Properties

Label 27.12
Level 27
Weight 12
Dimension 227
Nonzero newspaces 3
Newform subspaces 7
Sturm bound 648
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 27 = 3^{3} \)
Weight: \( k \) = \( 12 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 7 \)
Sturm bound: \(648\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(27))\).

Total New Old
Modular forms 312 243 69
Cusp forms 282 227 55
Eisenstein series 30 16 14

Trace form

\( 227 q + 27 q^{2} - 6 q^{3} + 5183 q^{4} + 10161 q^{5} + 4410 q^{6} - 10175 q^{7} - 265797 q^{8} + 96228 q^{9} + 523695 q^{10} - 1481517 q^{11} + 323823 q^{12} - 3974669 q^{13} + 9164727 q^{14} + 3836529 q^{15}+ \cdots - 581308635231 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(27))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
27.12.a \(\chi_{27}(1, \cdot)\) 27.12.a.a 1 1
27.12.a.b 2
27.12.a.c 4
27.12.a.d 4
27.12.a.e 4
27.12.c \(\chi_{27}(10, \cdot)\) 27.12.c.a 20 2
27.12.e \(\chi_{27}(4, \cdot)\) 27.12.e.a 192 6

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(27))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_1(27)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)