Defining parameters
Level: | \( N \) | \(=\) | \( 81 = 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 12 \) |
Character orbit: | \([\chi]\) | \(=\) | 81.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(81))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 105 | 46 | 59 |
Cusp forms | 93 | 42 | 51 |
Eisenstein series | 12 | 4 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||
\(+\) | \(54\) | \(24\) | \(30\) | \(48\) | \(22\) | \(26\) | \(6\) | \(2\) | \(4\) | |||
\(-\) | \(51\) | \(22\) | \(29\) | \(45\) | \(20\) | \(25\) | \(6\) | \(2\) | \(4\) |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(81))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
81.12.a.a | $6$ | $62.236$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(-9\) | \(0\) | \(-10278\) | \(22944\) | $+$ | \(q+(-2+\beta _{1})q^{2}+(1450+4\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) | |
81.12.a.b | $6$ | $62.236$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(9\) | \(0\) | \(10278\) | \(22944\) | $+$ | \(q+(2-\beta _{1})q^{2}+(1450+4\beta _{1}+\beta _{2})q^{4}+\cdots\) | |
81.12.a.c | $10$ | $62.236$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(-33\) | \(0\) | \(-7230\) | \(-8512\) | $-$ | \(q+(-3-\beta _{1})q^{2}+(921+\beta _{1}+\beta _{2})q^{4}+\cdots\) | |
81.12.a.d | $10$ | $62.236$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-11836\) | $-$ | \(q-\beta _{1}q^{2}+(511-\beta _{3})q^{4}+(5\beta _{1}-\beta _{4}+\cdots)q^{5}+\cdots\) | |
81.12.a.e | $10$ | $62.236$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(33\) | \(0\) | \(7230\) | \(-8512\) | $+$ | \(q+(3+\beta _{1})q^{2}+(921+\beta _{1}+\beta _{2})q^{4}+\cdots\) |
Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(81))\) into lower level spaces
\( S_{12}^{\mathrm{old}}(\Gamma_0(81)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)