −7.37459 2.26577i −0.375844 0.115474i
\(386\) −8.29917 −0.422417
\(387\) 0 0
\(388\) 19.1101i 0.970168i
\(389\) −16.9594 29.3746i −0.859877 1.48935i −0.872046 0.489425i \(-0.837207\pi\)
0.0121686 0.999926i \(-0.496127\pi\)
\(390\) 0 0
\(391\) 4.00000 6.92820i 0.202289 0.350374i
\(392\) 4.56821 + 2.63746i 0.230730 + 0.133212i
\(393\) 0 0
\(394\) 5.50000 + 9.52628i 0.277086 + 0.479927i
\(395\) 0 0
\(396\) 0 0
\(397\) 14.3901i 0.722219i 0.932523 + 0.361110i \(0.117602\pi\)
−0.932523 + 0.361110i \(0.882398\pi\)
\(398\) 6.45203 3.72508i 0.323411 0.186722i
\(399\) 0 0
\(400\) −4.13746 2.80739i −0.206873 0.140369i
\(401\) 10.8397 18.7749i 0.541309 0.937575i −0.457520 0.889199i \(-0.651262\pi\)
0.998829 0.0483754i \(-0.0154044\pi\)
\(402\) 0 0
\(403\) 12.8248 7.40437i 0.638846 0.368838i
\(404\) 9.55505 0.475382
\(405\) 0 0
\(406\) −12.0000 −0.595550
\(407\) 22.6893 13.0997i 1.12467 0.649326i
\(408\) 0 0
\(409\) −8.04983 + 13.9427i −0.398039 + 0.689423i −0.993484 0.113973i \(-0.963642\pi\)
0.595445 + 0.803396i \(0.296976\pi\)
\(410\) 2.80739 + 12.2371i 0.138647 + 0.604349i
\(411\) 0 0
\(412\) 5.68729 3.28356i 0.280193 0.161769i
\(413\) 10.8248i 0.532651i
\(414\) 0 0
\(415\) −6.54983 + 6.09095i −0.321519 + 0.298993i
\(416\) 0.866025 + 1.50000i 0.0424604 + 0.0735436i
\(417\) 0 0
\(418\) −5.17525 2.98793i −0.253130 0.146144i
\(419\) 8.24163 14.2749i 0.402630 0.697375i −0.591413 0.806369i \(-0.701430\pi\)
0.994042 + 0.108994i \(0.0347629\pi\)
\(420\) 0 0
\(421\) −4.63746 8.03231i −0.226016 0.391471i 0.730608 0.682797i \(-0.239237\pi\)
−0.956624 + 0.291326i \(0.905903\pi\)
\(422\) 9.72508i 0.473410i
\(423\) 0 0
\(424\) −8.27492 −0.401866
\(425\) −2.77862 5.73713i −0.134783 0.278292i
\(426\) 0 0
\(427\) −8.27492 4.77753i −0.400451 0.231201i
\(428\) 10.3923 + 6.00000i 0.502331 + 0.290021i
\(429\) 0 0
\(430\) 1.72508 5.61478i 0.0831909 0.270769i
\(431\) −33.9189 −1.63381 −0.816907 0.576770i \(-0.804313\pi\)
−0.816907 + 0.576770i \(0.804313\pi\)
\(432\) 0 0
\(433\) 10.8109i 0.519540i 0.965670 + 0.259770i \(0.0836468\pi\)
−0.965670 + 0.259770i \(0.916353\pi\)
\(434\) 5.61478 + 9.72508i 0.269518 + 0.466819i
\(435\) 0 0
\(436\) −3.91238 + 6.77643i −0.187369 + 0.324532i
\(437\) 12.3624 + 7.13746i 0.591376 + 0.341431i
\(438\) 0 0
\(439\) −18.0000 31.1769i −0.859093 1.48799i −0.872795 0.488087i \(-0.837695\pi\)
0.0137020 0.999906i \(-0.495638\pi\)
\(440\) −4.30136 + 4.00000i −0.205059 + 0.190693i
\(441\) 0 0
\(442\) 2.20822i 0.105034i
\(443\) −6.45203 + 3.72508i −0.306545 + 0.176984i −0.645380 0.763862i \(-0.723301\pi\)
0.338834 + 0.940846i \(0.389967\pi\)
\(444\) 0 0
\(445\) 6.63746 1.52274i 0.314646 0.0721847i
\(446\) 8.24163 14.2749i 0.390252 0.675937i
\(447\) 0 0
\(448\) −1.13746 + 0.656712i −0.0537399 + 0.0310267i
\(449\) −10.8685 −0.512915 −0.256458 0.966555i \(-0.582555\pi\)
−0.256458 + 0.966555i \(0.582555\pi\)
\(450\) 0 0
\(451\) 14.7492 0.694511
\(452\) 0.627940 0.362541i 0.0295358 0.0170525i
\(453\) 0 0
\(454\) −0.274917 + 0.476171i −0.0129025 + 0.0223478i
\(455\) −4.95807 + 1.13746i −0.232438 + 0.0533249i
\(456\) 0 0
\(457\) 13.8127 7.97477i 0.646131 0.373044i −0.140841 0.990032i \(-0.544981\pi\)
0.786972 + 0.616988i \(0.211647\pi\)
\(458\) 22.3746i 1.04550i
\(459\) 0 0
\(460\) 10.2749 9.55505i 0.479070 0.445507i
\(461\) 3.46410 + 6.00000i 0.161339 + 0.279448i 0.935349 0.353726i \(-0.115085\pi\)
−0.774010 + 0.633173i \(0.781752\pi\)
\(462\) 0 0
\(463\) −14.5876 8.42217i −0.677944 0.391411i 0.121136 0.992636i \(-0.461346\pi\)
−0.799080 + 0.601225i \(0.794680\pi\)
\(464\) −4.56821 + 7.91238i −0.212074 + 0.367323i
\(465\) 0 0
\(466\) 0.0876242 + 0.151770i 0.00405911 + 0.00703059i
\(467\) 13.6495i 0.631624i −0.948822 0.315812i \(-0.897723\pi\)
0.948822 0.315812i \(-0.102277\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 6.74766 21.9622i 0.311246 1.01304i
\(471\) 0 0
\(472\) −7.13746 4.12081i −0.328528 0.189676i
\(473\) −5.97586 3.45017i −0.274770 0.158639i
\(474\) 0 0
\(475\) 10.2371 4.95807i 0.469712 0.227492i
\(476\) −1.67451 −0.0767509
\(477\) 0 0
\(478\) 9.55505i 0.437038i
\(479\) 0.837253 + 1.45017i 0.0382551 + 0.0662598i 0.884519 0.466504i \(-0.154487\pi\)
−0.846264 + 0.532764i \(0.821153\pi\)
\(480\) 0 0
\(481\) 8.63746 14.9605i 0.393834 0.682141i
\(482\) −11.9726 6.91238i −0.545336 0.314850i
\(483\) 0 0
\(484\) −2.04983 3.55042i −0.0931743 0.161383i
\(485\) −31.2920 + 29.0997i −1.42090 + 1.32135i
\(486\) 0 0
\(487\) 9.91613i 0.449343i −0.974435 0.224671i \(-0.927869\pi\)
0.974435 0.224671i \(-0.0721309\pi\)
\(488\) −6.30026 + 3.63746i −0.285200 + 0.164660i
\(489\) 0 0
\(490\) 2.63746 + 11.4964i 0.119148 + 0.519355i
\(491\) 9.37451 16.2371i 0.423066 0.732771i −0.573172 0.819435i \(-0.694287\pi\)
0.996238 + 0.0866638i \(0.0276206\pi\)
\(492\) 0 0
\(493\) −10.0876 + 5.82409i −0.454324 + 0.262304i
\(494\) −3.94027 −0.177281
\(495\) 0 0
\(496\) 8.54983 0.383899
\(497\) −7.88054 + 4.54983i −0.353491 + 0.204088i
\(498\) 0 0
\(499\) 7.13746 12.3624i 0.319517 0.553419i −0.660871 0.750500i \(-0.729813\pi\)
0.980387 + 0.197081i \(0.0631462\pi\)
\(500\) −1.70328 11.0498i −0.0761729 0.494164i
\(501\) 0 0
\(502\) −2.58762 + 1.49397i −0.115491 + 0.0666789i
\(503\) 33.0997i 1.47584i 0.674887 + 0.737921i \(0.264192\pi\)
−0.674887 + 0.737921i \(0.735808\pi\)
\(504\) 0 0
\(505\) 14.5498 + 15.6460i 0.647459 + 0.696238i
\(506\) −8.24163 14.2749i −0.366385 0.634597i
\(507\) 0 0
\(508\) 19.1375 + 11.0490i 0.849087 + 0.490221i
\(509\) −3.46410 + 6.00000i −0.153544 + 0.265945i −0.932528 0.361098i \(-0.882402\pi\)
0.778984 + 0.627044i \(0.215735\pi\)
\(510\) 0 0
\(511\) 3.17525 + 5.49969i 0.140465 + 0.243292i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −0.725083 −0.0319820
\(515\) 14.0369 + 4.31271i 0.618542 + 0.190041i
\(516\) 0 0
\(517\) −23.3746 13.4953i −1.02801 0.593524i
\(518\) 11.3446 + 6.54983i 0.498455 + 0.287783i
\(519\) 0 0
\(520\) −1.13746 + 3.70219i −0.0498809 + 0.162352i
\(521\) 43.8350 1.92045 0.960223 0.279235i \(-0.0900809\pi\)
0.960223 + 0.279235i \(0.0900809\pi\)
\(522\) 0 0
\(523\) 10.5074i 0.459456i −0.973255 0.229728i \(-0.926216\pi\)
0.973255 0.229728i \(-0.0737837\pi\)
\(524\) 8.89834 + 15.4124i 0.388726 + 0.673293i
\(525\) 0 0
\(526\) 9.68729 16.7789i 0.422386 0.731594i
\(527\) 9.43996 + 5.45017i 0.411211 + 0.237413i
\(528\) 0 0
\(529\) 8.18729 + 14.1808i 0.355969 + 0.616557i
\(530\) −12.6005 13.5498i −0.547332 0.588567i
\(531\) 0 0
\(532\) 2.98793i 0.129543i
\(533\) 8.42217 4.86254i 0.364805 0.210620i
\(534\) 0 0
\(535\) 6.00000 + 26.1534i 0.259403 + 1.13071i
\(536\) 6.09095 10.5498i 0.263089 0.455683i
\(537\) 0 0
\(538\) −10.0876 + 5.82409i −0.434908 + 0.251094i
\(539\) 13.8564 0.596838
\(540\) 0 0
\(541\) 10.7251 0.461107 0.230554 0.973060i \(-0.425946\pi\)
0.230554 + 0.973060i \(0.425946\pi\)
\(542\) −10.8685 + 6.27492i −0.466841 + 0.269531i
\(543\) 0 0
\(544\) −0.637459 + 1.10411i −0.0273308 + 0.0473384i
\(545\) −17.0537 + 3.91238i −0.730498 + 0.167588i
\(546\) 0 0
\(547\) 29.3746 16.9594i 1.25597 0.725133i 0.283679 0.958919i \(-0.408445\pi\)
0.972288 + 0.233787i \(0.0751118\pi\)
\(548\) 3.82475i 0.163385i
\(549\) 0 0
\(550\) −13.0997 0.952341i −0.558572 0.0406080i
\(551\) −10.3923 18.0000i −0.442727 0.766826i
\(552\) 0 0
\(553\) 0 0
\(554\) −10.2118 + 17.6873i −0.433856 + 0.751461i
\(555\) 0 0
\(556\) 5.13746 + 8.89834i 0.217877 + 0.377374i
\(557\) 45.1993i 1.91516i −0.288172 0.957579i \(-0.593047\pi\)
0.288172 0.957579i \(-0.406953\pi\)
\(558\) 0 0
\(559\) −4.54983 −0.192437
\(560\) −2.80739 0.862541i −0.118634 0.0364490i
\(561\) 0 0
\(562\) −2.32475 1.34220i −0.0980637 0.0566171i
\(563\) 25.2011 + 14.5498i 1.06210 + 0.613202i 0.926012 0.377495i \(-0.123214\pi\)
0.136086 + 0.990697i \(0.456548\pi\)
\(564\) 0 0
\(565\) 1.54983 + 0.476171i 0.0652020 + 0.0200326i
\(566\) 9.55505 0.401629
\(567\) 0 0
\(568\) 6.92820i 0.290701i
\(569\) −6.48080 11.2251i −0.271689 0.470580i 0.697605 0.716482i \(-0.254249\pi\)
−0.969295 + 0.245903i \(0.920916\pi\)
\(570\) 0 0
\(571\) 8.54983 14.8087i 0.357799 0.619727i −0.629793 0.776763i \(-0.716860\pi\)
0.987593 + 0.157036i \(0.0501938\pi\)
\(572\) 3.94027 + 2.27492i 0.164751 + 0.0951191i
\(573\) 0 0
\(574\) 3.68729 + 6.38658i 0.153905 + 0.266571i
\(575\) 31.2920 + 2.27492i 1.30497 + 0.0948706i
\(576\) 0 0
\(577\) 29.0838i 1.21077i −0.795931 0.605387i \(-0.793018\pi\)
0.795931 0.605387i \(-0.206982\pi\)
\(578\) 13.3148 7.68729i 0.553822 0.319749i
\(579\) 0 0
\(580\) −19.9124 + 4.56821i −0.826816 + 0.189685i
\(581\) −2.62685 + 4.54983i −0.108980 + 0.188759i
\(582\) 0 0
\(583\) −18.8248 + 10.8685i −0.779642 + 0.450126i
\(584\) 4.83507 0.200077
\(585\) 0 0
\(586\) 15.0000 0.619644
\(587\) −28.6652 + 16.5498i −1.18314 + 0.683085i −0.956738 0.290950i \(-0.906029\pi\)
−0.226399 + 0.974035i \(0.572695\pi\)
\(588\) 0 0
\(589\) −9.72508 + 16.8443i −0.400715 + 0.694059i
\(590\) −4.12081 17.9622i −0.169651 0.739492i
\(591\) 0 0
\(592\) 8.63746 4.98684i 0.354997 0.204958i
\(593\) 20.1752i 0.828498i −0.910164 0.414249i \(-0.864044\pi\)
0.910164 0.414249i \(-0.135956\pi\)
\(594\) 0 0
\(595\) −2.54983 2.74194i −0.104533 0.112408i
\(596\) 0.685484 + 1.18729i 0.0280785 + 0.0486334i
\(597\) 0 0
\(598\) −9.41238 5.43424i −0.384901 0.222223i
\(599\) 3.46410 6.00000i 0.141539 0.245153i −0.786537 0.617543i \(-0.788128\pi\)
0.928076 + 0.372390i \(0.121461\pi\)
\(600\) 0 0
\(601\) −0.225083 0.389855i −0.00918132 0.0159025i 0.861398 0.507930i \(-0.169589\pi\)
−0.870580 + 0.492028i \(0.836256\pi\)
\(602\) 3.45017i 0.140618i
\(603\) 0 0
\(604\) 17.0997 0.695776
\(605\) 2.69230 8.76287i 0.109458 0.356261i
\(606\) 0 0
\(607\) 29.3746 + 16.9594i 1.19228 + 0.688362i 0.958823 0.284006i \(-0.0916635\pi\)
0.233455 + 0.972368i \(0.424997\pi\)
\(608\) −1.97014 1.13746i −0.0798996 0.0461300i
\(609\) 0 0
\(610\) −15.5498 4.77753i −0.629594 0.193436i
\(611\) −17.7967 −0.719977
\(612\) 0 0
\(613\) 12.5430i 0.506606i 0.967387 + 0.253303i \(0.0815170\pi\)
−0.967387 + 0.253303i \(0.918483\pi\)
\(614\) −0.476171 0.824752i −0.0192167 0.0332843i
\(615\) 0 0
\(616\) −1.72508 + 2.98793i −0.0695056 + 0.120387i
\(617\) −6.77643 3.91238i −0.272809 0.157506i 0.357355 0.933969i \(-0.383679\pi\)
−0.630163 + 0.776462i \(0.717012\pi\)
\(618\) 0 0
\(619\) 11.1375 + 19.2906i 0.447652 + 0.775356i 0.998233 0.0594256i \(-0.0189269\pi\)
−0.550580 + 0.834782i \(0.685594\pi\)
\(620\) 13.0192 + 14.0000i 0.522862 + 0.562254i
\(621\) 0 0
\(622\) 21.7370i 0.871572i
\(623\) 3.46410 2.00000i 0.138786 0.0801283i
\(624\) 0 0
\(625\) 15.5000 19.6150i 0.620000 0.784602i
\(626\) −8.92711 + 15.4622i −0.356799 + 0.617994i
\(627\) 0 0
\(628\) 5.22508 3.01670i 0.208504 0.120380i
\(629\) 12.7156 0.507005
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 11.0498 19.1389i 0.438845 0.760102i
\(635\) 11.0490 + 48.1615i 0.438467 + 1.91123i
\(636\) 0 0
\(637\) 7.91238 4.56821i 0.313500 0.180999i
\(638\) 24.0000i 0.950169i
\(639\) 0 0
\(640\) −1.63746 + 1.52274i −0.0647262 + 0.0601915i
\(641\) 15.3791 + 26.6375i 0.607440 + 1.05212i 0.991661 + 0.128875i \(0.0411367\pi\)
−0.384221 + 0.923241i \(0.625530\pi\)
\(642\) 0 0
\(643\) −0.824752 0.476171i −0.0325250 0.0187783i 0.483649 0.875262i \(-0.339311\pi\)
−0.516174 + 0.856484i \(0.672644\pi\)
\(644\) 4.12081 7.13746i 0.162383 0.281255i
\(645\) 0 0
\(646\) −1.45017 2.51176i −0.0570560 0.0988239i
\(647\) 21.0997i 0.829514i 0.909932 + 0.414757i \(0.136133\pi\)
−0.909932 + 0.414757i \(0.863867\pi\)
\(648\) 0 0
\(649\) −21.6495 −0.849817
\(650\) −7.79423 + 3.77492i −0.305715 + 0.148064i
\(651\) 0 0
\(652\) −21.0997 12.1819i −0.826327 0.477080i
\(653\) −12.1244 7.00000i −0.474463 0.273931i 0.243643 0.969865i \(-0.421657\pi\)
−0.718106 + 0.695934i \(0.754991\pi\)
\(654\) 0 0
\(655\) −11.6873 + 38.0397i −0.456660 + 1.48633i
\(656\) 5.61478 0.219220
\(657\) 0 0
\(658\) 13.4953i 0.526102i
\(659\) −2.33122 4.03779i −0.0908114 0.157290i 0.817041 0.576579i \(-0.195613\pi\)
−0.907853 + 0.419289i \(0.862279\pi\)
\(660\) 0 0
\(661\) −15.6375 + 27.0849i −0.608227 + 1.05348i 0.383306 + 0.923621i \(0.374785\pi\)
−0.991533 + 0.129858i \(0.958548\pi\)
\(662\) 17.3205 + 10.0000i 0.673181 + 0.388661i
\(663\) 0 0
\(664\) 2.00000 + 3.46410i 0.0776151 + 0.134433i
\(665\) 4.89261 4.54983i 0.189727 0.176435i
\(666\) 0 0
\(667\) 57.3303i 2.21984i
\(668\) −18.2728 + 10.5498i −0.706998 + 0.408185i
\(669\) 0 0
\(670\) 26.5498 6.09095i 1.02571 0.235314i
\(671\) −9.55505 + 16.5498i −0.368869 + 0.638899i
\(672\) 0 0
\(673\) 4.91238 2.83616i 0.189358 0.109326i −0.402324 0.915497i \(-0.631797\pi\)
0.591682 + 0.806171i \(0.298464\pi\)
\(674\) −5.25370 −0.202365
\(675\) 0 0
\(676\) −10.0000 −0.384615
\(677\) −20.5465 + 11.8625i −0.789667 + 0.455915i −0.839845 0.542826i \(-0.817354\pi\)
0.0501782 + 0.998740i \(0.484021\pi\)
\(678\) 0 0
\(679\) −12.5498 + 21.7370i −0.481618 + 0.834188i
\(680\) −2.77862 + 0.637459i −0.106555 + 0.0244454i
\(681\) 0 0
\(682\) 19.4502 11.2296i 0.744785 0.430002i
\(683\) 26.7492i 1.02353i −0.859126 0.511764i \(-0.828992\pi\)
0.859126 0.511764i \(-0.171008\pi\)
\(684\) 0 0
\(685\) −6.26287 + 5.82409i −0.239292 + 0.222527i
\(686\) 8.06109 + 13.9622i 0.307774 + 0.533080i
\(687\) 0 0
\(688\) −2.27492 1.31342i −0.0867304 0.0500738i
\(689\) −7.16629 + 12.4124i −0.273014 + 0.472874i
\(690\) 0 0
\(691\) 11.9622 + 20.7192i 0.455064 + 0.788194i 0.998692 0.0511325i \(-0.0162831\pi\)
−0.543628 + 0.839326i \(0.682950\pi\)
\(692\) 20.0997i 0.764075i
\(693\) 0 0
\(694\) −7.45017 −0.282804
\(695\) −6.74766 + 21.9622i −0.255953 + 0.833074i
\(696\) 0 0
\(697\) 6.19934 + 3.57919i 0.234817 + 0.135571i
\(698\) −27.8854 16.0997i −1.05548 0.609381i
\(699\) 0 0
\(700\) −2.86254 5.91041i −0.108194 0.223392i
\(701\) 18.6915 0.705967 0.352984 0.935629i \(-0.385167\pi\)
0.352984 + 0.935629i \(0.385167\pi\)
\(702\) 0 0
\(703\) 22.6893i 0.855743i
\(704\) 1.31342 + 2.27492i 0.0495015 + 0.0857392i
\(705\) 0 0
\(706\) 7.27492 12.6005i 0.273795 0.474227i
\(707\) 10.8685 + 6.27492i 0.408751 + 0.235993i
\(708\) 0 0
\(709\) −1.91238 3.31233i −0.0718208 0.124397i 0.827879 0.560907i \(-0.189548\pi\)
−0.899699 + 0.436510i \(0.856214\pi\)
\(710\) −11.3446 + 10.5498i −0.425757 + 0.395928i
\(711\) 0 0
\(712\) 3.04547i 0.114134i
\(713\) −46.4618 + 26.8248i −1.74001 + 1.00459i
\(714\) 0 0
\(715\) 2.27492 + 9.91613i 0.0850771 + 0.370842i
\(716\) −0.656712 + 1.13746i −0.0245425 + 0.0425088i
\(717\) 0 0
\(718\) −18.8248 + 10.8685i −0.702533 + 0.405608i
\(719\) −8.60271 −0.320827 −0.160413 0.987050i \(-0.551283\pi\)
−0.160413 + 0.987050i \(0.551283\pi\)
\(720\) 0 0
\(721\) 8.62541 0.321227
\(722\) −11.9726 + 6.91238i −0.445574 + 0.257252i
\(723\) 0 0
\(724\) 3.27492 5.67232i 0.121711 0.210810i
\(725\) −37.8016 25.6495i −1.40392 0.952599i
\(726\) 0 0
\(727\) −10.2371 + 5.91041i −0.379674 + 0.219205i −0.677676 0.735360i \(-0.737013\pi\)
0.298002 + 0.954565i \(0.403680\pi\)
\(728\) 2.27492i 0.0843140i
\(729\) 0 0
\(730\) 7.36254 + 7.91723i 0.272500 + 0.293030i
\(731\) −1.67451 2.90033i −0.0619339 0.107273i
\(732\) 0 0
\(733\) 40.7492 + 23.5265i 1.50511 + 0.868973i 0.999982 + 0.00592517i \(0.00188605\pi\)
0.505123 + 0.863048i \(0.331447\pi\)
\(734\) −1.31342 + 2.27492i −0.0484794 + 0.0839687i
\(735\) 0 0
\(736\) −3.13746 5.43424i −0.115648 0.200309i
\(737\) 32.0000i 1.17874i
\(738\) 0 0
\(739\) 10.9003 0.400975 0.200488 0.979696i \(-0.435747\pi\)
0.200488 + 0.979696i \(0.435747\pi\)
\(740\) 21.3183 + 6.54983i 0.783677 + 0.240777i
\(741\) 0 0
\(742\) −9.41238 5.43424i −0.345539 0.199497i
\(743\) −39.0575 22.5498i −1.43288 0.827273i −0.435540 0.900170i \(-0.643442\pi\)
−0.997340 + 0.0728963i \(0.976776\pi\)
\(744\) 0 0
\(745\) −0.900331 + 2.93039i −0.0329856 + 0.107361i
\(746\) −22.6893 −0.830714
\(747\) 0 0
\(748\) 3.34901i 0.122452i
\(749\) 7.88054 + 13.6495i 0.287949 + 0.498742i
\(750\) 0 0
\(751\) 16.2749 28.1890i 0.593880 1.02863i −0.399824 0.916592i \(-0.630929\pi\)
0.993704 0.112039i \(-0.0357380\pi\)
\(752\) −8.89834 5.13746i −0.324489 0.187344i
\(753\) 0 0
\(754\) 7.91238 + 13.7046i 0.288152 + 0.499093i
\(755\) 26.0383 + 28.0000i 0.947631 + 1.01902i
\(756\) 0 0
\(757\) 26.3994i 0.959502i −0.877405 0.479751i \(-0.840727\pi\)
0.877405 0.479751i \(-0.159273\pi\)
\(758\) 23.7071 13.6873i 0.861080 0.497145i
\(759\) 0 0
\(760\) −1.13746 4.95807i −0.0412600 0.179848i
\(761\) −8.74657 + 15.1495i −0.317063 + 0.549169i −0.979874 0.199618i \(-0.936030\pi\)
0.662811 + 0.748787i \(0.269363\pi\)
\(762\) 0 0
\(763\) −8.90033 + 5.13861i −0.322214 + 0.186030i
\(764\) 14.8087 0.535762
\(765\) 0 0
\(766\) −3.37459 −0.121929
\(767\) −12.3624 + 7.13746i −0.446382 + 0.257719i
\(768\) 0 0
\(769\) 17.6375 30.5490i 0.636023 1.10162i −0.350274 0.936647i \(-0.613912\pi\)
0.986297 0.164977i \(-0.0527550\pi\)
\(770\) −7.51946 + 1.72508i −0.270983 + 0.0621677i
\(771\) 0 0
\(772\) −7.18729 + 4.14959i −0.258676 + 0.149347i
\(773\) 45.8248i 1.64820i 0.566443 + 0.824101i \(0.308319\pi\)
−0.566443 + 0.824101i \(0.691681\pi\)
\(774\) 0 0
\(775\) −3.09967 + 42.6366i −0.111343 + 1.53155i
\(776\) 9.55505 + 16.5498i 0.343006 + 0.594104i
\(777\) 0 0
\(778\) −29.3746 16.9594i −1.05313 0.608025i
\(779\) −6.38658 + 11.0619i −0.228823 + 0.396333i
\(780\) 0 0
\(781\) 9.09967 + 15.7611i 0.325612 + 0.563976i
\(782\) 8.00000i 0.286079i
\(783\) 0 0
\(784\) 5.27492 0.188390
\(785\) 12.8962 + 3.96221i 0.460284 + 0.141417i
\(786\) 0 0
\(787\) −2.90033 1.67451i −0.103386 0.0596897i 0.447416 0.894326i \(-0.352344\pi\)
−0.550801 + 0.834636i \(0.685678\pi\)
\(788\) 9.52628 + 5.50000i 0.339360 + 0.195929i
\(789\) 0 0
\(790\) 0 0
\(791\) 0.952341 0.0338614
\(792\) 0 0
\(793\) 12.6005i 0.447458i
\(794\) 7.19506 + 12.4622i 0.255343 + 0.442267i
\(795\) 0 0
\(796\) 3.72508 6.45203i 0.132032 0.228686i
\(797\) 24.5731 + 14.1873i 0.870424 + 0.502540i 0.867489 0.497456i \(-0.165732\pi\)
0.00293508 + 0.999996i \(0.499066\pi\)
\(798\) 0 0
\(799\) −6.54983 11.3446i −0.231716 0.401345i
\(800\) −4.98684 0.362541i −0.176311 0.0128178i
\(801\) 0 0
\(802\) 21.6794i 0.765526i
\(803\) 10.9994 6.35050i 0.388160 0.224104i
\(804\) 0 0
\(805\) 17.9622 4.12081i 0.633085 0.145240i
\(806\) 7.40437 12.8248i 0.260808 0.451733i
\(807\) 0 0
\(808\) 8.27492 4.77753i 0.291111 0.168073i
\(809\) −49.6224 −1.74463 −0.872315 0.488944i \(-0.837382\pi\)
−0.872315 + 0.488944i \(0.837382\pi\)
\(810\) 0 0
\(811\) 6.90033 0.242303 0.121152 0.992634i \(-0.461341\pi\)
0.121152 + 0.992634i \(0.461341\pi\)
\(812\) −10.3923 + 6.00000i −0.364698 + 0.210559i
\(813\) 0 0
\(814\) 13.0997 22.6893i 0.459143 0.795259i
\(815\) −12.1819 53.0997i −0.426713 1.86000i
\(816\) 0 0
\(817\) 5.17525 2.98793i 0.181059 0.104534i
\(818\) 16.0997i 0.562912i
\(819\) 0 0
\(820\) 8.54983 + 9.19397i 0.298573 + 0.321067i
\(821\) 10.6016 + 18.3625i 0.369999 + 0.640857i 0.989565 0.144088i \(-0.0460247\pi\)
−0.619566 + 0.784945i \(0.712691\pi\)
\(822\) 0 0
\(823\) 36.8248 + 21.2608i 1.28363 + 0.741104i 0.977510 0.210889i \(-0.0676358\pi\)
0.306120 + 0.951993i \(0.400969\pi\)
\(824\) 3.28356 5.68729i 0.114388 0.198126i
\(825\) 0 0
\(826\) −5.41238 9.37451i −0.188321 0.326181i
\(827\) 27.4502i 0.954536i −0.878758 0.477268i \(-0.841627\pi\)
0.878758 0.477268i \(-0.158373\pi\)
\(828\) 0 0
\(829\) −46.5498 −1.61674 −0.808371 0.588673i \(-0.799651\pi\)
−0.808371 + 0.588673i \(0.799651\pi\)
\(830\) −2.62685 + 8.54983i −0.0911792 + 0.296769i
\(831\) 0 0
\(832\) 1.50000 + 0.866025i 0.0520031 + 0.0300240i
\(833\) 5.82409 + 3.36254i 0.201793 + 0.116505i
\(834\) 0 0
\(835\) −45.0997 13.8564i −1.56074 0.479521i
\(836\) −5.97586 −0.206680
\(837\) 0 0
\(838\) 16.4833i 0.569405i
\(839\) 24.3638 + 42.1993i 0.841132 + 1.45688i 0.888939 + 0.458026i \(0.151443\pi\)
−0.0478069 + 0.998857i \(0.515223\pi\)
\(840\) 0 0
\(841\) −27.2371 + 47.1761i −0.939211 + 1.62676i
\(842\) −8.03231 4.63746i −0.276812 0.159817i
\(843\) 0 0
\(844\) −4.86254 8.42217i −0.167376 0.289903i
\(845\) −15.2274 16.3746i −0.523838 0.563303i
\(846\) 0 0
\(847\) 5.38460i 0.185017i
\(848\) −7.16629 + 4.13746i −0.246091 + 0.142081i
\(849\) 0 0
\(850\) −5.27492 3.57919i −0.180928 0.122765i
\(851\) −31.2920 + 54.1993i −1.07268 + 1.85793i
\(852\) 0 0
\(853\) 8.90033 5.13861i 0.304742 0.175943i −0.339829 0.940487i \(-0.610369\pi\)
0.644571 + 0.764544i \(0.277036\pi\)
\(854\) −9.55505 −0.326967
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) −29.2931 + 16.9124i −1.00063 + 0.577716i −0.908436 0.418025i \(-0.862722\pi\)
−0.0921975 + 0.995741i \(0.529389\pi\)
\(858\) 0 0
\(859\) −2.00000 + 3.46410i −0.0682391 + 0.118194i −0.898126 0.439738i \(-0.855071\pi\)
0.829887 + 0.557931i \(0.188405\pi\)
\(860\) −1.31342 5.72508i −0.0447874 0.195224i
\(861\) 0 0
\(862\) −29.3746 + 16.9594i −1.00050 + 0.577640i
\(863\) 9.72508i 0.331046i −0.986206 0.165523i \(-0.947069\pi\)
0.986206 0.165523i \(-0.0529312\pi\)
\(864\) 0 0
\(865\) −32.9124 + 30.6065i −1.11905 + 1.04065i
\(866\) 5.40547 + 9.36254i 0.183685 + 0.318152i
\(867\) 0 0
\(868\) 9.72508 + 5.61478i 0.330091 + 0.190578i
\(869\) 0 0
\(870\) 0 0
\(871\) −10.5498 18.2728i −0.357468 0.619152i
\(872\) 7.82475i 0.264980i
\(873\) 0 0
\(874\) 14.2749 0.482856
\(875\) 5.31915 13.6873i 0.179820 0.462715i
\(876\) 0 0
\(877\) −8.95017 5.16738i −0.302226 0.174490i 0.341217 0.939985i \(-0.389161\pi\)
−0.643442 + 0.765495i \(0.722494\pi\)
\(878\) −31.1769 18.0000i −1.05217 0.607471i
\(879\) 0 0
\(880\) −1.72508 + 5.61478i −0.0581525 + 0.189274i
\(881\) 15.7611 0.531005 0.265502 0.964110i \(-0.414462\pi\)
0.265502 + 0.964110i \(0.414462\pi\)
\(882\) 0 0
\(883\) 0.952341i 0.0320488i −0.999872 0.0160244i \(-0.994899\pi\)
0.999872 0.0160244i \(-0.00510095\pi\)
\(884\) 1.10411 + 1.91238i 0.0371353 + 0.0643202i
\(885\) 0 0
\(886\) −3.72508 + 6.45203i −0.125147 + 0.216760i
\(887\) 16.3027 + 9.41238i 0.547392 + 0.316037i 0.748069 0.663621i \(-0.230981\pi\)
−0.200678 + 0.979657i \(0.564314\pi\)
\(888\) 0 0
\(889\) 14.5120 + 25.1356i 0.486718 + 0.843021i
\(890\) 4.98684 4.63746i 0.167159 0.155448i
\(891\) 0 0
\(892\) 16.4833i 0.551900i
\(893\) 20.2430 11.6873i 0.677406 0.391100i
\(894\) 0 0
\(895\) −2.86254 + 0.656712i −0.0956842 + 0.0219515i
\(896\) −0.656712 + 1.13746i −0.0219392 + 0.0379998i
\(897\) 0 0
\(898\) −9.41238 + 5.43424i −0.314095 + 0.181343i
\(899\) 78.1149 2.60528
\(900\) 0 0
\(901\) −10.5498 −0.351466
\(902\) 12.7732 7.37459i 0.425300 0.245547i
\(903\) 0 0
\(904\) 0.362541 0.627940i 0.0120579 0.0208850i
\(905\) 14.2750 3.27492i 0.474518 0.108862i
\(906\) 0 0
\(907\) 36.0000 20.7846i 1.19536 0.690142i 0.235843 0.971791i \(-0.424215\pi\)
0.959517 + 0.281650i \(0.0908815\pi\)
\(908\) 0.549834i 0.0182469i
\(909\) 0 0
\(910\) −3.72508 + 3.46410i −0.123485 + 0.114834i
\(911\) −2.98793 5.17525i −0.0989946 0.171464i 0.812274 0.583276i \(-0.198229\pi\)
−0.911269 + 0.411812i \(0.864896\pi\)
\(912\) 0 0
\(913\) 9.09967 + 5.25370i 0.301155 + 0.173872i
\(914\) 7.97477 13.8127i 0.263782 0.456884i
\(915\) 0 0
\(916\) −11.1873 19.3770i −0.369639 0.640233i
\(917\) 23.3746i 0.771897i
\(918\) 0 0
\(919\) −33.0997 −1.09186 −0.545929 0.837832i \(-0.683823\pi\)
−0.545929 + 0.837832i \(0.683823\pi\)
\(920\) 4.12081 13.4124i 0.135859 0.442193i
\(921\) 0 0
\(922\) 6.00000 + 3.46410i 0.197599 + 0.114084i
\(923\) 10.3923 + 6.00000i 0.342067 + 0.197492i
\(924\) 0 0
\(925\) 21.7371 + 44.8816i 0.714712 + 1.47570i
\(926\) −16.8443 −0.553539
\(927\) 0 0
\(928\) 9.13642i 0.299918i
\(929\) −6.77643 11.7371i −0.222328 0.385083i 0.733187 0.680027i \(-0.238032\pi\)
−0.955514 + 0.294945i \(0.904699\pi\)
\(930\) 0 0
\(931\) −6.00000 + 10.3923i −0.196642 + 0.340594i
\(932\) 0.151770 + 0.0876242i 0.00497138 + 0.00287023i
\(933\) 0 0
\(934\) −6.82475 11.8208i −0.223313 0.386789i
\(935\) −5.48387 + 5.09967i −0.179342 + 0.166777i
\(936\) 0 0
\(937\) 5.55724i 0.181547i −0.995872 0.0907735i \(-0.971066\pi\)
0.995872 0.0907735i \(-0.0289339\pi\)
\(938\) 13.8564 8.00000i 0.452428 0.261209i
\(939\) 0 0
\(940\) −5.13746 22.3937i −0.167565 0.730401i
\(941\) 5.46301 9.46221i 0.178089 0.308459i −0.763137 0.646237i \(-0.776342\pi\)
0.941226 + 0.337778i \(0.109675\pi\)
\(942\) 0 0
\(943\) −30.5120 + 17.6161i −0.993609 + 0.573660i
\(944\) −8.24163 −0.268242
\(945\) 0 0
\(946\) −6.90033 −0.224349
\(947\) −14.3326 + 8.27492i −0.465746 + 0.268899i −0.714457 0.699679i \(-0.753326\pi\)
0.248711 + 0.968578i \(0.419993\pi\)
\(948\) 0 0
\(949\) 4.18729 7.25260i 0.135925 0.235429i
\(950\) 6.38658 9.41238i 0.207208 0.305378i
\(951\) 0 0
\(952\) −1.45017 + 0.837253i −0.0470001 + 0.0271355i
\(953\) 39.2749i 1.27224i 0.771590 + 0.636120i \(0.219462\pi\)
−0.771590 + 0.636120i \(0.780538\pi\)
\(954\) 0 0
\(955\) 22.5498 + 24.2487i 0.729696 + 0.784670i
\(956\) −4.77753 8.27492i −0.154516 0.267630i
\(957\) 0 0
\(958\) 1.45017 + 0.837253i 0.0468527 + 0.0270504i
\(959\) −2.51176 + 4.35050i −0.0811090 + 0.140485i
\(960\) 0 0
\(961\) −21.0498 36.4594i −0.679027 1.17611i
\(962\) 17.2749i 0.556966i
\(963\) 0 0
\(964\) −13.8248 −0.445265
\(965\) −17.7391 5.45017i −0.571043 0.175447i
\(966\) 0 0
\(967\) −8.27492 4.77753i −0.266103 0.153635i 0.361012 0.932561i \(-0.382431\pi\)
−0.627116 + 0.778926i \(0.715765\pi\)
\(968\) −3.55042 2.04983i −0.114115 0.0658842i
\(969\) 0 0
\(970\) −12.5498 + 40.8471i −0.402951 + 1.31152i
\(971\) −37.6289 −1.20757 −0.603785 0.797147i \(-0.706342\pi\)
−0.603785 + 0.797147i \(0.706342\pi\)
\(972\) 0 0
\(973\) 13.4953i 0.432640i
\(974\) −4.95807 8.58762i −0.158867 0.275165i
\(975\) 0 0
\(976\) −3.63746 + 6.30026i −0.116432 + 0.201667i
\(977\) −0.172632 0.0996689i −0.00552297 0.00318869i 0.497236 0.867615i \(-0.334348\pi\)
−0.502759 + 0.864427i \(0.667682\pi\)
\(978\) 0 0
\(979\) −4.00000 6.92820i −0.127841 0.221426i
\(980\) 8.03231 + 8.63746i 0.256583 + 0.275913i
\(981\) 0 0
\(982\) 18.7490i 0.598305i
\(983\) −27.7128 + 16.0000i −0.883901 + 0.510321i −0.871943 0.489608i \(-0.837140\pi\)
−0.0119587 + 0.999928i \(0.503807\pi\)
\(984\) 0 0
\(985\) 5.50000 + 23.9739i 0.175245 + 0.763873i
\(986\) −5.82409 + 10.0876i −0.185477 + 0.321255i
\(987\) 0 0
\(988\) −3.41238 + 1.97014i −0.108562 + 0.0626784i
\(989\) 16.4833 0.524137
\(990\) 0 0
\(991\) −47.2990 −1.50250 −0.751251 0.660016i \(-0.770549\pi\)
−0.751251 + 0.660016i \(0.770549\pi\)
\(992\) 7.40437 4.27492i 0.235089 0.135729i
\(993\) 0 0
\(994\) −4.54983 + 7.88054i −0.144312 + 0.249956i
\(995\) 16.2373 3.72508i 0.514756 0.118093i
\(996\) 0 0
\(997\) 39.9743 23.0791i 1.26600 0.730924i 0.291769 0.956489i \(-0.405756\pi\)
0.974228 + 0.225565i \(0.0724227\pi\)
\(998\) 14.2749i 0.451865i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.2.i.g.109.4 8
3.2 odd 2 inner 810.2.i.g.109.1 8
5.4 even 2 810.2.i.i.109.1 8
9.2 odd 6 810.2.i.i.379.4 8
9.4 even 3 810.2.c.g.649.5 yes 8
9.5 odd 6 810.2.c.g.649.4 yes 8
9.7 even 3 810.2.i.i.379.1 8
15.14 odd 2 810.2.i.i.109.4 8
45.4 even 6 810.2.c.g.649.1 8
45.13 odd 12 4050.2.a.cb.1.3 4
45.14 odd 6 810.2.c.g.649.8 yes 8
45.22 odd 12 4050.2.a.ca.1.2 4
45.23 even 12 4050.2.a.ca.1.3 4
45.29 odd 6 inner 810.2.i.g.379.1 8
45.32 even 12 4050.2.a.cb.1.2 4
45.34 even 6 inner 810.2.i.g.379.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
810.2.c.g.649.1 8 45.4 even 6
810.2.c.g.649.4 yes 8 9.5 odd 6
810.2.c.g.649.5 yes 8 9.4 even 3
810.2.c.g.649.8 yes 8 45.14 odd 6
810.2.i.g.109.1 8 3.2 odd 2 inner
810.2.i.g.109.4 8 1.1 even 1 trivial
810.2.i.g.379.1 8 45.29 odd 6 inner
810.2.i.g.379.4 8 45.34 even 6 inner
810.2.i.i.109.1 8 5.4 even 2
810.2.i.i.109.4 8 15.14 odd 2
810.2.i.i.379.1 8 9.7 even 3
810.2.i.i.379.4 8 9.2 odd 6
4050.2.a.ca.1.2 4 45.22 odd 12
4050.2.a.ca.1.3 4 45.23 even 12
4050.2.a.cb.1.2 4 45.32 even 12
4050.2.a.cb.1.3 4 45.13 odd 12