Properties

Label 81.12.a
Level $81$
Weight $12$
Character orbit 81.a
Rep. character $\chi_{81}(1,\cdot)$
Character field $\Q$
Dimension $42$
Newform subspaces $5$
Sturm bound $108$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(108\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(81))\).

Total New Old
Modular forms 105 46 59
Cusp forms 93 42 51
Eisenstein series 12 4 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(54\)\(24\)\(30\)\(48\)\(22\)\(26\)\(6\)\(2\)\(4\)
\(-\)\(51\)\(22\)\(29\)\(45\)\(20\)\(25\)\(6\)\(2\)\(4\)

Trace form

\( 42 q + 40962 q^{4} + 17028 q^{7} - 579012 q^{10} + 3191238 q^{13} + 40175286 q^{16} + 18245964 q^{19} + 68179902 q^{22} + 235680564 q^{25} + 51710592 q^{28} + 75932928 q^{31} + 22083606 q^{34} - 1085054442 q^{37}+ \cdots - 120359983176 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(81))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
81.12.a.a 81.a 1.a $6$ $62.236$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 81.12.a.a \(-9\) \(0\) \(-10278\) \(22944\) $+$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{2}+(1450+4\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
81.12.a.b 81.a 1.a $6$ $62.236$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 81.12.a.a \(9\) \(0\) \(10278\) \(22944\) $+$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1})q^{2}+(1450+4\beta _{1}+\beta _{2})q^{4}+\cdots\)
81.12.a.c 81.a 1.a $10$ $62.236$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 9.12.c.a \(-33\) \(0\) \(-7230\) \(-8512\) $-$ $\mathrm{SU}(2)$ \(q+(-3-\beta _{1})q^{2}+(921+\beta _{1}+\beta _{2})q^{4}+\cdots\)
81.12.a.d 81.a 1.a $10$ $62.236$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 81.12.a.d \(0\) \(0\) \(0\) \(-11836\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(511-\beta _{3})q^{4}+(5\beta _{1}-\beta _{4}+\cdots)q^{5}+\cdots\)
81.12.a.e 81.a 1.a $10$ $62.236$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 9.12.c.a \(33\) \(0\) \(7230\) \(-8512\) $+$ $\mathrm{SU}(2)$ \(q+(3+\beta _{1})q^{2}+(921+\beta _{1}+\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(81))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_0(81)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)