Properties

Label 81.12.a.e.1.7
Level $81$
Weight $12$
Character 81.1
Self dual yes
Analytic conductor $62.236$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,12,Mod(1,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,33] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.2357976253\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 3 x^{9} - 14790 x^{8} + 93060 x^{7} + 72223254 x^{6} - 592709562 x^{5} - 132941711592 x^{4} + \cdots - 18\!\cdots\!74 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{30} \)
Twist minimal: no (minimal twist has level 9)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(35.9210\) of defining polynomial
Character \(\chi\) \(=\) 81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+38.9210 q^{2} -533.155 q^{4} -3382.94 q^{5} +32029.1 q^{7} -100461. q^{8} -131667. q^{10} +672105. q^{11} -1.69588e6 q^{13} +1.24660e6 q^{14} -2.81815e6 q^{16} -5.41320e6 q^{17} +8.84256e6 q^{19} +1.80363e6 q^{20} +2.61590e7 q^{22} -5.22598e6 q^{23} -3.73839e7 q^{25} -6.60055e7 q^{26} -1.70765e7 q^{28} +7.23255e7 q^{29} +2.06025e8 q^{31} +9.60593e7 q^{32} -2.10687e8 q^{34} -1.08352e8 q^{35} +7.22103e8 q^{37} +3.44161e8 q^{38} +3.39854e8 q^{40} +4.29048e8 q^{41} +1.37098e9 q^{43} -3.58337e8 q^{44} -2.03400e8 q^{46} -7.40317e7 q^{47} -9.51466e8 q^{49} -1.45502e9 q^{50} +9.04170e8 q^{52} +5.54718e9 q^{53} -2.27369e9 q^{55} -3.21768e9 q^{56} +2.81498e9 q^{58} +3.61264e9 q^{59} +6.16072e9 q^{61} +8.01870e9 q^{62} +9.51029e9 q^{64} +5.73707e9 q^{65} -6.23162e9 q^{67} +2.88608e9 q^{68} -4.21718e9 q^{70} -1.73266e10 q^{71} -1.89972e10 q^{73} +2.81050e10 q^{74} -4.71446e9 q^{76} +2.15269e10 q^{77} -3.58485e10 q^{79} +9.53361e9 q^{80} +1.66990e10 q^{82} +2.49712e10 q^{83} +1.83125e10 q^{85} +5.33598e10 q^{86} -6.75205e10 q^{88} +7.94245e10 q^{89} -5.43176e10 q^{91} +2.78626e9 q^{92} -2.88139e9 q^{94} -2.99138e10 q^{95} +6.65970e10 q^{97} -3.70320e10 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 33 q^{2} + 9217 q^{4} + 7230 q^{5} - 8512 q^{7} - 14559 q^{8} + 2046 q^{10} + 112776 q^{11} - 279706 q^{13} + 3901584 q^{14} + 7342081 q^{16} + 13882896 q^{17} + 3514700 q^{19} + 34163508 q^{20}+ \cdots + 655061802039 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 38.9210 0.860041 0.430020 0.902819i \(-0.358506\pi\)
0.430020 + 0.902819i \(0.358506\pi\)
\(3\) 0 0
\(4\) −533.155 −0.260330
\(5\) −3382.94 −0.484126 −0.242063 0.970260i \(-0.577824\pi\)
−0.242063 + 0.970260i \(0.577824\pi\)
\(6\) 0 0
\(7\) 32029.1 0.720286 0.360143 0.932897i \(-0.382728\pi\)
0.360143 + 0.932897i \(0.382728\pi\)
\(8\) −100461. −1.08394
\(9\) 0 0
\(10\) −131667. −0.416368
\(11\) 672105. 1.25828 0.629140 0.777292i \(-0.283407\pi\)
0.629140 + 0.777292i \(0.283407\pi\)
\(12\) 0 0
\(13\) −1.69588e6 −1.26680 −0.633400 0.773825i \(-0.718341\pi\)
−0.633400 + 0.773825i \(0.718341\pi\)
\(14\) 1.24660e6 0.619475
\(15\) 0 0
\(16\) −2.81815e6 −0.671899
\(17\) −5.41320e6 −0.924667 −0.462333 0.886706i \(-0.652988\pi\)
−0.462333 + 0.886706i \(0.652988\pi\)
\(18\) 0 0
\(19\) 8.84256e6 0.819282 0.409641 0.912247i \(-0.365654\pi\)
0.409641 + 0.912247i \(0.365654\pi\)
\(20\) 1.80363e6 0.126033
\(21\) 0 0
\(22\) 2.61590e7 1.08217
\(23\) −5.22598e6 −0.169303 −0.0846515 0.996411i \(-0.526978\pi\)
−0.0846515 + 0.996411i \(0.526978\pi\)
\(24\) 0 0
\(25\) −3.73839e7 −0.765622
\(26\) −6.60055e7 −1.08950
\(27\) 0 0
\(28\) −1.70765e7 −0.187512
\(29\) 7.23255e7 0.654791 0.327395 0.944887i \(-0.393829\pi\)
0.327395 + 0.944887i \(0.393829\pi\)
\(30\) 0 0
\(31\) 2.06025e8 1.29250 0.646250 0.763126i \(-0.276336\pi\)
0.646250 + 0.763126i \(0.276336\pi\)
\(32\) 9.60593e7 0.506075
\(33\) 0 0
\(34\) −2.10687e8 −0.795251
\(35\) −1.08352e8 −0.348709
\(36\) 0 0
\(37\) 7.22103e8 1.71194 0.855972 0.517021i \(-0.172959\pi\)
0.855972 + 0.517021i \(0.172959\pi\)
\(38\) 3.44161e8 0.704616
\(39\) 0 0
\(40\) 3.39854e8 0.524762
\(41\) 4.29048e8 0.578356 0.289178 0.957275i \(-0.406618\pi\)
0.289178 + 0.957275i \(0.406618\pi\)
\(42\) 0 0
\(43\) 1.37098e9 1.42218 0.711088 0.703103i \(-0.248203\pi\)
0.711088 + 0.703103i \(0.248203\pi\)
\(44\) −3.58337e8 −0.327568
\(45\) 0 0
\(46\) −2.03400e8 −0.145608
\(47\) −7.40317e7 −0.0470847 −0.0235423 0.999723i \(-0.507494\pi\)
−0.0235423 + 0.999723i \(0.507494\pi\)
\(48\) 0 0
\(49\) −9.51466e8 −0.481188
\(50\) −1.45502e9 −0.658466
\(51\) 0 0
\(52\) 9.04170e8 0.329786
\(53\) 5.54718e9 1.82203 0.911014 0.412377i \(-0.135301\pi\)
0.911014 + 0.412377i \(0.135301\pi\)
\(54\) 0 0
\(55\) −2.27369e9 −0.609167
\(56\) −3.21768e9 −0.780743
\(57\) 0 0
\(58\) 2.81498e9 0.563147
\(59\) 3.61264e9 0.657868 0.328934 0.944353i \(-0.393311\pi\)
0.328934 + 0.944353i \(0.393311\pi\)
\(60\) 0 0
\(61\) 6.16072e9 0.933936 0.466968 0.884274i \(-0.345346\pi\)
0.466968 + 0.884274i \(0.345346\pi\)
\(62\) 8.01870e9 1.11160
\(63\) 0 0
\(64\) 9.51029e9 1.10714
\(65\) 5.73707e9 0.613291
\(66\) 0 0
\(67\) −6.23162e9 −0.563884 −0.281942 0.959432i \(-0.590978\pi\)
−0.281942 + 0.959432i \(0.590978\pi\)
\(68\) 2.88608e9 0.240718
\(69\) 0 0
\(70\) −4.21718e9 −0.299904
\(71\) −1.73266e10 −1.13970 −0.569852 0.821747i \(-0.692999\pi\)
−0.569852 + 0.821747i \(0.692999\pi\)
\(72\) 0 0
\(73\) −1.89972e10 −1.07254 −0.536270 0.844046i \(-0.680167\pi\)
−0.536270 + 0.844046i \(0.680167\pi\)
\(74\) 2.81050e10 1.47234
\(75\) 0 0
\(76\) −4.71446e9 −0.213283
\(77\) 2.15269e10 0.906322
\(78\) 0 0
\(79\) −3.58485e10 −1.31076 −0.655379 0.755300i \(-0.727491\pi\)
−0.655379 + 0.755300i \(0.727491\pi\)
\(80\) 9.53361e9 0.325284
\(81\) 0 0
\(82\) 1.66990e10 0.497410
\(83\) 2.49712e10 0.695842 0.347921 0.937524i \(-0.386888\pi\)
0.347921 + 0.937524i \(0.386888\pi\)
\(84\) 0 0
\(85\) 1.83125e10 0.447656
\(86\) 5.33598e10 1.22313
\(87\) 0 0
\(88\) −6.75205e10 −1.36389
\(89\) 7.94245e10 1.50768 0.753841 0.657057i \(-0.228199\pi\)
0.753841 + 0.657057i \(0.228199\pi\)
\(90\) 0 0
\(91\) −5.43176e10 −0.912458
\(92\) 2.78626e9 0.0440746
\(93\) 0 0
\(94\) −2.88139e9 −0.0404947
\(95\) −2.99138e10 −0.396636
\(96\) 0 0
\(97\) 6.65970e10 0.787427 0.393713 0.919233i \(-0.371190\pi\)
0.393713 + 0.919233i \(0.371190\pi\)
\(98\) −3.70320e10 −0.413841
\(99\) 0 0
\(100\) 1.99314e10 0.199314
\(101\) 1.32098e11 1.25063 0.625314 0.780373i \(-0.284971\pi\)
0.625314 + 0.780373i \(0.284971\pi\)
\(102\) 0 0
\(103\) −5.75738e10 −0.489351 −0.244675 0.969605i \(-0.578681\pi\)
−0.244675 + 0.969605i \(0.578681\pi\)
\(104\) 1.70371e11 1.37313
\(105\) 0 0
\(106\) 2.15902e11 1.56702
\(107\) 2.21267e11 1.52513 0.762563 0.646914i \(-0.223941\pi\)
0.762563 + 0.646914i \(0.223941\pi\)
\(108\) 0 0
\(109\) 5.26853e10 0.327977 0.163989 0.986462i \(-0.447564\pi\)
0.163989 + 0.986462i \(0.447564\pi\)
\(110\) −8.84943e10 −0.523908
\(111\) 0 0
\(112\) −9.02626e10 −0.483959
\(113\) −2.15858e11 −1.10214 −0.551070 0.834459i \(-0.685780\pi\)
−0.551070 + 0.834459i \(0.685780\pi\)
\(114\) 0 0
\(115\) 1.76792e10 0.0819641
\(116\) −3.85607e10 −0.170462
\(117\) 0 0
\(118\) 1.40608e11 0.565794
\(119\) −1.73380e11 −0.666025
\(120\) 0 0
\(121\) 1.66414e11 0.583270
\(122\) 2.39781e11 0.803223
\(123\) 0 0
\(124\) −1.09843e11 −0.336476
\(125\) 2.91650e11 0.854784
\(126\) 0 0
\(127\) −3.30771e11 −0.888398 −0.444199 0.895928i \(-0.646512\pi\)
−0.444199 + 0.895928i \(0.646512\pi\)
\(128\) 1.73421e11 0.446114
\(129\) 0 0
\(130\) 2.23292e11 0.527455
\(131\) −1.14849e11 −0.260098 −0.130049 0.991508i \(-0.541513\pi\)
−0.130049 + 0.991508i \(0.541513\pi\)
\(132\) 0 0
\(133\) 2.83219e11 0.590117
\(134\) −2.42541e11 −0.484963
\(135\) 0 0
\(136\) 5.43817e11 1.00228
\(137\) 6.05101e11 1.07118 0.535592 0.844477i \(-0.320088\pi\)
0.535592 + 0.844477i \(0.320088\pi\)
\(138\) 0 0
\(139\) 5.38498e11 0.880243 0.440121 0.897938i \(-0.354935\pi\)
0.440121 + 0.897938i \(0.354935\pi\)
\(140\) 5.77686e10 0.0907795
\(141\) 0 0
\(142\) −6.74368e11 −0.980192
\(143\) −1.13981e12 −1.59399
\(144\) 0 0
\(145\) −2.44673e11 −0.317001
\(146\) −7.39389e11 −0.922428
\(147\) 0 0
\(148\) −3.84993e11 −0.445670
\(149\) −1.61927e11 −0.180632 −0.0903159 0.995913i \(-0.528788\pi\)
−0.0903159 + 0.995913i \(0.528788\pi\)
\(150\) 0 0
\(151\) −6.46712e11 −0.670406 −0.335203 0.942146i \(-0.608805\pi\)
−0.335203 + 0.942146i \(0.608805\pi\)
\(152\) −8.88334e11 −0.888048
\(153\) 0 0
\(154\) 8.37849e11 0.779474
\(155\) −6.96969e11 −0.625733
\(156\) 0 0
\(157\) −1.44114e12 −1.20576 −0.602878 0.797833i \(-0.705979\pi\)
−0.602878 + 0.797833i \(0.705979\pi\)
\(158\) −1.39526e12 −1.12731
\(159\) 0 0
\(160\) −3.24963e11 −0.245004
\(161\) −1.67383e11 −0.121947
\(162\) 0 0
\(163\) −1.78980e12 −1.21835 −0.609175 0.793035i \(-0.708499\pi\)
−0.609175 + 0.793035i \(0.708499\pi\)
\(164\) −2.28749e11 −0.150563
\(165\) 0 0
\(166\) 9.71906e11 0.598452
\(167\) 2.84170e11 0.169292 0.0846461 0.996411i \(-0.473024\pi\)
0.0846461 + 0.996411i \(0.473024\pi\)
\(168\) 0 0
\(169\) 1.08386e12 0.604781
\(170\) 7.12742e11 0.385002
\(171\) 0 0
\(172\) −7.30943e11 −0.370235
\(173\) −1.50737e12 −0.739549 −0.369775 0.929121i \(-0.620565\pi\)
−0.369775 + 0.929121i \(0.620565\pi\)
\(174\) 0 0
\(175\) −1.19737e12 −0.551467
\(176\) −1.89409e12 −0.845437
\(177\) 0 0
\(178\) 3.09128e12 1.29667
\(179\) 1.54494e12 0.628377 0.314189 0.949361i \(-0.398268\pi\)
0.314189 + 0.949361i \(0.398268\pi\)
\(180\) 0 0
\(181\) −3.80037e11 −0.145410 −0.0727048 0.997354i \(-0.523163\pi\)
−0.0727048 + 0.997354i \(0.523163\pi\)
\(182\) −2.11410e12 −0.784751
\(183\) 0 0
\(184\) 5.25008e11 0.183514
\(185\) −2.44283e12 −0.828798
\(186\) 0 0
\(187\) −3.63824e12 −1.16349
\(188\) 3.94704e10 0.0122575
\(189\) 0 0
\(190\) −1.16428e12 −0.341123
\(191\) −2.33028e12 −0.663322 −0.331661 0.943399i \(-0.607609\pi\)
−0.331661 + 0.943399i \(0.607609\pi\)
\(192\) 0 0
\(193\) −4.99261e12 −1.34203 −0.671015 0.741444i \(-0.734141\pi\)
−0.671015 + 0.741444i \(0.734141\pi\)
\(194\) 2.59202e12 0.677219
\(195\) 0 0
\(196\) 5.07279e11 0.125268
\(197\) −2.51169e12 −0.603117 −0.301559 0.953448i \(-0.597507\pi\)
−0.301559 + 0.953448i \(0.597507\pi\)
\(198\) 0 0
\(199\) 2.69518e12 0.612204 0.306102 0.951999i \(-0.400975\pi\)
0.306102 + 0.951999i \(0.400975\pi\)
\(200\) 3.75563e12 0.829884
\(201\) 0 0
\(202\) 5.14138e12 1.07559
\(203\) 2.31652e12 0.471637
\(204\) 0 0
\(205\) −1.45144e12 −0.279997
\(206\) −2.24083e12 −0.420861
\(207\) 0 0
\(208\) 4.77925e12 0.851161
\(209\) 5.94313e12 1.03089
\(210\) 0 0
\(211\) 6.06584e12 0.998475 0.499238 0.866465i \(-0.333613\pi\)
0.499238 + 0.866465i \(0.333613\pi\)
\(212\) −2.95751e12 −0.474328
\(213\) 0 0
\(214\) 8.61193e12 1.31167
\(215\) −4.63792e12 −0.688513
\(216\) 0 0
\(217\) 6.59878e12 0.930969
\(218\) 2.05056e12 0.282074
\(219\) 0 0
\(220\) 1.21223e12 0.158584
\(221\) 9.18017e12 1.17137
\(222\) 0 0
\(223\) −5.57666e12 −0.677170 −0.338585 0.940936i \(-0.609948\pi\)
−0.338585 + 0.940936i \(0.609948\pi\)
\(224\) 3.07669e12 0.364519
\(225\) 0 0
\(226\) −8.40140e12 −0.947885
\(227\) 4.01440e12 0.442057 0.221028 0.975267i \(-0.429059\pi\)
0.221028 + 0.975267i \(0.429059\pi\)
\(228\) 0 0
\(229\) 1.02421e13 1.07472 0.537358 0.843354i \(-0.319422\pi\)
0.537358 + 0.843354i \(0.319422\pi\)
\(230\) 6.88091e11 0.0704924
\(231\) 0 0
\(232\) −7.26591e12 −0.709751
\(233\) 1.36342e13 1.30069 0.650343 0.759641i \(-0.274625\pi\)
0.650343 + 0.759641i \(0.274625\pi\)
\(234\) 0 0
\(235\) 2.50444e11 0.0227949
\(236\) −1.92610e12 −0.171263
\(237\) 0 0
\(238\) −6.74812e12 −0.572808
\(239\) 9.51347e12 0.789133 0.394567 0.918867i \(-0.370895\pi\)
0.394567 + 0.918867i \(0.370895\pi\)
\(240\) 0 0
\(241\) −7.21921e12 −0.572000 −0.286000 0.958230i \(-0.592326\pi\)
−0.286000 + 0.958230i \(0.592326\pi\)
\(242\) 6.47699e12 0.501636
\(243\) 0 0
\(244\) −3.28462e12 −0.243131
\(245\) 3.21875e12 0.232956
\(246\) 0 0
\(247\) −1.49960e13 −1.03787
\(248\) −2.06975e13 −1.40099
\(249\) 0 0
\(250\) 1.13513e13 0.735149
\(251\) 7.98786e12 0.506087 0.253043 0.967455i \(-0.418568\pi\)
0.253043 + 0.967455i \(0.418568\pi\)
\(252\) 0 0
\(253\) −3.51241e12 −0.213031
\(254\) −1.28740e13 −0.764058
\(255\) 0 0
\(256\) −1.27274e13 −0.723468
\(257\) 2.75365e13 1.53206 0.766030 0.642805i \(-0.222229\pi\)
0.766030 + 0.642805i \(0.222229\pi\)
\(258\) 0 0
\(259\) 2.31283e13 1.23309
\(260\) −3.05875e12 −0.159658
\(261\) 0 0
\(262\) −4.47006e12 −0.223695
\(263\) 2.98881e13 1.46467 0.732337 0.680942i \(-0.238429\pi\)
0.732337 + 0.680942i \(0.238429\pi\)
\(264\) 0 0
\(265\) −1.87657e13 −0.882091
\(266\) 1.10232e13 0.507525
\(267\) 0 0
\(268\) 3.32242e12 0.146796
\(269\) 9.80257e12 0.424329 0.212164 0.977234i \(-0.431949\pi\)
0.212164 + 0.977234i \(0.431949\pi\)
\(270\) 0 0
\(271\) −1.00339e13 −0.417003 −0.208501 0.978022i \(-0.566859\pi\)
−0.208501 + 0.978022i \(0.566859\pi\)
\(272\) 1.52552e13 0.621282
\(273\) 0 0
\(274\) 2.35511e13 0.921263
\(275\) −2.51259e13 −0.963367
\(276\) 0 0
\(277\) −8.52869e12 −0.314227 −0.157113 0.987581i \(-0.550219\pi\)
−0.157113 + 0.987581i \(0.550219\pi\)
\(278\) 2.09589e13 0.757045
\(279\) 0 0
\(280\) 1.08852e13 0.377978
\(281\) −3.78916e13 −1.29021 −0.645103 0.764096i \(-0.723185\pi\)
−0.645103 + 0.764096i \(0.723185\pi\)
\(282\) 0 0
\(283\) −4.11334e12 −0.134700 −0.0673502 0.997729i \(-0.521454\pi\)
−0.0673502 + 0.997729i \(0.521454\pi\)
\(284\) 9.23776e12 0.296699
\(285\) 0 0
\(286\) −4.43627e13 −1.37090
\(287\) 1.37420e13 0.416582
\(288\) 0 0
\(289\) −4.96913e12 −0.144991
\(290\) −9.52290e12 −0.272634
\(291\) 0 0
\(292\) 1.01285e13 0.279214
\(293\) 8.98760e12 0.243149 0.121574 0.992582i \(-0.461206\pi\)
0.121574 + 0.992582i \(0.461206\pi\)
\(294\) 0 0
\(295\) −1.22213e13 −0.318491
\(296\) −7.25433e13 −1.85564
\(297\) 0 0
\(298\) −6.30235e12 −0.155351
\(299\) 8.86266e12 0.214473
\(300\) 0 0
\(301\) 4.39111e13 1.02437
\(302\) −2.51707e13 −0.576576
\(303\) 0 0
\(304\) −2.49196e13 −0.550474
\(305\) −2.08413e13 −0.452143
\(306\) 0 0
\(307\) 1.27887e13 0.267649 0.133825 0.991005i \(-0.457274\pi\)
0.133825 + 0.991005i \(0.457274\pi\)
\(308\) −1.14772e13 −0.235943
\(309\) 0 0
\(310\) −2.71267e13 −0.538156
\(311\) −1.38679e13 −0.270289 −0.135145 0.990826i \(-0.543150\pi\)
−0.135145 + 0.990826i \(0.543150\pi\)
\(312\) 0 0
\(313\) 6.42210e13 1.20832 0.604162 0.796861i \(-0.293508\pi\)
0.604162 + 0.796861i \(0.293508\pi\)
\(314\) −5.60908e13 −1.03700
\(315\) 0 0
\(316\) 1.91128e13 0.341229
\(317\) 5.48988e13 0.963246 0.481623 0.876379i \(-0.340047\pi\)
0.481623 + 0.876379i \(0.340047\pi\)
\(318\) 0 0
\(319\) 4.86104e13 0.823911
\(320\) −3.21727e13 −0.535997
\(321\) 0 0
\(322\) −6.51473e12 −0.104879
\(323\) −4.78666e13 −0.757563
\(324\) 0 0
\(325\) 6.33987e13 0.969889
\(326\) −6.96608e13 −1.04783
\(327\) 0 0
\(328\) −4.31027e13 −0.626900
\(329\) −2.37117e12 −0.0339144
\(330\) 0 0
\(331\) 3.53734e13 0.489354 0.244677 0.969605i \(-0.421318\pi\)
0.244677 + 0.969605i \(0.421318\pi\)
\(332\) −1.33136e13 −0.181148
\(333\) 0 0
\(334\) 1.10602e13 0.145598
\(335\) 2.10812e13 0.272991
\(336\) 0 0
\(337\) 2.16449e13 0.271263 0.135631 0.990759i \(-0.456694\pi\)
0.135631 + 0.990759i \(0.456694\pi\)
\(338\) 4.21851e13 0.520136
\(339\) 0 0
\(340\) −9.76342e12 −0.116538
\(341\) 1.38470e14 1.62633
\(342\) 0 0
\(343\) −9.38065e13 −1.06688
\(344\) −1.37730e14 −1.54155
\(345\) 0 0
\(346\) −5.86685e13 −0.636042
\(347\) −1.27155e14 −1.35682 −0.678411 0.734683i \(-0.737331\pi\)
−0.678411 + 0.734683i \(0.737331\pi\)
\(348\) 0 0
\(349\) 7.61293e13 0.787068 0.393534 0.919310i \(-0.371252\pi\)
0.393534 + 0.919310i \(0.371252\pi\)
\(350\) −4.66029e13 −0.474284
\(351\) 0 0
\(352\) 6.45620e13 0.636784
\(353\) −1.01111e14 −0.981830 −0.490915 0.871208i \(-0.663337\pi\)
−0.490915 + 0.871208i \(0.663337\pi\)
\(354\) 0 0
\(355\) 5.86147e13 0.551761
\(356\) −4.23456e13 −0.392494
\(357\) 0 0
\(358\) 6.01307e13 0.540430
\(359\) 1.24969e14 1.10607 0.553034 0.833159i \(-0.313470\pi\)
0.553034 + 0.833159i \(0.313470\pi\)
\(360\) 0 0
\(361\) −3.82993e13 −0.328777
\(362\) −1.47914e13 −0.125058
\(363\) 0 0
\(364\) 2.89597e13 0.237540
\(365\) 6.42663e13 0.519245
\(366\) 0 0
\(367\) −7.01276e13 −0.549826 −0.274913 0.961469i \(-0.588649\pi\)
−0.274913 + 0.961469i \(0.588649\pi\)
\(368\) 1.47276e13 0.113754
\(369\) 0 0
\(370\) −9.50773e13 −0.712800
\(371\) 1.77671e14 1.31238
\(372\) 0 0
\(373\) −1.39872e14 −1.00307 −0.501535 0.865138i \(-0.667231\pi\)
−0.501535 + 0.865138i \(0.667231\pi\)
\(374\) −1.41604e14 −1.00065
\(375\) 0 0
\(376\) 7.43731e12 0.0510367
\(377\) −1.22656e14 −0.829489
\(378\) 0 0
\(379\) −1.23834e14 −0.813435 −0.406717 0.913554i \(-0.633327\pi\)
−0.406717 + 0.913554i \(0.633327\pi\)
\(380\) 1.59487e13 0.103256
\(381\) 0 0
\(382\) −9.06968e13 −0.570484
\(383\) 1.44623e14 0.896697 0.448348 0.893859i \(-0.352012\pi\)
0.448348 + 0.893859i \(0.352012\pi\)
\(384\) 0 0
\(385\) −7.28241e13 −0.438774
\(386\) −1.94317e14 −1.15420
\(387\) 0 0
\(388\) −3.55066e13 −0.204991
\(389\) −1.27056e14 −0.723225 −0.361613 0.932328i \(-0.617774\pi\)
−0.361613 + 0.932328i \(0.617774\pi\)
\(390\) 0 0
\(391\) 2.82893e13 0.156549
\(392\) 9.55854e13 0.521576
\(393\) 0 0
\(394\) −9.77575e13 −0.518706
\(395\) 1.21273e14 0.634573
\(396\) 0 0
\(397\) 3.66597e14 1.86570 0.932850 0.360266i \(-0.117314\pi\)
0.932850 + 0.360266i \(0.117314\pi\)
\(398\) 1.04899e14 0.526521
\(399\) 0 0
\(400\) 1.05353e14 0.514420
\(401\) 1.09287e14 0.526350 0.263175 0.964748i \(-0.415230\pi\)
0.263175 + 0.964748i \(0.415230\pi\)
\(402\) 0 0
\(403\) −3.49394e14 −1.63734
\(404\) −7.04287e13 −0.325576
\(405\) 0 0
\(406\) 9.01612e13 0.405627
\(407\) 4.85329e14 2.15411
\(408\) 0 0
\(409\) −1.49332e14 −0.645169 −0.322584 0.946541i \(-0.604552\pi\)
−0.322584 + 0.946541i \(0.604552\pi\)
\(410\) −5.64916e13 −0.240809
\(411\) 0 0
\(412\) 3.06958e13 0.127393
\(413\) 1.15710e14 0.473853
\(414\) 0 0
\(415\) −8.44761e13 −0.336875
\(416\) −1.62906e14 −0.641095
\(417\) 0 0
\(418\) 2.31313e14 0.886605
\(419\) 4.63339e14 1.75276 0.876379 0.481623i \(-0.159952\pi\)
0.876379 + 0.481623i \(0.159952\pi\)
\(420\) 0 0
\(421\) 1.92962e14 0.711083 0.355541 0.934661i \(-0.384296\pi\)
0.355541 + 0.934661i \(0.384296\pi\)
\(422\) 2.36088e14 0.858729
\(423\) 0 0
\(424\) −5.57276e14 −1.97496
\(425\) 2.02366e14 0.707945
\(426\) 0 0
\(427\) 1.97322e14 0.672701
\(428\) −1.17970e14 −0.397036
\(429\) 0 0
\(430\) −1.80513e14 −0.592149
\(431\) −1.26743e14 −0.410485 −0.205243 0.978711i \(-0.565798\pi\)
−0.205243 + 0.978711i \(0.565798\pi\)
\(432\) 0 0
\(433\) 1.11003e14 0.350471 0.175235 0.984527i \(-0.443931\pi\)
0.175235 + 0.984527i \(0.443931\pi\)
\(434\) 2.56831e14 0.800672
\(435\) 0 0
\(436\) −2.80894e13 −0.0853822
\(437\) −4.62111e13 −0.138707
\(438\) 0 0
\(439\) 3.79614e14 1.11119 0.555594 0.831454i \(-0.312491\pi\)
0.555594 + 0.831454i \(0.312491\pi\)
\(440\) 2.28417e14 0.660297
\(441\) 0 0
\(442\) 3.57301e14 1.00742
\(443\) −5.50584e14 −1.53321 −0.766607 0.642117i \(-0.778057\pi\)
−0.766607 + 0.642117i \(0.778057\pi\)
\(444\) 0 0
\(445\) −2.68688e14 −0.729908
\(446\) −2.17049e14 −0.582394
\(447\) 0 0
\(448\) 3.04606e14 0.797460
\(449\) 2.83340e14 0.732744 0.366372 0.930468i \(-0.380600\pi\)
0.366372 + 0.930468i \(0.380600\pi\)
\(450\) 0 0
\(451\) 2.88366e14 0.727734
\(452\) 1.15086e14 0.286920
\(453\) 0 0
\(454\) 1.56244e14 0.380187
\(455\) 1.83753e14 0.441745
\(456\) 0 0
\(457\) 1.27497e14 0.299200 0.149600 0.988747i \(-0.452201\pi\)
0.149600 + 0.988747i \(0.452201\pi\)
\(458\) 3.98633e14 0.924300
\(459\) 0 0
\(460\) −9.42574e12 −0.0213377
\(461\) −3.07348e14 −0.687504 −0.343752 0.939060i \(-0.611698\pi\)
−0.343752 + 0.939060i \(0.611698\pi\)
\(462\) 0 0
\(463\) 4.36939e14 0.954390 0.477195 0.878797i \(-0.341654\pi\)
0.477195 + 0.878797i \(0.341654\pi\)
\(464\) −2.03824e14 −0.439953
\(465\) 0 0
\(466\) 5.30657e14 1.11864
\(467\) −6.49256e13 −0.135261 −0.0676306 0.997710i \(-0.521544\pi\)
−0.0676306 + 0.997710i \(0.521544\pi\)
\(468\) 0 0
\(469\) −1.99593e14 −0.406157
\(470\) 9.74755e12 0.0196046
\(471\) 0 0
\(472\) −3.62930e14 −0.713086
\(473\) 9.21440e14 1.78950
\(474\) 0 0
\(475\) −3.30569e14 −0.627260
\(476\) 9.24384e13 0.173386
\(477\) 0 0
\(478\) 3.70274e14 0.678687
\(479\) 1.01170e15 1.83318 0.916590 0.399828i \(-0.130930\pi\)
0.916590 + 0.399828i \(0.130930\pi\)
\(480\) 0 0
\(481\) −1.22460e15 −2.16869
\(482\) −2.80979e14 −0.491943
\(483\) 0 0
\(484\) −8.87244e13 −0.151843
\(485\) −2.25293e14 −0.381214
\(486\) 0 0
\(487\) −3.00339e14 −0.496824 −0.248412 0.968654i \(-0.579909\pi\)
−0.248412 + 0.968654i \(0.579909\pi\)
\(488\) −6.18913e14 −1.01233
\(489\) 0 0
\(490\) 1.25277e14 0.200351
\(491\) −9.16459e14 −1.44932 −0.724661 0.689106i \(-0.758003\pi\)
−0.724661 + 0.689106i \(0.758003\pi\)
\(492\) 0 0
\(493\) −3.91513e14 −0.605463
\(494\) −5.83658e14 −0.892607
\(495\) 0 0
\(496\) −5.80608e14 −0.868429
\(497\) −5.54954e14 −0.820913
\(498\) 0 0
\(499\) 1.18257e15 1.71109 0.855547 0.517726i \(-0.173221\pi\)
0.855547 + 0.517726i \(0.173221\pi\)
\(500\) −1.55495e14 −0.222526
\(501\) 0 0
\(502\) 3.10896e14 0.435255
\(503\) −5.42478e14 −0.751205 −0.375603 0.926781i \(-0.622564\pi\)
−0.375603 + 0.926781i \(0.622564\pi\)
\(504\) 0 0
\(505\) −4.46878e14 −0.605462
\(506\) −1.36707e14 −0.183215
\(507\) 0 0
\(508\) 1.76353e14 0.231276
\(509\) −3.73891e14 −0.485062 −0.242531 0.970144i \(-0.577978\pi\)
−0.242531 + 0.970144i \(0.577978\pi\)
\(510\) 0 0
\(511\) −6.08462e14 −0.772536
\(512\) −8.50527e14 −1.06833
\(513\) 0 0
\(514\) 1.07175e15 1.31763
\(515\) 1.94768e14 0.236907
\(516\) 0 0
\(517\) −4.97571e13 −0.0592457
\(518\) 9.00176e14 1.06051
\(519\) 0 0
\(520\) −5.76353e14 −0.664768
\(521\) 9.41376e14 1.07437 0.537187 0.843463i \(-0.319487\pi\)
0.537187 + 0.843463i \(0.319487\pi\)
\(522\) 0 0
\(523\) 6.38561e13 0.0713581 0.0356791 0.999363i \(-0.488641\pi\)
0.0356791 + 0.999363i \(0.488641\pi\)
\(524\) 6.12326e13 0.0677112
\(525\) 0 0
\(526\) 1.16327e15 1.25968
\(527\) −1.11525e15 −1.19513
\(528\) 0 0
\(529\) −9.25499e14 −0.971336
\(530\) −7.30382e14 −0.758634
\(531\) 0 0
\(532\) −1.51000e14 −0.153625
\(533\) −7.27617e14 −0.732661
\(534\) 0 0
\(535\) −7.48532e14 −0.738354
\(536\) 6.26036e14 0.611213
\(537\) 0 0
\(538\) 3.81526e14 0.364940
\(539\) −6.39485e14 −0.605469
\(540\) 0 0
\(541\) 7.25322e14 0.672893 0.336447 0.941703i \(-0.390775\pi\)
0.336447 + 0.941703i \(0.390775\pi\)
\(542\) −3.90530e14 −0.358639
\(543\) 0 0
\(544\) −5.19989e14 −0.467951
\(545\) −1.78231e14 −0.158782
\(546\) 0 0
\(547\) −1.11494e14 −0.0973464 −0.0486732 0.998815i \(-0.515499\pi\)
−0.0486732 + 0.998815i \(0.515499\pi\)
\(548\) −3.22613e14 −0.278861
\(549\) 0 0
\(550\) −9.77925e14 −0.828535
\(551\) 6.39543e14 0.536458
\(552\) 0 0
\(553\) −1.14820e15 −0.944121
\(554\) −3.31945e14 −0.270248
\(555\) 0 0
\(556\) −2.87103e14 −0.229153
\(557\) −2.27003e14 −0.179402 −0.0897012 0.995969i \(-0.528591\pi\)
−0.0897012 + 0.995969i \(0.528591\pi\)
\(558\) 0 0
\(559\) −2.32502e15 −1.80161
\(560\) 3.05353e14 0.234297
\(561\) 0 0
\(562\) −1.47478e15 −1.10963
\(563\) −1.40970e15 −1.05034 −0.525170 0.850997i \(-0.675998\pi\)
−0.525170 + 0.850997i \(0.675998\pi\)
\(564\) 0 0
\(565\) 7.30233e14 0.533575
\(566\) −1.60095e14 −0.115848
\(567\) 0 0
\(568\) 1.74065e15 1.23537
\(569\) −4.03462e14 −0.283586 −0.141793 0.989896i \(-0.545287\pi\)
−0.141793 + 0.989896i \(0.545287\pi\)
\(570\) 0 0
\(571\) 1.38965e14 0.0958091 0.0479046 0.998852i \(-0.484746\pi\)
0.0479046 + 0.998852i \(0.484746\pi\)
\(572\) 6.07698e14 0.414963
\(573\) 0 0
\(574\) 5.34853e14 0.358277
\(575\) 1.95367e14 0.129622
\(576\) 0 0
\(577\) −1.49055e14 −0.0970240 −0.0485120 0.998823i \(-0.515448\pi\)
−0.0485120 + 0.998823i \(0.515448\pi\)
\(578\) −1.93403e14 −0.124698
\(579\) 0 0
\(580\) 1.30449e14 0.0825249
\(581\) 7.99805e14 0.501205
\(582\) 0 0
\(583\) 3.72829e15 2.29262
\(584\) 1.90848e15 1.16256
\(585\) 0 0
\(586\) 3.49806e14 0.209118
\(587\) −2.53175e15 −1.49938 −0.749690 0.661789i \(-0.769798\pi\)
−0.749690 + 0.661789i \(0.769798\pi\)
\(588\) 0 0
\(589\) 1.82179e15 1.05892
\(590\) −4.75667e14 −0.273916
\(591\) 0 0
\(592\) −2.03499e15 −1.15025
\(593\) 7.38349e14 0.413486 0.206743 0.978395i \(-0.433714\pi\)
0.206743 + 0.978395i \(0.433714\pi\)
\(594\) 0 0
\(595\) 5.86533e14 0.322440
\(596\) 8.63321e13 0.0470238
\(597\) 0 0
\(598\) 3.44944e14 0.184456
\(599\) −2.47110e15 −1.30931 −0.654656 0.755927i \(-0.727186\pi\)
−0.654656 + 0.755927i \(0.727186\pi\)
\(600\) 0 0
\(601\) 2.10961e15 1.09747 0.548735 0.835996i \(-0.315110\pi\)
0.548735 + 0.835996i \(0.315110\pi\)
\(602\) 1.70906e15 0.881003
\(603\) 0 0
\(604\) 3.44798e14 0.174527
\(605\) −5.62967e14 −0.282377
\(606\) 0 0
\(607\) 2.87834e15 1.41777 0.708883 0.705326i \(-0.249200\pi\)
0.708883 + 0.705326i \(0.249200\pi\)
\(608\) 8.49411e14 0.414618
\(609\) 0 0
\(610\) −8.11165e14 −0.388862
\(611\) 1.25549e14 0.0596468
\(612\) 0 0
\(613\) 1.06157e15 0.495352 0.247676 0.968843i \(-0.420333\pi\)
0.247676 + 0.968843i \(0.420333\pi\)
\(614\) 4.97750e14 0.230189
\(615\) 0 0
\(616\) −2.16262e15 −0.982394
\(617\) 1.87568e15 0.844480 0.422240 0.906484i \(-0.361244\pi\)
0.422240 + 0.906484i \(0.361244\pi\)
\(618\) 0 0
\(619\) −2.79678e15 −1.23697 −0.618485 0.785797i \(-0.712253\pi\)
−0.618485 + 0.785797i \(0.712253\pi\)
\(620\) 3.71593e14 0.162897
\(621\) 0 0
\(622\) −5.39752e14 −0.232460
\(623\) 2.54389e15 1.08596
\(624\) 0 0
\(625\) 8.38752e14 0.351798
\(626\) 2.49955e15 1.03921
\(627\) 0 0
\(628\) 7.68354e14 0.313894
\(629\) −3.90889e15 −1.58298
\(630\) 0 0
\(631\) −1.21754e14 −0.0484530 −0.0242265 0.999706i \(-0.507712\pi\)
−0.0242265 + 0.999706i \(0.507712\pi\)
\(632\) 3.60139e15 1.42078
\(633\) 0 0
\(634\) 2.13672e15 0.828431
\(635\) 1.11898e15 0.430097
\(636\) 0 0
\(637\) 1.61358e15 0.609569
\(638\) 1.89196e15 0.708597
\(639\) 0 0
\(640\) −5.86671e14 −0.215975
\(641\) 2.53322e14 0.0924600 0.0462300 0.998931i \(-0.485279\pi\)
0.0462300 + 0.998931i \(0.485279\pi\)
\(642\) 0 0
\(643\) −5.12828e15 −1.83997 −0.919986 0.391951i \(-0.871800\pi\)
−0.919986 + 0.391951i \(0.871800\pi\)
\(644\) 8.92413e13 0.0317463
\(645\) 0 0
\(646\) −1.86302e15 −0.651535
\(647\) −1.76264e14 −0.0611210 −0.0305605 0.999533i \(-0.509729\pi\)
−0.0305605 + 0.999533i \(0.509729\pi\)
\(648\) 0 0
\(649\) 2.42808e15 0.827783
\(650\) 2.46754e15 0.834144
\(651\) 0 0
\(652\) 9.54241e14 0.317173
\(653\) 1.28765e15 0.424399 0.212199 0.977226i \(-0.431937\pi\)
0.212199 + 0.977226i \(0.431937\pi\)
\(654\) 0 0
\(655\) 3.88528e14 0.125920
\(656\) −1.20912e15 −0.388596
\(657\) 0 0
\(658\) −9.22882e13 −0.0291678
\(659\) 5.39386e15 1.69056 0.845279 0.534325i \(-0.179434\pi\)
0.845279 + 0.534325i \(0.179434\pi\)
\(660\) 0 0
\(661\) 1.62130e15 0.499753 0.249876 0.968278i \(-0.419610\pi\)
0.249876 + 0.968278i \(0.419610\pi\)
\(662\) 1.37677e15 0.420865
\(663\) 0 0
\(664\) −2.50864e15 −0.754247
\(665\) −9.58112e14 −0.285691
\(666\) 0 0
\(667\) −3.77972e14 −0.110858
\(668\) −1.51507e14 −0.0440718
\(669\) 0 0
\(670\) 8.20500e14 0.234783
\(671\) 4.14065e15 1.17515
\(672\) 0 0
\(673\) −5.93173e15 −1.65615 −0.828073 0.560620i \(-0.810563\pi\)
−0.828073 + 0.560620i \(0.810563\pi\)
\(674\) 8.42439e14 0.233297
\(675\) 0 0
\(676\) −5.77868e14 −0.157443
\(677\) −6.75109e15 −1.82447 −0.912234 0.409670i \(-0.865644\pi\)
−0.912234 + 0.409670i \(0.865644\pi\)
\(678\) 0 0
\(679\) 2.13304e15 0.567173
\(680\) −1.83970e15 −0.485230
\(681\) 0 0
\(682\) 5.38941e15 1.39871
\(683\) 4.47959e15 1.15325 0.576626 0.817008i \(-0.304369\pi\)
0.576626 + 0.817008i \(0.304369\pi\)
\(684\) 0 0
\(685\) −2.04702e15 −0.518589
\(686\) −3.65104e15 −0.917560
\(687\) 0 0
\(688\) −3.86361e15 −0.955558
\(689\) −9.40737e15 −2.30814
\(690\) 0 0
\(691\) −3.76180e15 −0.908379 −0.454189 0.890905i \(-0.650071\pi\)
−0.454189 + 0.890905i \(0.650071\pi\)
\(692\) 8.03664e14 0.192527
\(693\) 0 0
\(694\) −4.94902e15 −1.16692
\(695\) −1.82170e15 −0.426149
\(696\) 0 0
\(697\) −2.32253e15 −0.534786
\(698\) 2.96303e15 0.676910
\(699\) 0 0
\(700\) 6.38385e14 0.143563
\(701\) 5.60965e15 1.25166 0.625831 0.779959i \(-0.284760\pi\)
0.625831 + 0.779959i \(0.284760\pi\)
\(702\) 0 0
\(703\) 6.38524e15 1.40257
\(704\) 6.39192e15 1.39310
\(705\) 0 0
\(706\) −3.93533e15 −0.844414
\(707\) 4.23097e15 0.900810
\(708\) 0 0
\(709\) 4.92456e15 1.03232 0.516159 0.856493i \(-0.327361\pi\)
0.516159 + 0.856493i \(0.327361\pi\)
\(710\) 2.28134e15 0.474537
\(711\) 0 0
\(712\) −7.97908e15 −1.63423
\(713\) −1.07668e15 −0.218824
\(714\) 0 0
\(715\) 3.85591e15 0.771692
\(716\) −8.23694e14 −0.163585
\(717\) 0 0
\(718\) 4.86390e15 0.951263
\(719\) −9.38020e15 −1.82055 −0.910276 0.414002i \(-0.864131\pi\)
−0.910276 + 0.414002i \(0.864131\pi\)
\(720\) 0 0
\(721\) −1.84403e15 −0.352472
\(722\) −1.49065e15 −0.282762
\(723\) 0 0
\(724\) 2.02619e14 0.0378545
\(725\) −2.70381e15 −0.501322
\(726\) 0 0
\(727\) 1.46931e15 0.268332 0.134166 0.990959i \(-0.457164\pi\)
0.134166 + 0.990959i \(0.457164\pi\)
\(728\) 5.45681e15 0.989045
\(729\) 0 0
\(730\) 2.50131e15 0.446572
\(731\) −7.42137e15 −1.31504
\(732\) 0 0
\(733\) −8.64113e15 −1.50834 −0.754169 0.656681i \(-0.771960\pi\)
−0.754169 + 0.656681i \(0.771960\pi\)
\(734\) −2.72944e15 −0.472873
\(735\) 0 0
\(736\) −5.02004e14 −0.0856800
\(737\) −4.18830e15 −0.709524
\(738\) 0 0
\(739\) 1.31994e15 0.220298 0.110149 0.993915i \(-0.464867\pi\)
0.110149 + 0.993915i \(0.464867\pi\)
\(740\) 1.30241e15 0.215761
\(741\) 0 0
\(742\) 6.91513e15 1.12870
\(743\) −4.26310e15 −0.690695 −0.345348 0.938475i \(-0.612239\pi\)
−0.345348 + 0.938475i \(0.612239\pi\)
\(744\) 0 0
\(745\) 5.47788e14 0.0874486
\(746\) −5.44394e15 −0.862681
\(747\) 0 0
\(748\) 1.93975e15 0.302891
\(749\) 7.08697e15 1.09853
\(750\) 0 0
\(751\) −6.11106e15 −0.933462 −0.466731 0.884399i \(-0.654568\pi\)
−0.466731 + 0.884399i \(0.654568\pi\)
\(752\) 2.08632e14 0.0316361
\(753\) 0 0
\(754\) −4.77388e15 −0.713394
\(755\) 2.18779e15 0.324561
\(756\) 0 0
\(757\) 9.63454e15 1.40865 0.704326 0.709877i \(-0.251250\pi\)
0.704326 + 0.709877i \(0.251250\pi\)
\(758\) −4.81973e15 −0.699587
\(759\) 0 0
\(760\) 3.00518e15 0.429928
\(761\) 2.84480e15 0.404051 0.202026 0.979380i \(-0.435248\pi\)
0.202026 + 0.979380i \(0.435248\pi\)
\(762\) 0 0
\(763\) 1.68746e15 0.236237
\(764\) 1.24240e15 0.172682
\(765\) 0 0
\(766\) 5.62889e15 0.771196
\(767\) −6.12663e15 −0.833387
\(768\) 0 0
\(769\) 1.40069e16 1.87822 0.939110 0.343616i \(-0.111652\pi\)
0.939110 + 0.343616i \(0.111652\pi\)
\(770\) −2.83439e15 −0.377364
\(771\) 0 0
\(772\) 2.66184e15 0.349370
\(773\) −1.33026e16 −1.73360 −0.866798 0.498659i \(-0.833826\pi\)
−0.866798 + 0.498659i \(0.833826\pi\)
\(774\) 0 0
\(775\) −7.70201e15 −0.989566
\(776\) −6.69041e15 −0.853520
\(777\) 0 0
\(778\) −4.94516e15 −0.622003
\(779\) 3.79389e15 0.473836
\(780\) 0 0
\(781\) −1.16453e16 −1.43407
\(782\) 1.10105e15 0.134638
\(783\) 0 0
\(784\) 2.68137e15 0.323309
\(785\) 4.87530e15 0.583738
\(786\) 0 0
\(787\) 8.40292e15 0.992131 0.496065 0.868285i \(-0.334778\pi\)
0.496065 + 0.868285i \(0.334778\pi\)
\(788\) 1.33912e15 0.157009
\(789\) 0 0
\(790\) 4.72008e15 0.545758
\(791\) −6.91372e15 −0.793855
\(792\) 0 0
\(793\) −1.04479e16 −1.18311
\(794\) 1.42683e16 1.60458
\(795\) 0 0
\(796\) −1.43695e15 −0.159375
\(797\) −1.01373e16 −1.11661 −0.558306 0.829635i \(-0.688549\pi\)
−0.558306 + 0.829635i \(0.688549\pi\)
\(798\) 0 0
\(799\) 4.00749e14 0.0435376
\(800\) −3.59107e15 −0.387462
\(801\) 0 0
\(802\) 4.25356e15 0.452682
\(803\) −1.27681e16 −1.34956
\(804\) 0 0
\(805\) 5.66247e14 0.0590376
\(806\) −1.35988e16 −1.40818
\(807\) 0 0
\(808\) −1.32707e16 −1.35560
\(809\) −1.09699e14 −0.0111297 −0.00556487 0.999985i \(-0.501771\pi\)
−0.00556487 + 0.999985i \(0.501771\pi\)
\(810\) 0 0
\(811\) 5.29565e15 0.530035 0.265018 0.964244i \(-0.414622\pi\)
0.265018 + 0.964244i \(0.414622\pi\)
\(812\) −1.23506e15 −0.122781
\(813\) 0 0
\(814\) 1.88895e16 1.85262
\(815\) 6.05477e15 0.589836
\(816\) 0 0
\(817\) 1.21229e16 1.16516
\(818\) −5.81214e15 −0.554872
\(819\) 0 0
\(820\) 7.73845e14 0.0728916
\(821\) 4.44266e15 0.415676 0.207838 0.978163i \(-0.433357\pi\)
0.207838 + 0.978163i \(0.433357\pi\)
\(822\) 0 0
\(823\) −1.11414e16 −1.02858 −0.514291 0.857616i \(-0.671945\pi\)
−0.514291 + 0.857616i \(0.671945\pi\)
\(824\) 5.78393e15 0.530424
\(825\) 0 0
\(826\) 4.50353e15 0.407533
\(827\) 1.64160e16 1.47567 0.737833 0.674983i \(-0.235849\pi\)
0.737833 + 0.674983i \(0.235849\pi\)
\(828\) 0 0
\(829\) −1.29613e16 −1.14973 −0.574867 0.818247i \(-0.694946\pi\)
−0.574867 + 0.818247i \(0.694946\pi\)
\(830\) −3.28789e15 −0.289727
\(831\) 0 0
\(832\) −1.61284e16 −1.40253
\(833\) 5.15048e15 0.444938
\(834\) 0 0
\(835\) −9.61327e14 −0.0819588
\(836\) −3.16861e15 −0.268371
\(837\) 0 0
\(838\) 1.80336e16 1.50744
\(839\) 4.89379e15 0.406401 0.203201 0.979137i \(-0.434866\pi\)
0.203201 + 0.979137i \(0.434866\pi\)
\(840\) 0 0
\(841\) −6.96953e15 −0.571249
\(842\) 7.51027e15 0.611560
\(843\) 0 0
\(844\) −3.23403e15 −0.259933
\(845\) −3.66664e15 −0.292790
\(846\) 0 0
\(847\) 5.33008e15 0.420122
\(848\) −1.56328e16 −1.22422
\(849\) 0 0
\(850\) 7.87631e15 0.608862
\(851\) −3.77370e15 −0.289838
\(852\) 0 0
\(853\) 7.07831e15 0.536673 0.268337 0.963325i \(-0.413526\pi\)
0.268337 + 0.963325i \(0.413526\pi\)
\(854\) 7.67997e15 0.578551
\(855\) 0 0
\(856\) −2.22287e16 −1.65314
\(857\) 2.31170e15 0.170819 0.0854095 0.996346i \(-0.472780\pi\)
0.0854095 + 0.996346i \(0.472780\pi\)
\(858\) 0 0
\(859\) −1.97815e16 −1.44310 −0.721551 0.692361i \(-0.756570\pi\)
−0.721551 + 0.692361i \(0.756570\pi\)
\(860\) 2.47273e15 0.179240
\(861\) 0 0
\(862\) −4.93295e15 −0.353034
\(863\) 1.59925e16 1.13725 0.568627 0.822595i \(-0.307475\pi\)
0.568627 + 0.822595i \(0.307475\pi\)
\(864\) 0 0
\(865\) 5.09934e15 0.358035
\(866\) 4.32035e15 0.301419
\(867\) 0 0
\(868\) −3.51818e15 −0.242359
\(869\) −2.40940e16 −1.64930
\(870\) 0 0
\(871\) 1.05681e16 0.714327
\(872\) −5.29282e15 −0.355506
\(873\) 0 0
\(874\) −1.79858e15 −0.119294
\(875\) 9.34127e15 0.615689
\(876\) 0 0
\(877\) 1.40825e16 0.916602 0.458301 0.888797i \(-0.348458\pi\)
0.458301 + 0.888797i \(0.348458\pi\)
\(878\) 1.47750e16 0.955667
\(879\) 0 0
\(880\) 6.40759e15 0.409298
\(881\) 2.05758e16 1.30614 0.653068 0.757299i \(-0.273481\pi\)
0.653068 + 0.757299i \(0.273481\pi\)
\(882\) 0 0
\(883\) −1.09044e16 −0.683627 −0.341814 0.939768i \(-0.611041\pi\)
−0.341814 + 0.939768i \(0.611041\pi\)
\(884\) −4.89446e15 −0.304942
\(885\) 0 0
\(886\) −2.14293e16 −1.31863
\(887\) 6.08971e15 0.372406 0.186203 0.982511i \(-0.440382\pi\)
0.186203 + 0.982511i \(0.440382\pi\)
\(888\) 0 0
\(889\) −1.05943e16 −0.639901
\(890\) −1.04576e16 −0.627751
\(891\) 0 0
\(892\) 2.97323e15 0.176287
\(893\) −6.54630e14 −0.0385756
\(894\) 0 0
\(895\) −5.22644e15 −0.304214
\(896\) 5.55450e15 0.321330
\(897\) 0 0
\(898\) 1.10279e16 0.630190
\(899\) 1.49009e16 0.846317
\(900\) 0 0
\(901\) −3.00280e16 −1.68477
\(902\) 1.12235e16 0.625881
\(903\) 0 0
\(904\) 2.16853e16 1.19465
\(905\) 1.28564e15 0.0703966
\(906\) 0 0
\(907\) −1.82430e16 −0.986859 −0.493429 0.869786i \(-0.664257\pi\)
−0.493429 + 0.869786i \(0.664257\pi\)
\(908\) −2.14030e15 −0.115081
\(909\) 0 0
\(910\) 7.15185e15 0.379919
\(911\) 1.23507e16 0.652140 0.326070 0.945346i \(-0.394276\pi\)
0.326070 + 0.945346i \(0.394276\pi\)
\(912\) 0 0
\(913\) 1.67833e16 0.875564
\(914\) 4.96232e15 0.257324
\(915\) 0 0
\(916\) −5.46063e15 −0.279781
\(917\) −3.67852e15 −0.187345
\(918\) 0 0
\(919\) −8.70126e14 −0.0437871 −0.0218936 0.999760i \(-0.506969\pi\)
−0.0218936 + 0.999760i \(0.506969\pi\)
\(920\) −1.77607e15 −0.0888437
\(921\) 0 0
\(922\) −1.19623e16 −0.591282
\(923\) 2.93839e16 1.44378
\(924\) 0 0
\(925\) −2.69950e16 −1.31070
\(926\) 1.70061e16 0.820814
\(927\) 0 0
\(928\) 6.94754e15 0.331373
\(929\) 1.98416e16 0.940784 0.470392 0.882458i \(-0.344113\pi\)
0.470392 + 0.882458i \(0.344113\pi\)
\(930\) 0 0
\(931\) −8.41340e15 −0.394229
\(932\) −7.26915e15 −0.338607
\(933\) 0 0
\(934\) −2.52697e15 −0.116330
\(935\) 1.23079e16 0.563276
\(936\) 0 0
\(937\) 2.15194e16 0.973336 0.486668 0.873587i \(-0.338212\pi\)
0.486668 + 0.873587i \(0.338212\pi\)
\(938\) −7.76836e15 −0.349312
\(939\) 0 0
\(940\) −1.33526e14 −0.00593420
\(941\) 2.01951e16 0.892285 0.446142 0.894962i \(-0.352798\pi\)
0.446142 + 0.894962i \(0.352798\pi\)
\(942\) 0 0
\(943\) −2.24220e15 −0.0979174
\(944\) −1.01810e16 −0.442021
\(945\) 0 0
\(946\) 3.58634e16 1.53904
\(947\) 2.57658e16 1.09931 0.549654 0.835392i \(-0.314760\pi\)
0.549654 + 0.835392i \(0.314760\pi\)
\(948\) 0 0
\(949\) 3.22170e16 1.35869
\(950\) −1.28661e16 −0.539469
\(951\) 0 0
\(952\) 1.74179e16 0.721927
\(953\) −5.27859e15 −0.217524 −0.108762 0.994068i \(-0.534689\pi\)
−0.108762 + 0.994068i \(0.534689\pi\)
\(954\) 0 0
\(955\) 7.88318e15 0.321131
\(956\) −5.07216e15 −0.205435
\(957\) 0 0
\(958\) 3.93763e16 1.57661
\(959\) 1.93808e16 0.771560
\(960\) 0 0
\(961\) 1.70378e16 0.670555
\(962\) −4.76628e16 −1.86516
\(963\) 0 0
\(964\) 3.84896e15 0.148909
\(965\) 1.68897e16 0.649712
\(966\) 0 0
\(967\) −1.11683e16 −0.424759 −0.212379 0.977187i \(-0.568121\pi\)
−0.212379 + 0.977187i \(0.568121\pi\)
\(968\) −1.67181e16 −0.632227
\(969\) 0 0
\(970\) −8.76865e15 −0.327860
\(971\) −3.16576e16 −1.17699 −0.588494 0.808502i \(-0.700279\pi\)
−0.588494 + 0.808502i \(0.700279\pi\)
\(972\) 0 0
\(973\) 1.72476e16 0.634027
\(974\) −1.16895e16 −0.427289
\(975\) 0 0
\(976\) −1.73618e16 −0.627511
\(977\) −1.19881e16 −0.430854 −0.215427 0.976520i \(-0.569114\pi\)
−0.215427 + 0.976520i \(0.569114\pi\)
\(978\) 0 0
\(979\) 5.33816e16 1.89709
\(980\) −1.71609e15 −0.0606453
\(981\) 0 0
\(982\) −3.56695e16 −1.24648
\(983\) −1.72000e16 −0.597701 −0.298850 0.954300i \(-0.596603\pi\)
−0.298850 + 0.954300i \(0.596603\pi\)
\(984\) 0 0
\(985\) 8.49689e15 0.291985
\(986\) −1.52381e16 −0.520723
\(987\) 0 0
\(988\) 7.99518e15 0.270187
\(989\) −7.16470e15 −0.240779
\(990\) 0 0
\(991\) 5.83721e15 0.193999 0.0969996 0.995284i \(-0.469075\pi\)
0.0969996 + 0.995284i \(0.469075\pi\)
\(992\) 1.97906e16 0.654102
\(993\) 0 0
\(994\) −2.15994e16 −0.706019
\(995\) −9.11763e15 −0.296384
\(996\) 0 0
\(997\) −2.93240e16 −0.942756 −0.471378 0.881931i \(-0.656243\pi\)
−0.471378 + 0.881931i \(0.656243\pi\)
\(998\) 4.60268e16 1.47161
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.12.a.e.1.7 10
3.2 odd 2 81.12.a.c.1.4 10
9.2 odd 6 27.12.c.a.10.7 20
9.4 even 3 9.12.c.a.7.4 yes 20
9.5 odd 6 27.12.c.a.19.7 20
9.7 even 3 9.12.c.a.4.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.12.c.a.4.4 20 9.7 even 3
9.12.c.a.7.4 yes 20 9.4 even 3
27.12.c.a.10.7 20 9.2 odd 6
27.12.c.a.19.7 20 9.5 odd 6
81.12.a.c.1.4 10 3.2 odd 2
81.12.a.e.1.7 10 1.1 even 1 trivial