Properties

Label 27.12.c.a.10.7
Level $27$
Weight $12$
Character 27.10
Analytic conductor $20.745$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,12,Mod(10,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.10"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 27.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.7452658751\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 9863 x^{18} + 40416552 x^{16} + 89424581388 x^{14} + 116167273852206 x^{12} + \cdots + 59\!\cdots\!24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{24}\cdot 3^{65} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 10.7
Root \(-20.7390i\) of defining polynomial
Character \(\chi\) \(=\) 27.10
Dual form 27.12.c.a.19.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(19.4605 + 33.7066i) q^{2} +(266.578 - 461.726i) q^{4} +(-1691.47 + 2929.71i) q^{5} +(-16014.5 - 27738.0i) q^{7} +100461. q^{8} -131667. q^{10} +(336053. + 582060. i) q^{11} +(847942. - 1.46868e6i) q^{13} +(623302. - 1.07959e6i) q^{14} +(1.40907e6 + 2.44059e6i) q^{16} +5.41320e6 q^{17} +8.84256e6 q^{19} +(901815. + 1.56199e6i) q^{20} +(-1.30795e7 + 2.26544e7i) q^{22} +(-2.61299e6 + 4.52583e6i) q^{23} +(1.86919e7 + 3.23754e7i) q^{25} +6.60055e7 q^{26} -1.70765e7 q^{28} +(3.61628e7 + 6.26357e7i) q^{29} +(-1.03012e8 + 1.78423e8i) q^{31} +(4.80297e7 - 8.31898e7i) q^{32} +(1.05344e8 + 1.82461e8i) q^{34} +1.08352e8 q^{35} +7.22103e8 q^{37} +(1.72081e8 + 2.98053e8i) q^{38} +(-1.69927e8 + 2.94322e8i) q^{40} +(2.14524e8 - 3.71567e8i) q^{41} +(-6.85488e8 - 1.18730e9i) q^{43} +3.58337e8 q^{44} -2.03400e8 q^{46} +(-3.70158e7 - 6.41133e7i) q^{47} +(4.75733e8 - 8.23993e8i) q^{49} +(-7.27509e8 + 1.26008e9i) q^{50} +(-4.52085e8 - 7.83034e8i) q^{52} -5.54718e9 q^{53} -2.27369e9 q^{55} +(-1.60884e9 - 2.78659e9i) q^{56} +(-1.40749e9 + 2.43785e9i) q^{58} +(1.80632e9 - 3.12864e9i) q^{59} +(-3.08036e9 - 5.33534e9i) q^{61} -8.01870e9 q^{62} +9.51029e9 q^{64} +(2.86853e9 + 4.96845e9i) q^{65} +(3.11581e9 - 5.39674e9i) q^{67} +(1.44304e9 - 2.49942e9i) q^{68} +(2.10859e9 + 3.65218e9i) q^{70} +1.73266e10 q^{71} -1.89972e10 q^{73} +(1.40525e10 + 2.43396e10i) q^{74} +(2.35723e9 - 4.08284e9i) q^{76} +(1.07635e10 - 1.86428e10i) q^{77} +(1.79243e10 + 3.10458e10i) q^{79} -9.53361e9 q^{80} +1.66990e10 q^{82} +(1.24856e10 + 2.16257e10i) q^{83} +(-9.15626e9 + 1.58591e10i) q^{85} +(2.66799e10 - 4.62109e10i) q^{86} +(3.37602e10 + 5.84744e10i) q^{88} -7.94245e10 q^{89} -5.43176e10 q^{91} +(1.39313e9 + 2.41297e9i) q^{92} +(1.44069e9 - 2.49536e9i) q^{94} +(-1.49569e10 + 2.59061e10i) q^{95} +(-3.32985e10 - 5.76747e10i) q^{97} +3.70320e10 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 33 q^{2} - 9217 q^{4} + 7230 q^{5} + 8512 q^{7} + 29118 q^{8} + 4092 q^{10} + 112776 q^{11} + 279706 q^{13} + 3901584 q^{14} - 7342081 q^{16} - 27765792 q^{17} + 7029400 q^{19} + 34163508 q^{20}+ \cdots - 1310123604078 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 19.4605 + 33.7066i 0.430020 + 0.744817i 0.996875 0.0790010i \(-0.0251730\pi\)
−0.566854 + 0.823818i \(0.691840\pi\)
\(3\) 0 0
\(4\) 266.578 461.726i 0.130165 0.225452i
\(5\) −1691.47 + 2929.71i −0.242063 + 0.419266i −0.961302 0.275497i \(-0.911157\pi\)
0.719239 + 0.694763i \(0.244491\pi\)
\(6\) 0 0
\(7\) −16014.5 27738.0i −0.360143 0.623786i 0.627841 0.778342i \(-0.283939\pi\)
−0.987984 + 0.154556i \(0.950605\pi\)
\(8\) 100461. 1.08394
\(9\) 0 0
\(10\) −131667. −0.416368
\(11\) 336053. + 582060.i 0.629140 + 1.08970i 0.987725 + 0.156206i \(0.0499263\pi\)
−0.358584 + 0.933497i \(0.616740\pi\)
\(12\) 0 0
\(13\) 847942. 1.46868e6i 0.633400 1.09708i −0.353452 0.935453i \(-0.614992\pi\)
0.986852 0.161628i \(-0.0516744\pi\)
\(14\) 623302. 1.07959e6i 0.309738 0.536481i
\(15\) 0 0
\(16\) 1.40907e6 + 2.44059e6i 0.335949 + 0.581881i
\(17\) 5.41320e6 0.924667 0.462333 0.886706i \(-0.347012\pi\)
0.462333 + 0.886706i \(0.347012\pi\)
\(18\) 0 0
\(19\) 8.84256e6 0.819282 0.409641 0.912247i \(-0.365654\pi\)
0.409641 + 0.912247i \(0.365654\pi\)
\(20\) 901815. + 1.56199e6i 0.0630163 + 0.109147i
\(21\) 0 0
\(22\) −1.30795e7 + 2.26544e7i −0.541086 + 0.937189i
\(23\) −2.61299e6 + 4.52583e6i −0.0846515 + 0.146621i −0.905243 0.424895i \(-0.860311\pi\)
0.820591 + 0.571516i \(0.193644\pi\)
\(24\) 0 0
\(25\) 1.86919e7 + 3.23754e7i 0.382811 + 0.663048i
\(26\) 6.60055e7 1.08950
\(27\) 0 0
\(28\) −1.70765e7 −0.187512
\(29\) 3.61628e7 + 6.26357e7i 0.327395 + 0.567065i 0.981994 0.188911i \(-0.0604958\pi\)
−0.654599 + 0.755976i \(0.727162\pi\)
\(30\) 0 0
\(31\) −1.03012e8 + 1.78423e8i −0.646250 + 1.11934i 0.337762 + 0.941232i \(0.390330\pi\)
−0.984011 + 0.178106i \(0.943003\pi\)
\(32\) 4.80297e7 8.31898e7i 0.253037 0.438274i
\(33\) 0 0
\(34\) 1.05344e8 + 1.82461e8i 0.397626 + 0.688708i
\(35\) 1.08352e8 0.348709
\(36\) 0 0
\(37\) 7.22103e8 1.71194 0.855972 0.517021i \(-0.172959\pi\)
0.855972 + 0.517021i \(0.172959\pi\)
\(38\) 1.72081e8 + 2.98053e8i 0.352308 + 0.610215i
\(39\) 0 0
\(40\) −1.69927e8 + 2.94322e8i −0.262381 + 0.454457i
\(41\) 2.14524e8 3.71567e8i 0.289178 0.500871i −0.684436 0.729073i \(-0.739951\pi\)
0.973614 + 0.228202i \(0.0732848\pi\)
\(42\) 0 0
\(43\) −6.85488e8 1.18730e9i −0.711088 1.23164i −0.964449 0.264269i \(-0.914869\pi\)
0.253361 0.967372i \(-0.418464\pi\)
\(44\) 3.58337e8 0.327568
\(45\) 0 0
\(46\) −2.03400e8 −0.145608
\(47\) −3.70158e7 6.41133e7i −0.0235423 0.0407765i 0.854014 0.520250i \(-0.174161\pi\)
−0.877557 + 0.479473i \(0.840828\pi\)
\(48\) 0 0
\(49\) 4.75733e8 8.23993e8i 0.240594 0.416721i
\(50\) −7.27509e8 + 1.26008e9i −0.329233 + 0.570248i
\(51\) 0 0
\(52\) −4.52085e8 7.83034e8i −0.164893 0.285603i
\(53\) −5.54718e9 −1.82203 −0.911014 0.412377i \(-0.864699\pi\)
−0.911014 + 0.412377i \(0.864699\pi\)
\(54\) 0 0
\(55\) −2.27369e9 −0.609167
\(56\) −1.60884e9 2.78659e9i −0.390372 0.676144i
\(57\) 0 0
\(58\) −1.40749e9 + 2.43785e9i −0.281573 + 0.487699i
\(59\) 1.80632e9 3.12864e9i 0.328934 0.569731i −0.653367 0.757042i \(-0.726644\pi\)
0.982301 + 0.187311i \(0.0599773\pi\)
\(60\) 0 0
\(61\) −3.08036e9 5.33534e9i −0.466968 0.808813i 0.532320 0.846543i \(-0.321320\pi\)
−0.999288 + 0.0377307i \(0.987987\pi\)
\(62\) −8.01870e9 −1.11160
\(63\) 0 0
\(64\) 9.51029e9 1.10714
\(65\) 2.86853e9 + 4.96845e9i 0.306645 + 0.531126i
\(66\) 0 0
\(67\) 3.11581e9 5.39674e9i 0.281942 0.488337i −0.689921 0.723884i \(-0.742355\pi\)
0.971863 + 0.235547i \(0.0756882\pi\)
\(68\) 1.44304e9 2.49942e9i 0.120359 0.208468i
\(69\) 0 0
\(70\) 2.10859e9 + 3.65218e9i 0.149952 + 0.259725i
\(71\) 1.73266e10 1.13970 0.569852 0.821747i \(-0.307001\pi\)
0.569852 + 0.821747i \(0.307001\pi\)
\(72\) 0 0
\(73\) −1.89972e10 −1.07254 −0.536270 0.844046i \(-0.680167\pi\)
−0.536270 + 0.844046i \(0.680167\pi\)
\(74\) 1.40525e10 + 2.43396e10i 0.736171 + 1.27509i
\(75\) 0 0
\(76\) 2.35723e9 4.08284e9i 0.106642 0.184709i
\(77\) 1.07635e10 1.86428e10i 0.453161 0.784898i
\(78\) 0 0
\(79\) 1.79243e10 + 3.10458e10i 0.655379 + 1.13515i 0.981799 + 0.189925i \(0.0608245\pi\)
−0.326420 + 0.945225i \(0.605842\pi\)
\(80\) −9.53361e9 −0.325284
\(81\) 0 0
\(82\) 1.66990e10 0.497410
\(83\) 1.24856e10 + 2.16257e10i 0.347921 + 0.602617i 0.985880 0.167454i \(-0.0535544\pi\)
−0.637959 + 0.770070i \(0.720221\pi\)
\(84\) 0 0
\(85\) −9.15626e9 + 1.58591e10i −0.223828 + 0.387681i
\(86\) 2.66799e10 4.62109e10i 0.611565 1.05926i
\(87\) 0 0
\(88\) 3.37602e10 + 5.84744e10i 0.681947 + 1.18117i
\(89\) −7.94245e10 −1.50768 −0.753841 0.657057i \(-0.771801\pi\)
−0.753841 + 0.657057i \(0.771801\pi\)
\(90\) 0 0
\(91\) −5.43176e10 −0.912458
\(92\) 1.39313e9 + 2.41297e9i 0.0220373 + 0.0381698i
\(93\) 0 0
\(94\) 1.44069e9 2.49536e9i 0.0202474 0.0350695i
\(95\) −1.49569e10 + 2.59061e10i −0.198318 + 0.343497i
\(96\) 0 0
\(97\) −3.32985e10 5.76747e10i −0.393713 0.681932i 0.599223 0.800582i \(-0.295476\pi\)
−0.992936 + 0.118651i \(0.962143\pi\)
\(98\) 3.70320e10 0.413841
\(99\) 0 0
\(100\) 1.99314e10 0.199314
\(101\) 6.60489e10 + 1.14400e11i 0.625314 + 1.08308i 0.988480 + 0.151351i \(0.0483624\pi\)
−0.363166 + 0.931724i \(0.618304\pi\)
\(102\) 0 0
\(103\) 2.87869e10 4.98604e10i 0.244675 0.423790i −0.717365 0.696698i \(-0.754652\pi\)
0.962040 + 0.272908i \(0.0879853\pi\)
\(104\) 8.51853e10 1.47545e11i 0.686564 1.18916i
\(105\) 0 0
\(106\) −1.07951e11 1.86976e11i −0.783509 1.35708i
\(107\) −2.21267e11 −1.52513 −0.762563 0.646914i \(-0.776059\pi\)
−0.762563 + 0.646914i \(0.776059\pi\)
\(108\) 0 0
\(109\) 5.26853e10 0.327977 0.163989 0.986462i \(-0.447564\pi\)
0.163989 + 0.986462i \(0.447564\pi\)
\(110\) −4.42471e10 7.66383e10i −0.261954 0.453718i
\(111\) 0 0
\(112\) 4.51313e10 7.81697e10i 0.241980 0.419121i
\(113\) −1.07929e11 + 1.86938e11i −0.551070 + 0.954480i 0.447128 + 0.894470i \(0.352447\pi\)
−0.998198 + 0.0600105i \(0.980887\pi\)
\(114\) 0 0
\(115\) −8.83958e9 1.53106e10i −0.0409820 0.0709830i
\(116\) 3.85607e10 0.170462
\(117\) 0 0
\(118\) 1.40608e11 0.565794
\(119\) −8.66899e10 1.50151e11i −0.333012 0.576794i
\(120\) 0 0
\(121\) −8.32069e10 + 1.44119e11i −0.291635 + 0.505127i
\(122\) 1.19891e11 2.07657e11i 0.401612 0.695612i
\(123\) 0 0
\(124\) 5.49216e10 + 9.51271e10i 0.168238 + 0.291397i
\(125\) −2.91650e11 −0.854784
\(126\) 0 0
\(127\) −3.30771e11 −0.888398 −0.444199 0.895928i \(-0.646512\pi\)
−0.444199 + 0.895928i \(0.646512\pi\)
\(128\) 8.67103e10 + 1.50187e11i 0.223057 + 0.386346i
\(129\) 0 0
\(130\) −1.11646e11 + 1.93377e11i −0.263728 + 0.456790i
\(131\) −5.74247e10 + 9.94625e10i −0.130049 + 0.225251i −0.923695 0.383128i \(-0.874847\pi\)
0.793646 + 0.608379i \(0.208180\pi\)
\(132\) 0 0
\(133\) −1.41610e11 2.45275e11i −0.295059 0.511057i
\(134\) 2.42541e11 0.484963
\(135\) 0 0
\(136\) 5.43817e11 1.00228
\(137\) 3.02550e11 + 5.24032e11i 0.535592 + 0.927673i 0.999134 + 0.0415983i \(0.0132450\pi\)
−0.463542 + 0.886075i \(0.653422\pi\)
\(138\) 0 0
\(139\) −2.69249e11 + 4.66353e11i −0.440121 + 0.762313i −0.997698 0.0678128i \(-0.978398\pi\)
0.557577 + 0.830125i \(0.311731\pi\)
\(140\) 2.88843e10 5.00291e10i 0.0453897 0.0786173i
\(141\) 0 0
\(142\) 3.37184e11 + 5.84020e11i 0.490096 + 0.848871i
\(143\) 1.13981e12 1.59399
\(144\) 0 0
\(145\) −2.44673e11 −0.317001
\(146\) −3.69695e11 6.40330e11i −0.461214 0.798846i
\(147\) 0 0
\(148\) 1.92497e11 3.33414e11i 0.222835 0.385962i
\(149\) −8.09634e10 + 1.40233e11i −0.0903159 + 0.156432i −0.907644 0.419741i \(-0.862121\pi\)
0.817328 + 0.576172i \(0.195454\pi\)
\(150\) 0 0
\(151\) 3.23356e11 + 5.60069e11i 0.335203 + 0.580589i 0.983524 0.180779i \(-0.0578618\pi\)
−0.648321 + 0.761367i \(0.724528\pi\)
\(152\) 8.88334e11 0.888048
\(153\) 0 0
\(154\) 8.37849e11 0.779474
\(155\) −3.48484e11 6.03593e11i −0.312867 0.541901i
\(156\) 0 0
\(157\) 7.20572e11 1.24807e12i 0.602878 1.04422i −0.389505 0.921024i \(-0.627354\pi\)
0.992383 0.123191i \(-0.0393127\pi\)
\(158\) −6.97631e11 + 1.20833e12i −0.563653 + 0.976275i
\(159\) 0 0
\(160\) 1.62481e11 + 2.81426e11i 0.122502 + 0.212180i
\(161\) 1.67383e11 0.121947
\(162\) 0 0
\(163\) −1.78980e12 −1.21835 −0.609175 0.793035i \(-0.708499\pi\)
−0.609175 + 0.793035i \(0.708499\pi\)
\(164\) −1.14375e11 1.98103e11i −0.0752816 0.130392i
\(165\) 0 0
\(166\) −4.85953e11 + 8.41695e11i −0.299226 + 0.518275i
\(167\) 1.42085e11 2.46098e11i 0.0846461 0.146611i −0.820594 0.571511i \(-0.806357\pi\)
0.905240 + 0.424900i \(0.139691\pi\)
\(168\) 0 0
\(169\) −5.41932e11 9.38654e11i −0.302390 0.523756i
\(170\) −7.12742e11 −0.385002
\(171\) 0 0
\(172\) −7.30943e11 −0.370235
\(173\) −7.53686e11 1.30542e12i −0.369775 0.640468i 0.619756 0.784795i \(-0.287232\pi\)
−0.989530 + 0.144327i \(0.953898\pi\)
\(174\) 0 0
\(175\) 5.98685e11 1.03695e12i 0.275733 0.477584i
\(176\) −9.47046e11 + 1.64033e12i −0.422719 + 0.732170i
\(177\) 0 0
\(178\) −1.54564e12 2.67713e12i −0.648334 1.12295i
\(179\) −1.54494e12 −0.628377 −0.314189 0.949361i \(-0.601732\pi\)
−0.314189 + 0.949361i \(0.601732\pi\)
\(180\) 0 0
\(181\) −3.80037e11 −0.145410 −0.0727048 0.997354i \(-0.523163\pi\)
−0.0727048 + 0.997354i \(0.523163\pi\)
\(182\) −1.05705e12 1.83086e12i −0.392376 0.679614i
\(183\) 0 0
\(184\) −2.62504e11 + 4.54670e11i −0.0917568 + 0.158927i
\(185\) −1.22141e12 + 2.11555e12i −0.414399 + 0.717760i
\(186\) 0 0
\(187\) 1.81912e12 + 3.15081e12i 0.581745 + 1.00761i
\(188\) −3.94704e10 −0.0122575
\(189\) 0 0
\(190\) −1.16428e12 −0.341123
\(191\) −1.16514e12 2.01808e12i −0.331661 0.574453i 0.651177 0.758926i \(-0.274276\pi\)
−0.982838 + 0.184473i \(0.940942\pi\)
\(192\) 0 0
\(193\) 2.49630e12 4.32372e12i 0.671015 1.16223i −0.306602 0.951838i \(-0.599192\pi\)
0.977617 0.210394i \(-0.0674747\pi\)
\(194\) 1.29601e12 2.24476e12i 0.338610 0.586489i
\(195\) 0 0
\(196\) −2.53640e11 4.39317e11i −0.0626338 0.108485i
\(197\) 2.51169e12 0.603117 0.301559 0.953448i \(-0.402493\pi\)
0.301559 + 0.953448i \(0.402493\pi\)
\(198\) 0 0
\(199\) 2.69518e12 0.612204 0.306102 0.951999i \(-0.400975\pi\)
0.306102 + 0.951999i \(0.400975\pi\)
\(200\) 1.87781e12 + 3.25247e12i 0.414942 + 0.718701i
\(201\) 0 0
\(202\) −2.57069e12 + 4.45257e12i −0.537796 + 0.931489i
\(203\) 1.15826e12 2.00616e12i 0.235818 0.408449i
\(204\) 0 0
\(205\) 7.25722e11 + 1.25699e12i 0.139999 + 0.242485i
\(206\) 2.24083e12 0.420861
\(207\) 0 0
\(208\) 4.77925e12 0.851161
\(209\) 2.97157e12 + 5.14690e12i 0.515443 + 0.892774i
\(210\) 0 0
\(211\) −3.03292e12 + 5.25317e12i −0.499238 + 0.864705i −1.00000 0.000880164i \(-0.999720\pi\)
0.500762 + 0.865585i \(0.333053\pi\)
\(212\) −1.47875e12 + 2.56128e12i −0.237164 + 0.410780i
\(213\) 0 0
\(214\) −4.30597e12 7.45815e12i −0.655835 1.13594i
\(215\) 4.63792e12 0.688513
\(216\) 0 0
\(217\) 6.59878e12 0.930969
\(218\) 1.02528e12 + 1.77584e12i 0.141037 + 0.244283i
\(219\) 0 0
\(220\) −6.06115e11 + 1.04982e12i −0.0792921 + 0.137338i
\(221\) 4.59008e12 7.95026e12i 0.585684 1.01443i
\(222\) 0 0
\(223\) 2.78833e12 + 4.82953e12i 0.338585 + 0.586446i 0.984167 0.177245i \(-0.0567184\pi\)
−0.645582 + 0.763691i \(0.723385\pi\)
\(224\) −3.07669e12 −0.364519
\(225\) 0 0
\(226\) −8.40140e12 −0.947885
\(227\) 2.00720e12 + 3.47657e12i 0.221028 + 0.382832i 0.955120 0.296218i \(-0.0957253\pi\)
−0.734092 + 0.679050i \(0.762392\pi\)
\(228\) 0 0
\(229\) −5.12105e12 + 8.86992e12i −0.537358 + 0.930731i 0.461687 + 0.887043i \(0.347244\pi\)
−0.999045 + 0.0436886i \(0.986089\pi\)
\(230\) 3.44045e11 5.95904e11i 0.0352462 0.0610482i
\(231\) 0 0
\(232\) 3.63295e12 + 6.29246e12i 0.354875 + 0.614662i
\(233\) −1.36342e13 −1.30069 −0.650343 0.759641i \(-0.725375\pi\)
−0.650343 + 0.759641i \(0.725375\pi\)
\(234\) 0 0
\(235\) 2.50444e11 0.0227949
\(236\) −9.63050e11 1.66805e12i −0.0856314 0.148318i
\(237\) 0 0
\(238\) 3.37406e12 5.84404e12i 0.286404 0.496067i
\(239\) 4.75673e12 8.23891e12i 0.394567 0.683410i −0.598479 0.801138i \(-0.704228\pi\)
0.993046 + 0.117729i \(0.0375614\pi\)
\(240\) 0 0
\(241\) 3.60961e12 + 6.25202e12i 0.286000 + 0.495366i 0.972851 0.231432i \(-0.0743409\pi\)
−0.686851 + 0.726798i \(0.741008\pi\)
\(242\) −6.47699e12 −0.501636
\(243\) 0 0
\(244\) −3.28462e12 −0.243131
\(245\) 1.60937e12 + 2.78752e12i 0.116478 + 0.201746i
\(246\) 0 0
\(247\) 7.49798e12 1.29869e13i 0.518933 0.898818i
\(248\) −1.03488e13 + 1.79246e13i −0.700493 + 1.21329i
\(249\) 0 0
\(250\) −5.67565e12 9.83051e12i −0.367575 0.636658i
\(251\) −7.98786e12 −0.506087 −0.253043 0.967455i \(-0.581432\pi\)
−0.253043 + 0.967455i \(0.581432\pi\)
\(252\) 0 0
\(253\) −3.51241e12 −0.213031
\(254\) −6.43698e12 1.11492e13i −0.382029 0.661694i
\(255\) 0 0
\(256\) 6.36369e12 1.10222e13i 0.361734 0.626541i
\(257\) 1.37682e13 2.38473e13i 0.766030 1.32680i −0.173670 0.984804i \(-0.555563\pi\)
0.939700 0.341999i \(-0.111104\pi\)
\(258\) 0 0
\(259\) −1.15641e13 2.00297e13i −0.616545 1.06789i
\(260\) 3.05875e12 0.159658
\(261\) 0 0
\(262\) −4.47006e12 −0.223695
\(263\) 1.49440e13 + 2.58838e13i 0.732337 + 1.26845i 0.955882 + 0.293752i \(0.0949039\pi\)
−0.223544 + 0.974694i \(0.571763\pi\)
\(264\) 0 0
\(265\) 9.38287e12 1.62516e13i 0.441046 0.763913i
\(266\) 5.51158e12 9.54634e12i 0.253763 0.439530i
\(267\) 0 0
\(268\) −1.66121e12 2.87730e12i −0.0733978 0.127129i
\(269\) −9.80257e12 −0.424329 −0.212164 0.977234i \(-0.568051\pi\)
−0.212164 + 0.977234i \(0.568051\pi\)
\(270\) 0 0
\(271\) −1.00339e13 −0.417003 −0.208501 0.978022i \(-0.566859\pi\)
−0.208501 + 0.978022i \(0.566859\pi\)
\(272\) 7.62760e12 + 1.32114e13i 0.310641 + 0.538046i
\(273\) 0 0
\(274\) −1.17756e13 + 2.03959e13i −0.460631 + 0.797837i
\(275\) −1.25629e13 + 2.17597e13i −0.481684 + 0.834300i
\(276\) 0 0
\(277\) 4.26434e12 + 7.38606e12i 0.157113 + 0.272128i 0.933827 0.357726i \(-0.116448\pi\)
−0.776713 + 0.629855i \(0.783115\pi\)
\(278\) −2.09589e13 −0.757045
\(279\) 0 0
\(280\) 1.08852e13 0.377978
\(281\) −1.89458e13 3.28151e13i −0.645103 1.11735i −0.984278 0.176627i \(-0.943481\pi\)
0.339175 0.940723i \(-0.389852\pi\)
\(282\) 0 0
\(283\) 2.05667e12 3.56225e12i 0.0673502 0.116654i −0.830384 0.557192i \(-0.811879\pi\)
0.897734 + 0.440538i \(0.145212\pi\)
\(284\) 4.61888e12 8.00014e12i 0.148349 0.256949i
\(285\) 0 0
\(286\) 2.21813e13 + 3.84192e13i 0.685448 + 1.18723i
\(287\) −1.37420e13 −0.416582
\(288\) 0 0
\(289\) −4.96913e12 −0.144991
\(290\) −4.76145e12 8.24707e12i −0.136317 0.236108i
\(291\) 0 0
\(292\) −5.06423e12 + 8.77150e12i −0.139607 + 0.241807i
\(293\) 4.49380e12 7.78349e12i 0.121574 0.210573i −0.798814 0.601578i \(-0.794539\pi\)
0.920389 + 0.391005i \(0.127872\pi\)
\(294\) 0 0
\(295\) 6.11067e12 + 1.05840e13i 0.159246 + 0.275822i
\(296\) 7.25433e13 1.85564
\(297\) 0 0
\(298\) −6.30235e12 −0.155351
\(299\) 4.43133e12 + 7.67529e12i 0.107237 + 0.185739i
\(300\) 0 0
\(301\) −2.19555e13 + 3.80281e13i −0.512187 + 0.887134i
\(302\) −1.25853e13 + 2.17985e13i −0.288288 + 0.499330i
\(303\) 0 0
\(304\) 1.24598e13 + 2.15810e13i 0.275237 + 0.476725i
\(305\) 2.08413e13 0.452143
\(306\) 0 0
\(307\) 1.27887e13 0.267649 0.133825 0.991005i \(-0.457274\pi\)
0.133825 + 0.991005i \(0.457274\pi\)
\(308\) −5.73859e12 9.93953e12i −0.117971 0.204332i
\(309\) 0 0
\(310\) 1.35634e13 2.34924e13i 0.269078 0.466057i
\(311\) −6.93395e12 + 1.20100e13i −0.135145 + 0.234077i −0.925653 0.378374i \(-0.876483\pi\)
0.790508 + 0.612452i \(0.209817\pi\)
\(312\) 0 0
\(313\) −3.21105e13 5.56170e13i −0.604162 1.04644i −0.992183 0.124789i \(-0.960175\pi\)
0.388021 0.921650i \(-0.373159\pi\)
\(314\) 5.60908e13 1.03700
\(315\) 0 0
\(316\) 1.91128e13 0.341229
\(317\) 2.74494e13 + 4.75438e13i 0.481623 + 0.834195i 0.999778 0.0210916i \(-0.00671416\pi\)
−0.518155 + 0.855287i \(0.673381\pi\)
\(318\) 0 0
\(319\) −2.43052e13 + 4.20978e13i −0.411955 + 0.713528i
\(320\) −1.60864e13 + 2.78624e13i −0.267999 + 0.464187i
\(321\) 0 0
\(322\) 3.25736e12 + 5.64192e12i 0.0524395 + 0.0908280i
\(323\) 4.78666e13 0.757563
\(324\) 0 0
\(325\) 6.33987e13 0.969889
\(326\) −3.48304e13 6.03280e13i −0.523916 0.907449i
\(327\) 0 0
\(328\) 2.15514e13 3.73280e13i 0.313450 0.542911i
\(329\) −1.18558e12 + 2.05349e12i −0.0169572 + 0.0293708i
\(330\) 0 0
\(331\) −1.76867e13 3.06343e13i −0.244677 0.423793i 0.717364 0.696699i \(-0.245349\pi\)
−0.962041 + 0.272906i \(0.912015\pi\)
\(332\) 1.33136e13 0.181148
\(333\) 0 0
\(334\) 1.10602e13 0.145598
\(335\) 1.05406e13 + 1.82568e13i 0.136495 + 0.236417i
\(336\) 0 0
\(337\) −1.08224e13 + 1.87450e13i −0.135631 + 0.234920i −0.925838 0.377919i \(-0.876640\pi\)
0.790207 + 0.612840i \(0.209973\pi\)
\(338\) 2.10925e13 3.65334e13i 0.260068 0.450451i
\(339\) 0 0
\(340\) 4.88171e12 + 8.45537e12i 0.0582690 + 0.100925i
\(341\) −1.38470e14 −1.62633
\(342\) 0 0
\(343\) −9.38065e13 −1.06688
\(344\) −6.88649e13 1.19278e14i −0.770773 1.33502i
\(345\) 0 0
\(346\) 2.93342e13 5.08084e13i 0.318021 0.550829i
\(347\) −6.35777e13 + 1.10120e14i −0.678411 + 1.17504i 0.297049 + 0.954862i \(0.403998\pi\)
−0.975459 + 0.220179i \(0.929336\pi\)
\(348\) 0 0
\(349\) −3.80647e13 6.59299e13i −0.393534 0.681621i 0.599379 0.800465i \(-0.295414\pi\)
−0.992913 + 0.118845i \(0.962081\pi\)
\(350\) 4.66029e13 0.474284
\(351\) 0 0
\(352\) 6.45620e13 0.636784
\(353\) −5.05553e13 8.75644e13i −0.490915 0.850290i 0.509030 0.860749i \(-0.330004\pi\)
−0.999945 + 0.0104590i \(0.996671\pi\)
\(354\) 0 0
\(355\) −2.93074e13 + 5.07618e13i −0.275880 + 0.477839i
\(356\) −2.11728e13 + 3.66724e13i −0.196247 + 0.339910i
\(357\) 0 0
\(358\) −3.00653e13 5.20747e13i −0.270215 0.468026i
\(359\) −1.24969e14 −1.10607 −0.553034 0.833159i \(-0.686530\pi\)
−0.553034 + 0.833159i \(0.686530\pi\)
\(360\) 0 0
\(361\) −3.82993e13 −0.328777
\(362\) −7.39570e12 1.28097e13i −0.0625291 0.108304i
\(363\) 0 0
\(364\) −1.44799e13 + 2.50799e13i −0.118770 + 0.205716i
\(365\) 3.21331e13 5.56562e13i 0.259622 0.449679i
\(366\) 0 0
\(367\) 3.50638e13 + 6.07323e13i 0.274913 + 0.476163i 0.970113 0.242653i \(-0.0780176\pi\)
−0.695200 + 0.718816i \(0.744684\pi\)
\(368\) −1.47276e13 −0.113754
\(369\) 0 0
\(370\) −9.50773e13 −0.712800
\(371\) 8.88355e13 + 1.53868e14i 0.656190 + 1.13656i
\(372\) 0 0
\(373\) 6.99358e13 1.21132e14i 0.501535 0.868684i −0.498464 0.866911i \(-0.666102\pi\)
0.999998 0.00177306i \(-0.000564381\pi\)
\(374\) −7.08020e13 + 1.22633e14i −0.500325 + 0.866588i
\(375\) 0 0
\(376\) −3.71866e12 6.44090e12i −0.0255184 0.0441991i
\(377\) 1.22656e14 0.829489
\(378\) 0 0
\(379\) −1.23834e14 −0.813435 −0.406717 0.913554i \(-0.633327\pi\)
−0.406717 + 0.913554i \(0.633327\pi\)
\(380\) 7.97436e12 + 1.38120e13i 0.0516281 + 0.0894225i
\(381\) 0 0
\(382\) 4.53484e13 7.85457e13i 0.285242 0.494053i
\(383\) 7.23117e13 1.25248e14i 0.448348 0.776562i −0.549930 0.835210i \(-0.685346\pi\)
0.998279 + 0.0586484i \(0.0186791\pi\)
\(384\) 0 0
\(385\) 3.64121e13 + 6.30675e13i 0.219387 + 0.379990i
\(386\) 1.94317e14 1.15420
\(387\) 0 0
\(388\) −3.55066e13 −0.204991
\(389\) −6.35282e13 1.10034e14i −0.361613 0.626331i 0.626614 0.779330i \(-0.284440\pi\)
−0.988226 + 0.152999i \(0.951107\pi\)
\(390\) 0 0
\(391\) −1.41447e13 + 2.44993e13i −0.0782745 + 0.135575i
\(392\) 4.77927e13 8.27793e13i 0.260788 0.451698i
\(393\) 0 0
\(394\) 4.88788e13 + 8.46605e13i 0.259353 + 0.449212i
\(395\) −1.21273e14 −0.634573
\(396\) 0 0
\(397\) 3.66597e14 1.86570 0.932850 0.360266i \(-0.117314\pi\)
0.932850 + 0.360266i \(0.117314\pi\)
\(398\) 5.24496e13 + 9.08454e13i 0.263260 + 0.455980i
\(399\) 0 0
\(400\) −5.26766e13 + 9.12386e13i −0.257210 + 0.445501i
\(401\) 5.46435e13 9.46453e13i 0.263175 0.455832i −0.703909 0.710290i \(-0.748564\pi\)
0.967084 + 0.254458i \(0.0818970\pi\)
\(402\) 0 0
\(403\) 1.74697e14 + 3.02584e14i 0.818669 + 1.41798i
\(404\) 7.04287e13 0.325576
\(405\) 0 0
\(406\) 9.01612e13 0.405627
\(407\) 2.42665e14 + 4.20308e14i 1.07705 + 1.86551i
\(408\) 0 0
\(409\) 7.46658e13 1.29325e14i 0.322584 0.558733i −0.658436 0.752637i \(-0.728782\pi\)
0.981021 + 0.193904i \(0.0621150\pi\)
\(410\) −2.82458e13 + 4.89232e13i −0.120405 + 0.208547i
\(411\) 0 0
\(412\) −1.53479e13 2.65833e13i −0.0636963 0.110325i
\(413\) −1.15710e14 −0.473853
\(414\) 0 0
\(415\) −8.44761e13 −0.336875
\(416\) −8.14528e13 1.41080e14i −0.320548 0.555205i
\(417\) 0 0
\(418\) −1.15656e14 + 2.00323e14i −0.443302 + 0.767822i
\(419\) 2.31670e14 4.01263e14i 0.876379 1.51793i 0.0210919 0.999778i \(-0.493286\pi\)
0.855287 0.518155i \(-0.173381\pi\)
\(420\) 0 0
\(421\) −9.64810e13 1.67110e14i −0.355541 0.615816i 0.631669 0.775238i \(-0.282370\pi\)
−0.987210 + 0.159422i \(0.949037\pi\)
\(422\) −2.36088e14 −0.858729
\(423\) 0 0
\(424\) −5.57276e14 −1.97496
\(425\) 1.01183e14 + 1.75255e14i 0.353972 + 0.613098i
\(426\) 0 0
\(427\) −9.86610e13 + 1.70886e14i −0.336351 + 0.582576i
\(428\) −5.89848e13 + 1.02165e14i −0.198518 + 0.343843i
\(429\) 0 0
\(430\) 9.02563e13 + 1.56329e14i 0.296075 + 0.512816i
\(431\) 1.26743e14 0.410485 0.205243 0.978711i \(-0.434202\pi\)
0.205243 + 0.978711i \(0.434202\pi\)
\(432\) 0 0
\(433\) 1.11003e14 0.350471 0.175235 0.984527i \(-0.443931\pi\)
0.175235 + 0.984527i \(0.443931\pi\)
\(434\) 1.28416e14 + 2.22422e14i 0.400336 + 0.693402i
\(435\) 0 0
\(436\) 1.40447e13 2.43262e13i 0.0426911 0.0739432i
\(437\) −2.31055e13 + 4.00200e13i −0.0693535 + 0.120124i
\(438\) 0 0
\(439\) −1.89807e14 3.28756e14i −0.555594 0.962317i −0.997857 0.0654319i \(-0.979157\pi\)
0.442263 0.896886i \(-0.354176\pi\)
\(440\) −2.28417e14 −0.660297
\(441\) 0 0
\(442\) 3.57301e14 1.00742
\(443\) −2.75292e14 4.76819e14i −0.766607 1.32780i −0.939393 0.342843i \(-0.888610\pi\)
0.172786 0.984959i \(-0.444723\pi\)
\(444\) 0 0
\(445\) 1.34344e14 2.32691e14i 0.364954 0.632119i
\(446\) −1.08525e14 + 1.87970e14i −0.291197 + 0.504368i
\(447\) 0 0
\(448\) −1.52303e14 2.63796e14i −0.398730 0.690621i
\(449\) −2.83340e14 −0.732744 −0.366372 0.930468i \(-0.619400\pi\)
−0.366372 + 0.930468i \(0.619400\pi\)
\(450\) 0 0
\(451\) 2.88366e14 0.727734
\(452\) 5.75429e13 + 9.96672e13i 0.143460 + 0.248480i
\(453\) 0 0
\(454\) −7.81221e13 + 1.35312e14i −0.190093 + 0.329251i
\(455\) 9.18765e13 1.59135e14i 0.220872 0.382562i
\(456\) 0 0
\(457\) −6.37486e13 1.10416e14i −0.149600 0.259115i 0.781480 0.623931i \(-0.214465\pi\)
−0.931080 + 0.364816i \(0.881132\pi\)
\(458\) −3.98633e14 −0.924300
\(459\) 0 0
\(460\) −9.42574e12 −0.0213377
\(461\) −1.53674e14 2.66171e14i −0.343752 0.595396i 0.641374 0.767228i \(-0.278365\pi\)
−0.985126 + 0.171832i \(0.945031\pi\)
\(462\) 0 0
\(463\) −2.18470e14 + 3.78401e14i −0.477195 + 0.826526i −0.999658 0.0261358i \(-0.991680\pi\)
0.522463 + 0.852662i \(0.325013\pi\)
\(464\) −1.01912e14 + 1.76517e14i −0.219976 + 0.381010i
\(465\) 0 0
\(466\) −2.65328e14 4.59562e14i −0.559321 0.968773i
\(467\) 6.49256e13 0.135261 0.0676306 0.997710i \(-0.478456\pi\)
0.0676306 + 0.997710i \(0.478456\pi\)
\(468\) 0 0
\(469\) −1.99593e14 −0.406157
\(470\) 4.87377e12 + 8.44163e12i 0.00980228 + 0.0169781i
\(471\) 0 0
\(472\) 1.81465e14 3.14307e14i 0.356543 0.617551i
\(473\) 4.60720e14 7.97991e14i 0.894748 1.54975i
\(474\) 0 0
\(475\) 1.65285e14 + 2.86281e14i 0.313630 + 0.543223i
\(476\) −9.24384e13 −0.173386
\(477\) 0 0
\(478\) 3.70274e14 0.678687
\(479\) 5.05849e14 + 8.76156e14i 0.916590 + 1.58758i 0.804556 + 0.593877i \(0.202403\pi\)
0.112034 + 0.993704i \(0.464263\pi\)
\(480\) 0 0
\(481\) 6.12302e14 1.06054e15i 1.08435 1.87814i
\(482\) −1.40489e14 + 2.43335e14i −0.245972 + 0.426035i
\(483\) 0 0
\(484\) 4.43622e13 + 7.68376e13i 0.0759213 + 0.131500i
\(485\) 2.25293e14 0.381214
\(486\) 0 0
\(487\) −3.00339e14 −0.496824 −0.248412 0.968654i \(-0.579909\pi\)
−0.248412 + 0.968654i \(0.579909\pi\)
\(488\) −3.09456e14 5.35994e14i −0.506163 0.876700i
\(489\) 0 0
\(490\) −6.26384e13 + 1.08493e14i −0.100176 + 0.173509i
\(491\) −4.58229e14 + 7.93676e14i −0.724661 + 1.25515i 0.234453 + 0.972127i \(0.424670\pi\)
−0.959114 + 0.283021i \(0.908663\pi\)
\(492\) 0 0
\(493\) 1.95756e14 + 3.39060e14i 0.302732 + 0.524347i
\(494\) 5.83658e14 0.892607
\(495\) 0 0
\(496\) −5.80608e14 −0.868429
\(497\) −2.77477e14 4.80605e14i −0.410456 0.710931i
\(498\) 0 0
\(499\) −5.91285e14 + 1.02414e15i −0.855547 + 1.48185i 0.0205902 + 0.999788i \(0.493445\pi\)
−0.876137 + 0.482062i \(0.839888\pi\)
\(500\) −7.77473e13 + 1.34662e14i −0.111263 + 0.192713i
\(501\) 0 0
\(502\) −1.55448e14 2.69243e14i −0.217628 0.376942i
\(503\) 5.42478e14 0.751205 0.375603 0.926781i \(-0.377436\pi\)
0.375603 + 0.926781i \(0.377436\pi\)
\(504\) 0 0
\(505\) −4.46878e14 −0.605462
\(506\) −6.83533e13 1.18391e14i −0.0916076 0.158669i
\(507\) 0 0
\(508\) −8.81763e13 + 1.52726e14i −0.115638 + 0.200291i
\(509\) −1.86946e14 + 3.23799e14i −0.242531 + 0.420076i −0.961435 0.275034i \(-0.911311\pi\)
0.718903 + 0.695110i \(0.244644\pi\)
\(510\) 0 0
\(511\) 3.04231e14 + 5.26944e14i 0.386268 + 0.669036i
\(512\) 8.50527e14 1.06833
\(513\) 0 0
\(514\) 1.07175e15 1.31763
\(515\) 9.73842e13 + 1.68674e14i 0.118454 + 0.205168i
\(516\) 0 0
\(517\) 2.48785e13 4.30909e13i 0.0296229 0.0513083i
\(518\) 4.50088e14 7.79576e14i 0.530254 0.918427i
\(519\) 0 0
\(520\) 2.88176e14 + 4.99136e14i 0.332384 + 0.575706i
\(521\) −9.41376e14 −1.07437 −0.537187 0.843463i \(-0.680513\pi\)
−0.537187 + 0.843463i \(0.680513\pi\)
\(522\) 0 0
\(523\) 6.38561e13 0.0713581 0.0356791 0.999363i \(-0.488641\pi\)
0.0356791 + 0.999363i \(0.488641\pi\)
\(524\) 3.06163e13 + 5.30290e13i 0.0338556 + 0.0586396i
\(525\) 0 0
\(526\) −5.81637e14 + 1.00742e15i −0.629840 + 1.09091i
\(527\) −5.57627e14 + 9.65839e14i −0.597566 + 1.03501i
\(528\) 0 0
\(529\) 4.62749e14 + 8.01506e14i 0.485668 + 0.841202i
\(530\) 7.30382e14 0.758634
\(531\) 0 0
\(532\) −1.51000e14 −0.153625
\(533\) −3.63808e14 6.30134e14i −0.366330 0.634503i
\(534\) 0 0
\(535\) 3.74266e14 6.48248e14i 0.369177 0.639433i
\(536\) 3.13018e14 5.42163e14i 0.305607 0.529326i
\(537\) 0 0
\(538\) −1.90763e14 3.30411e14i −0.182470 0.316047i
\(539\) 6.39485e14 0.605469
\(540\) 0 0
\(541\) 7.25322e14 0.672893 0.336447 0.941703i \(-0.390775\pi\)
0.336447 + 0.941703i \(0.390775\pi\)
\(542\) −1.95265e14 3.38208e14i −0.179320 0.310591i
\(543\) 0 0
\(544\) 2.59994e14 4.50323e14i 0.233975 0.405257i
\(545\) −8.91154e13 + 1.54352e14i −0.0793912 + 0.137510i
\(546\) 0 0
\(547\) 5.57468e13 + 9.65563e13i 0.0486732 + 0.0843044i 0.889336 0.457255i \(-0.151167\pi\)
−0.840662 + 0.541560i \(0.817834\pi\)
\(548\) 3.22613e14 0.278861
\(549\) 0 0
\(550\) −9.77925e14 −0.828535
\(551\) 3.19771e14 + 5.53860e14i 0.268229 + 0.464586i
\(552\) 0 0
\(553\) 5.74098e14 9.94366e14i 0.472060 0.817633i
\(554\) −1.65972e14 + 2.87473e14i −0.135124 + 0.234042i
\(555\) 0 0
\(556\) 1.43552e14 + 2.48639e14i 0.114577 + 0.198453i
\(557\) 2.27003e14 0.179402 0.0897012 0.995969i \(-0.471409\pi\)
0.0897012 + 0.995969i \(0.471409\pi\)
\(558\) 0 0
\(559\) −2.32502e15 −1.80161
\(560\) 1.52676e14 + 2.64443e14i 0.117149 + 0.202908i
\(561\) 0 0
\(562\) 7.37391e14 1.27720e15i 0.554815 0.960967i
\(563\) −7.04849e14 + 1.22083e15i −0.525170 + 0.909621i 0.474401 + 0.880309i \(0.342665\pi\)
−0.999570 + 0.0293116i \(0.990668\pi\)
\(564\) 0 0
\(565\) −3.65117e14 6.32400e14i −0.266787 0.462089i
\(566\) 1.60095e14 0.115848
\(567\) 0 0
\(568\) 1.74065e15 1.23537
\(569\) −2.01731e14 3.49408e14i −0.141793 0.245593i 0.786379 0.617745i \(-0.211953\pi\)
−0.928172 + 0.372152i \(0.878620\pi\)
\(570\) 0 0
\(571\) −6.94825e13 + 1.20347e14i −0.0479046 + 0.0829731i −0.888983 0.457939i \(-0.848588\pi\)
0.841079 + 0.540913i \(0.181921\pi\)
\(572\) 3.03849e14 5.26281e14i 0.207481 0.359368i
\(573\) 0 0
\(574\) −2.67427e14 4.63196e14i −0.179139 0.310277i
\(575\) −1.95367e14 −0.129622
\(576\) 0 0
\(577\) −1.49055e14 −0.0970240 −0.0485120 0.998823i \(-0.515448\pi\)
−0.0485120 + 0.998823i \(0.515448\pi\)
\(578\) −9.67017e13 1.67492e14i −0.0623492 0.107992i
\(579\) 0 0
\(580\) −6.52243e13 + 1.12972e14i −0.0412625 + 0.0714687i
\(581\) 3.99903e14 6.92652e14i 0.250603 0.434056i
\(582\) 0 0
\(583\) −1.86414e15 3.22879e15i −1.14631 1.98547i
\(584\) −1.90848e15 −1.16256
\(585\) 0 0
\(586\) 3.49806e14 0.209118
\(587\) −1.26588e15 2.19256e15i −0.749690 1.29850i −0.947971 0.318356i \(-0.896869\pi\)
0.198281 0.980145i \(-0.436464\pi\)
\(588\) 0 0
\(589\) −9.10894e14 + 1.57771e15i −0.529461 + 0.917053i
\(590\) −2.37833e14 + 4.11939e14i −0.136958 + 0.237218i
\(591\) 0 0
\(592\) 1.01750e15 + 1.76236e15i 0.575127 + 0.996149i
\(593\) −7.38349e14 −0.413486 −0.206743 0.978395i \(-0.566286\pi\)
−0.206743 + 0.978395i \(0.566286\pi\)
\(594\) 0 0
\(595\) 5.86533e14 0.322440
\(596\) 4.31661e13 + 7.47658e13i 0.0235119 + 0.0407238i
\(597\) 0 0
\(598\) −1.72472e14 + 2.98730e14i −0.0922278 + 0.159743i
\(599\) −1.23555e15 + 2.14004e15i −0.654656 + 1.13390i 0.327324 + 0.944912i \(0.393853\pi\)
−0.981980 + 0.188985i \(0.939480\pi\)
\(600\) 0 0
\(601\) −1.05481e15 1.82698e15i −0.548735 0.950437i −0.998362 0.0572204i \(-0.981776\pi\)
0.449626 0.893217i \(-0.351557\pi\)
\(602\) −1.70906e15 −0.881003
\(603\) 0 0
\(604\) 3.44798e14 0.174527
\(605\) −2.81484e14 4.87544e14i −0.141188 0.244545i
\(606\) 0 0
\(607\) −1.43917e15 + 2.49272e15i −0.708883 + 1.22782i 0.256389 + 0.966574i \(0.417467\pi\)
−0.965272 + 0.261247i \(0.915866\pi\)
\(608\) 4.24705e14 7.35611e14i 0.207309 0.359070i
\(609\) 0 0
\(610\) 4.05582e14 + 7.02489e14i 0.194431 + 0.336764i
\(611\) −1.25549e14 −0.0596468
\(612\) 0 0
\(613\) 1.06157e15 0.495352 0.247676 0.968843i \(-0.420333\pi\)
0.247676 + 0.968843i \(0.420333\pi\)
\(614\) 2.48875e14 + 4.31064e14i 0.115095 + 0.199350i
\(615\) 0 0
\(616\) 1.08131e15 1.87288e15i 0.491197 0.850778i
\(617\) 9.37838e14 1.62438e15i 0.422240 0.731342i −0.573918 0.818913i \(-0.694577\pi\)
0.996158 + 0.0875712i \(0.0279105\pi\)
\(618\) 0 0
\(619\) 1.39839e15 + 2.42208e15i 0.618485 + 1.07125i 0.989762 + 0.142725i \(0.0455865\pi\)
−0.371278 + 0.928522i \(0.621080\pi\)
\(620\) −3.71593e14 −0.162897
\(621\) 0 0
\(622\) −5.39752e14 −0.232460
\(623\) 1.27195e15 + 2.20308e15i 0.542981 + 0.940471i
\(624\) 0 0
\(625\) −4.19376e14 + 7.26381e14i −0.175899 + 0.304666i
\(626\) 1.24977e15 2.16467e15i 0.519604 0.899981i
\(627\) 0 0
\(628\) −3.84177e14 6.65414e14i −0.156947 0.271840i
\(629\) 3.90889e15 1.58298
\(630\) 0 0
\(631\) −1.21754e14 −0.0484530 −0.0242265 0.999706i \(-0.507712\pi\)
−0.0242265 + 0.999706i \(0.507712\pi\)
\(632\) 1.80069e15 + 3.11889e15i 0.710388 + 1.23043i
\(633\) 0 0
\(634\) −1.06836e15 + 1.85045e15i −0.414215 + 0.717442i
\(635\) 5.59489e14 9.69064e14i 0.215048 0.372475i
\(636\) 0 0
\(637\) −8.06788e14 1.39740e15i −0.304784 0.527902i
\(638\) −1.89196e15 −0.708597
\(639\) 0 0
\(640\) −5.86671e14 −0.215975
\(641\) 1.26661e14 + 2.19383e14i 0.0462300 + 0.0800727i 0.888214 0.459429i \(-0.151946\pi\)
−0.841984 + 0.539502i \(0.818613\pi\)
\(642\) 0 0
\(643\) 2.56414e15 4.44122e15i 0.919986 1.59346i 0.120553 0.992707i \(-0.461533\pi\)
0.799433 0.600756i \(-0.205134\pi\)
\(644\) 4.46207e13 7.72853e13i 0.0158732 0.0274931i
\(645\) 0 0
\(646\) 9.31508e14 + 1.61342e15i 0.325767 + 0.564246i
\(647\) 1.76264e14 0.0611210 0.0305605 0.999533i \(-0.490271\pi\)
0.0305605 + 0.999533i \(0.490271\pi\)
\(648\) 0 0
\(649\) 2.42808e15 0.827783
\(650\) 1.23377e15 + 2.13695e15i 0.417072 + 0.722390i
\(651\) 0 0
\(652\) −4.77120e14 + 8.26397e14i −0.158587 + 0.274680i
\(653\) 6.43823e14 1.11513e15i 0.212199 0.367540i −0.740203 0.672383i \(-0.765271\pi\)
0.952403 + 0.304843i \(0.0986041\pi\)
\(654\) 0 0
\(655\) −1.94264e14 3.36475e14i −0.0629601 0.109050i
\(656\) 1.20912e15 0.388596
\(657\) 0 0
\(658\) −9.22882e13 −0.0291678
\(659\) 2.69693e15 + 4.67122e15i 0.845279 + 1.46407i 0.885378 + 0.464871i \(0.153899\pi\)
−0.0400991 + 0.999196i \(0.512767\pi\)
\(660\) 0 0
\(661\) −8.10649e14 + 1.40409e15i −0.249876 + 0.432798i −0.963491 0.267740i \(-0.913723\pi\)
0.713615 + 0.700538i \(0.247057\pi\)
\(662\) 6.88385e14 1.19232e15i 0.210432 0.364479i
\(663\) 0 0
\(664\) 1.25432e15 + 2.17255e15i 0.377124 + 0.653197i
\(665\) 9.58112e14 0.285691
\(666\) 0 0
\(667\) −3.77972e14 −0.110858
\(668\) −7.57533e13 1.31208e14i −0.0220359 0.0381673i
\(669\) 0 0
\(670\) −4.10250e14 + 7.10574e14i −0.117392 + 0.203328i
\(671\) 2.07033e15 3.58591e15i 0.587577 1.01771i
\(672\) 0 0
\(673\) 2.96587e15 + 5.13703e15i 0.828073 + 1.43426i 0.899548 + 0.436822i \(0.143896\pi\)
−0.0714748 + 0.997442i \(0.522771\pi\)
\(674\) −8.42439e14 −0.233297
\(675\) 0 0
\(676\) −5.77868e14 −0.157443
\(677\) −3.37554e15 5.84661e15i −0.912234 1.58003i −0.810902 0.585182i \(-0.801023\pi\)
−0.101332 0.994853i \(-0.532310\pi\)
\(678\) 0 0
\(679\) −1.06652e15 + 1.84727e15i −0.283586 + 0.491186i
\(680\) −9.19848e14 + 1.59322e15i −0.242615 + 0.420221i
\(681\) 0 0
\(682\) −2.69470e15 4.66736e15i −0.699354 1.21132i
\(683\) −4.47959e15 −1.15325 −0.576626 0.817008i \(-0.695631\pi\)
−0.576626 + 0.817008i \(0.695631\pi\)
\(684\) 0 0
\(685\) −2.04702e15 −0.518589
\(686\) −1.82552e15 3.16190e15i −0.458780 0.794630i
\(687\) 0 0
\(688\) 1.93181e15 3.34599e15i 0.477779 0.827538i
\(689\) −4.70369e15 + 8.14702e15i −1.15407 + 1.99891i
\(690\) 0 0
\(691\) 1.88090e15 + 3.25782e15i 0.454189 + 0.786679i 0.998641 0.0521131i \(-0.0165956\pi\)
−0.544452 + 0.838792i \(0.683262\pi\)
\(692\) −8.03664e14 −0.192527
\(693\) 0 0
\(694\) −4.94902e15 −1.16692
\(695\) −9.10852e14 1.57764e15i −0.213074 0.369056i
\(696\) 0 0
\(697\) 1.16126e15 2.01137e15i 0.267393 0.463139i
\(698\) 1.48151e15 2.56606e15i 0.338455 0.586221i
\(699\) 0 0
\(700\) −3.19192e14 5.52857e14i −0.0717816 0.124329i
\(701\) −5.60965e15 −1.25166 −0.625831 0.779959i \(-0.715240\pi\)
−0.625831 + 0.779959i \(0.715240\pi\)
\(702\) 0 0
\(703\) 6.38524e15 1.40257
\(704\) 3.19596e15 + 5.53556e15i 0.696549 + 1.20646i
\(705\) 0 0
\(706\) 1.96766e15 3.40810e15i 0.422207 0.731284i
\(707\) 2.11548e15 3.66413e15i 0.450405 0.780124i
\(708\) 0 0
\(709\) −2.46228e15 4.26479e15i −0.516159 0.894013i −0.999824 0.0187600i \(-0.994028\pi\)
0.483665 0.875253i \(-0.339305\pi\)
\(710\) −2.28134e15 −0.474537
\(711\) 0 0
\(712\) −7.97908e15 −1.63423
\(713\) −5.38341e14 9.32434e14i −0.109412 0.189507i
\(714\) 0 0
\(715\) −1.92796e15 + 3.33932e15i −0.385846 + 0.668305i
\(716\) −4.11847e14 + 7.13340e14i −0.0817926 + 0.141669i
\(717\) 0 0
\(718\) −2.43195e15 4.21226e15i −0.475631 0.823818i
\(719\) 9.38020e15 1.82055 0.910276 0.414002i \(-0.135869\pi\)
0.910276 + 0.414002i \(0.135869\pi\)
\(720\) 0 0
\(721\) −1.84403e15 −0.352472
\(722\) −7.45324e14 1.29094e15i −0.141381 0.244879i
\(723\) 0 0
\(724\) −1.01309e14 + 1.75473e14i −0.0189272 + 0.0327829i
\(725\) −1.35190e15 + 2.34157e15i −0.250661 + 0.434158i
\(726\) 0 0
\(727\) −7.34653e14 1.27246e15i −0.134166 0.232383i 0.791112 0.611671i \(-0.209502\pi\)
−0.925279 + 0.379288i \(0.876169\pi\)
\(728\) −5.45681e15 −0.989045
\(729\) 0 0
\(730\) 2.50131e15 0.446572
\(731\) −3.71069e15 6.42710e15i −0.657519 1.13886i
\(732\) 0 0
\(733\) 4.32056e15 7.48343e15i 0.754169 1.30626i −0.191618 0.981470i \(-0.561373\pi\)
0.945787 0.324789i \(-0.105293\pi\)
\(734\) −1.36472e15 + 2.36376e15i −0.236437 + 0.409520i
\(735\) 0 0
\(736\) 2.51002e14 + 4.34749e14i 0.0428400 + 0.0742011i
\(737\) 4.18830e15 0.709524
\(738\) 0 0
\(739\) 1.31994e15 0.220298 0.110149 0.993915i \(-0.464867\pi\)
0.110149 + 0.993915i \(0.464867\pi\)
\(740\) 6.51204e14 + 1.12792e15i 0.107880 + 0.186854i
\(741\) 0 0
\(742\) −3.45757e15 + 5.98868e15i −0.564351 + 0.977484i
\(743\) −2.13155e15 + 3.69195e15i −0.345348 + 0.598160i −0.985417 0.170158i \(-0.945572\pi\)
0.640069 + 0.768317i \(0.278906\pi\)
\(744\) 0 0
\(745\) −2.73894e14 4.74398e14i −0.0437243 0.0757327i
\(746\) 5.44394e15 0.862681
\(747\) 0 0
\(748\) 1.93975e15 0.302891
\(749\) 3.54349e15 + 6.13750e15i 0.549264 + 0.951352i
\(750\) 0 0
\(751\) 3.05553e15 5.29233e15i 0.466731 0.808402i −0.532547 0.846401i \(-0.678765\pi\)
0.999278 + 0.0379988i \(0.0120983\pi\)
\(752\) 1.04316e14 1.80681e14i 0.0158181 0.0273977i
\(753\) 0 0
\(754\) 2.38694e15 + 4.13431e15i 0.356697 + 0.617817i
\(755\) −2.18779e15 −0.324561
\(756\) 0 0
\(757\) 9.63454e15 1.40865 0.704326 0.709877i \(-0.251250\pi\)
0.704326 + 0.709877i \(0.251250\pi\)
\(758\) −2.40986e15 4.17400e15i −0.349793 0.605860i
\(759\) 0 0
\(760\) −1.50259e15 + 2.60256e15i −0.214964 + 0.372328i
\(761\) 1.42240e15 2.46367e15i 0.202026 0.349919i −0.747155 0.664650i \(-0.768581\pi\)
0.949181 + 0.314731i \(0.101914\pi\)
\(762\) 0 0
\(763\) −8.43730e14 1.46138e15i −0.118119 0.204588i
\(764\) −1.24240e15 −0.172682
\(765\) 0 0
\(766\) 5.62889e15 0.771196
\(767\) −3.06331e15 5.30581e15i −0.416694 0.721734i
\(768\) 0 0
\(769\) −7.00344e15 + 1.21303e16i −0.939110 + 1.62659i −0.171975 + 0.985101i \(0.555015\pi\)
−0.767135 + 0.641485i \(0.778319\pi\)
\(770\) −1.41719e15 + 2.45465e15i −0.188682 + 0.326807i
\(771\) 0 0
\(772\) −1.33092e15 2.30522e15i −0.174685 0.302564i
\(773\) 1.33026e16 1.73360 0.866798 0.498659i \(-0.166174\pi\)
0.866798 + 0.498659i \(0.166174\pi\)
\(774\) 0 0
\(775\) −7.70201e15 −0.989566
\(776\) −3.34521e15 5.79407e15i −0.426760 0.739170i
\(777\) 0 0
\(778\) 2.47258e15 4.28263e15i 0.311002 0.538670i
\(779\) 1.89694e15 3.28560e15i 0.236918 0.410354i
\(780\) 0 0
\(781\) 5.82264e15 + 1.00851e16i 0.717034 + 1.24194i
\(782\) −1.10105e15 −0.134638
\(783\) 0 0
\(784\) 2.68137e15 0.323309
\(785\) 2.43765e15 + 4.22213e15i 0.291869 + 0.505532i
\(786\) 0 0
\(787\) −4.20146e15 + 7.27714e15i −0.496065 + 0.859211i −0.999990 0.00453730i \(-0.998556\pi\)
0.503924 + 0.863748i \(0.331889\pi\)
\(788\) 6.69561e14 1.15971e15i 0.0785047 0.135974i
\(789\) 0 0
\(790\) −2.36004e15 4.08771e15i −0.272879 0.472641i
\(791\) 6.91372e15 0.793855
\(792\) 0 0
\(793\) −1.04479e16 −1.18311
\(794\) 7.13417e15 + 1.23567e16i 0.802289 + 1.38961i
\(795\) 0 0
\(796\) 7.18476e14 1.24444e15i 0.0796875 0.138023i
\(797\) −5.06866e15 + 8.77918e15i −0.558306 + 0.967015i 0.439332 + 0.898325i \(0.355215\pi\)
−0.997638 + 0.0686902i \(0.978118\pi\)
\(798\) 0 0
\(799\) −2.00374e14 3.47058e14i −0.0217688 0.0377047i
\(800\) 3.59107e15 0.387462
\(801\) 0 0
\(802\) 4.25356e15 0.452682
\(803\) −6.38405e15 1.10575e16i −0.674778 1.16875i
\(804\) 0 0
\(805\) −2.83123e14 + 4.90384e14i −0.0295188 + 0.0511280i
\(806\) −6.79939e15 + 1.17769e16i −0.704089 + 1.21952i
\(807\) 0 0
\(808\) 6.63535e15 + 1.14928e16i 0.677800 + 1.17398i
\(809\) 1.09699e14 0.0111297 0.00556487 0.999985i \(-0.498229\pi\)
0.00556487 + 0.999985i \(0.498229\pi\)
\(810\) 0 0
\(811\) 5.29565e15 0.530035 0.265018 0.964244i \(-0.414622\pi\)
0.265018 + 0.964244i \(0.414622\pi\)
\(812\) −6.17532e14 1.06960e15i −0.0613905 0.106332i
\(813\) 0 0
\(814\) −9.44475e15 + 1.63588e16i −0.926310 + 1.60442i
\(815\) 3.02739e15 5.24359e15i 0.294918 0.510813i
\(816\) 0 0
\(817\) −6.06147e15 1.04988e16i −0.582582 1.00906i
\(818\) 5.81214e15 0.554872
\(819\) 0 0
\(820\) 7.73845e14 0.0728916
\(821\) 2.22133e15 + 3.84745e15i 0.207838 + 0.359986i 0.951033 0.309088i \(-0.100024\pi\)
−0.743195 + 0.669075i \(0.766691\pi\)
\(822\) 0 0
\(823\) 5.57068e15 9.64870e15i 0.514291 0.890779i −0.485571 0.874197i \(-0.661388\pi\)
0.999863 0.0165815i \(-0.00527830\pi\)
\(824\) 2.89197e15 5.00903e15i 0.265212 0.459361i
\(825\) 0 0
\(826\) −2.25177e15 3.90017e15i −0.203767 0.352934i
\(827\) −1.64160e16 −1.47567 −0.737833 0.674983i \(-0.764151\pi\)
−0.737833 + 0.674983i \(0.764151\pi\)
\(828\) 0 0
\(829\) −1.29613e16 −1.14973 −0.574867 0.818247i \(-0.694946\pi\)
−0.574867 + 0.818247i \(0.694946\pi\)
\(830\) −1.64395e15 2.84740e15i −0.144863 0.250911i
\(831\) 0 0
\(832\) 8.06418e15 1.39676e16i 0.701264 1.21463i
\(833\) 2.57524e15 4.46044e15i 0.222469 0.385328i
\(834\) 0 0
\(835\) 4.80664e14 + 8.32534e14i 0.0409794 + 0.0709784i
\(836\) 3.16861e15 0.268371
\(837\) 0 0
\(838\) 1.80336e16 1.50744
\(839\) 2.44690e15 + 4.23815e15i 0.203201 + 0.351954i 0.949558 0.313592i \(-0.101532\pi\)
−0.746357 + 0.665545i \(0.768199\pi\)
\(840\) 0 0
\(841\) 3.48476e15 6.03579e15i 0.285625 0.494716i
\(842\) 3.75514e15 6.50409e15i 0.305780 0.529627i
\(843\) 0 0
\(844\) 1.61702e15 + 2.80076e15i 0.129966 + 0.225108i
\(845\) 3.66664e15 0.292790
\(846\) 0 0
\(847\) 5.33008e15 0.420122
\(848\) −7.81638e15 1.35384e16i −0.612109 1.06020i
\(849\) 0 0
\(850\) −3.93815e15 + 6.82108e15i −0.304431 + 0.527290i
\(851\) −1.88685e15 + 3.26812e15i −0.144919 + 0.251007i
\(852\) 0 0
\(853\) −3.53915e15 6.13000e15i −0.268337 0.464773i 0.700096 0.714049i \(-0.253141\pi\)
−0.968432 + 0.249276i \(0.919807\pi\)
\(854\) −7.67997e15 −0.578551
\(855\) 0 0
\(856\) −2.22287e16 −1.65314
\(857\) 1.15585e15 + 2.00199e15i 0.0854095 + 0.147934i 0.905566 0.424206i \(-0.139447\pi\)
−0.820156 + 0.572140i \(0.806113\pi\)
\(858\) 0 0
\(859\) 9.89075e15 1.71313e16i 0.721551 1.24976i −0.238827 0.971062i \(-0.576763\pi\)
0.960378 0.278701i \(-0.0899038\pi\)
\(860\) 1.23637e15 2.14145e15i 0.0896202 0.155227i
\(861\) 0 0
\(862\) 2.46648e15 + 4.27206e15i 0.176517 + 0.305737i
\(863\) −1.59925e16 −1.13725 −0.568627 0.822595i \(-0.692525\pi\)
−0.568627 + 0.822595i \(0.692525\pi\)
\(864\) 0 0
\(865\) 5.09934e15 0.358035
\(866\) 2.16018e15 + 3.74154e15i 0.150710 + 0.261037i
\(867\) 0 0
\(868\) 1.75909e15 3.04683e15i 0.121180 0.209889i
\(869\) −1.20470e16 + 2.08660e16i −0.824651 + 1.42834i
\(870\) 0 0
\(871\) −5.28405e15 9.15225e15i −0.357164 0.618626i
\(872\) 5.29282e15 0.355506
\(873\) 0 0
\(874\) −1.79858e15 −0.119294
\(875\) 4.67063e15 + 8.08977e15i 0.307845 + 0.533202i
\(876\) 0 0
\(877\) −7.04123e15 + 1.21958e16i −0.458301 + 0.793801i −0.998871 0.0474981i \(-0.984875\pi\)
0.540570 + 0.841299i \(0.318209\pi\)
\(878\) 7.38749e15 1.27955e16i 0.477834 0.827632i
\(879\) 0 0
\(880\) −3.20379e15 5.54914e15i −0.204649 0.354463i
\(881\) −2.05758e16 −1.30614 −0.653068 0.757299i \(-0.726519\pi\)
−0.653068 + 0.757299i \(0.726519\pi\)
\(882\) 0 0
\(883\) −1.09044e16 −0.683627 −0.341814 0.939768i \(-0.611041\pi\)
−0.341814 + 0.939768i \(0.611041\pi\)
\(884\) −2.44723e15 4.23872e15i −0.152471 0.264087i
\(885\) 0 0
\(886\) 1.07146e16 1.85583e16i 0.659313 1.14196i
\(887\) 3.04486e15 5.27385e15i 0.186203 0.322513i −0.757778 0.652512i \(-0.773715\pi\)
0.943981 + 0.329999i \(0.107048\pi\)
\(888\) 0 0
\(889\) 5.29715e15 + 9.17493e15i 0.319950 + 0.554170i
\(890\) 1.04576e16 0.627751
\(891\) 0 0
\(892\) 2.97323e15 0.176287
\(893\) −3.27315e14 5.66926e14i −0.0192878 0.0334075i
\(894\) 0 0
\(895\) 2.61322e15 4.52623e15i 0.152107 0.263457i
\(896\) 2.77725e15 4.81034e15i 0.160665 0.278280i
\(897\) 0 0
\(898\) −5.51393e15 9.55041e15i −0.315095 0.545761i
\(899\) −1.49009e16 −0.846317
\(900\) 0 0
\(901\) −3.00280e16 −1.68477
\(902\) 5.61174e15 + 9.71982e15i 0.312940 + 0.542029i
\(903\) 0 0
\(904\) −1.08427e16 + 1.87800e16i −0.597324 + 1.03459i
\(905\) 6.42820e14 1.11340e15i 0.0351983 0.0609653i
\(906\) 0 0
\(907\) 9.12148e15 + 1.57989e16i 0.493429 + 0.854645i 0.999971 0.00757046i \(-0.00240977\pi\)
−0.506542 + 0.862215i \(0.669076\pi\)
\(908\) 2.14030e15 0.115081
\(909\) 0 0
\(910\) 7.15185e15 0.379919
\(911\) 6.17535e15 + 1.06960e16i 0.326070 + 0.564769i 0.981728 0.190288i \(-0.0609422\pi\)
−0.655658 + 0.755058i \(0.727609\pi\)
\(912\) 0 0
\(913\) −8.39165e15 + 1.45348e16i −0.437782 + 0.758261i
\(914\) 2.48116e15 4.29750e15i 0.128662 0.222849i
\(915\) 0 0
\(916\) 2.73031e15 + 4.72904e15i 0.139890 + 0.242297i
\(917\) 3.67852e15 0.187345
\(918\) 0 0
\(919\) −8.70126e14 −0.0437871 −0.0218936 0.999760i \(-0.506969\pi\)
−0.0218936 + 0.999760i \(0.506969\pi\)
\(920\) −8.88034e14 1.53812e15i −0.0444219 0.0769409i
\(921\) 0 0
\(922\) 5.98115e15 1.03597e16i 0.295641 0.512065i
\(923\) 1.46919e16 2.54472e16i 0.721888 1.25035i
\(924\) 0 0
\(925\) 1.34975e16 + 2.33784e16i 0.655351 + 1.13510i
\(926\) −1.70061e16 −0.820814
\(927\) 0 0
\(928\) 6.94754e15 0.331373
\(929\) 9.92079e15 + 1.71833e16i 0.470392 + 0.814743i 0.999427 0.0338573i \(-0.0107792\pi\)
−0.529035 + 0.848600i \(0.677446\pi\)
\(930\) 0 0
\(931\) 4.20670e15 7.28621e15i 0.197114 0.341412i
\(932\) −3.63457e15 + 6.29527e15i −0.169304 + 0.293242i
\(933\) 0 0
\(934\) 1.26349e15 + 2.18842e15i 0.0581651 + 0.100745i
\(935\) −1.23079e16 −0.563276
\(936\) 0 0
\(937\) 2.15194e16 0.973336 0.486668 0.873587i \(-0.338212\pi\)
0.486668 + 0.873587i \(0.338212\pi\)
\(938\) −3.88418e15 6.72759e15i −0.174656 0.302513i
\(939\) 0 0
\(940\) 6.67629e13 1.15637e14i 0.00296710 0.00513917i
\(941\) 1.00976e16 1.74895e16i 0.446142 0.772741i −0.551989 0.833852i \(-0.686131\pi\)
0.998131 + 0.0611104i \(0.0194642\pi\)
\(942\) 0 0
\(943\) 1.12110e15 + 1.94180e15i 0.0489587 + 0.0847990i
\(944\) 1.01810e16 0.442021
\(945\) 0 0
\(946\) 3.58634e16 1.53904
\(947\) 1.28829e16 + 2.23139e16i 0.549654 + 0.952028i 0.998298 + 0.0583180i \(0.0185737\pi\)
−0.448644 + 0.893710i \(0.648093\pi\)
\(948\) 0 0
\(949\) −1.61085e16 + 2.79008e16i −0.679347 + 1.17666i
\(950\) −6.43304e15 + 1.11424e16i −0.269735 + 0.467194i
\(951\) 0 0
\(952\) −8.70897e15 1.50844e16i −0.360964 0.625208i
\(953\) 5.27859e15 0.217524 0.108762 0.994068i \(-0.465311\pi\)
0.108762 + 0.994068i \(0.465311\pi\)
\(954\) 0 0
\(955\) 7.88318e15 0.321131
\(956\) −2.53608e15 4.39262e15i −0.102717 0.177912i
\(957\) 0 0
\(958\) −1.96881e16 + 3.41009e16i −0.788305 + 1.36538i
\(959\) 9.69040e15 1.67843e16i 0.385780 0.668190i
\(960\) 0 0
\(961\) −8.51889e15 1.47552e16i −0.335278 0.580718i
\(962\) 4.76628e16 1.86516
\(963\) 0 0
\(964\) 3.84896e15 0.148909
\(965\) 8.44483e15 + 1.46269e16i 0.324856 + 0.562667i
\(966\) 0 0
\(967\) 5.58416e15 9.67205e15i 0.212379 0.367852i −0.740079 0.672520i \(-0.765212\pi\)
0.952459 + 0.304668i \(0.0985454\pi\)
\(968\) −8.35906e15 + 1.44783e16i −0.316114 + 0.547525i
\(969\) 0 0
\(970\) 4.38432e15 + 7.59387e15i 0.163930 + 0.283935i
\(971\) 3.16576e16 1.17699 0.588494 0.808502i \(-0.299721\pi\)
0.588494 + 0.808502i \(0.299721\pi\)
\(972\) 0 0
\(973\) 1.72476e16 0.634027
\(974\) −5.84475e15 1.01234e16i −0.213645 0.370043i
\(975\) 0 0
\(976\) 8.68091e15 1.50358e16i 0.313755 0.543440i
\(977\) −5.99405e15 + 1.03820e16i −0.215427 + 0.373131i −0.953405 0.301695i \(-0.902448\pi\)
0.737977 + 0.674825i \(0.235781\pi\)
\(978\) 0 0
\(979\) −2.66908e16 4.62299e16i −0.948543 1.64293i
\(980\) 1.71609e15 0.0606453
\(981\) 0 0
\(982\) −3.56695e16 −1.24648
\(983\) −8.60000e15 1.48956e16i −0.298850 0.517624i 0.677023 0.735962i \(-0.263270\pi\)
−0.975873 + 0.218338i \(0.929937\pi\)
\(984\) 0 0
\(985\) −4.24844e15 + 7.35852e15i −0.145992 + 0.252866i
\(986\) −7.61903e15 + 1.31966e16i −0.260362 + 0.450959i
\(987\) 0 0
\(988\) −3.99759e15 6.92403e15i −0.135094 0.233989i
\(989\) 7.16470e15 0.240779
\(990\) 0 0
\(991\) 5.83721e15 0.193999 0.0969996 0.995284i \(-0.469075\pi\)
0.0969996 + 0.995284i \(0.469075\pi\)
\(992\) 9.89531e15 + 1.71392e16i 0.327051 + 0.566469i
\(993\) 0 0
\(994\) 1.07997e16 1.87056e16i 0.353009 0.611430i
\(995\) −4.55881e15 + 7.89610e15i −0.148192 + 0.256676i
\(996\) 0 0
\(997\) 1.46620e16 + 2.53953e16i 0.471378 + 0.816451i 0.999464 0.0327400i \(-0.0104233\pi\)
−0.528086 + 0.849191i \(0.677090\pi\)
\(998\) −4.60268e16 −1.47161
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.12.c.a.10.7 20
3.2 odd 2 9.12.c.a.4.4 20
9.2 odd 6 9.12.c.a.7.4 yes 20
9.4 even 3 81.12.a.c.1.4 10
9.5 odd 6 81.12.a.e.1.7 10
9.7 even 3 inner 27.12.c.a.19.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.12.c.a.4.4 20 3.2 odd 2
9.12.c.a.7.4 yes 20 9.2 odd 6
27.12.c.a.10.7 20 1.1 even 1 trivial
27.12.c.a.19.7 20 9.7 even 3 inner
81.12.a.c.1.4 10 9.4 even 3
81.12.a.e.1.7 10 9.5 odd 6