Properties

Label 81.12.a.b
Level $81$
Weight $12$
Character orbit 81.a
Self dual yes
Analytic conductor $62.236$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,12,Mod(1,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.2357976253\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 10488x^{4} - 31048x^{3} + 25151424x^{2} + 164507280x - 10237193792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{9} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 2) q^{2} + (\beta_{2} + 4 \beta_1 + 1450) q^{4} + (\beta_{4} + \beta_{2} + 11 \beta_1 + 1708) q^{5} + (\beta_{5} + 2 \beta_{4} + 2 \beta_{2} + \cdots + 3836) q^{7} + ( - \beta_{3} - 3 \beta_{2} + \cdots - 15627) q^{8}+ \cdots + ( - 520488 \beta_{5} + \cdots + 91537613876) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 9 q^{2} + 8709 q^{4} + 10278 q^{5} + 22944 q^{7} - 98505 q^{8} - 232731 q^{10} + 668448 q^{11} + 1861770 q^{13} + 455508 q^{14} + 15304209 q^{16} - 12317130 q^{17} + 17933736 q^{19} + 83336409 q^{20}+ \cdots + 550843111953 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} - 10488x^{4} - 31048x^{3} + 25151424x^{2} + 164507280x - 10237193792 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 8\nu - 3494 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 9\nu^{2} - 5645\nu + 3039 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} + 359\nu^{4} - 13138\nu^{3} - 2797884\nu^{2} + 25972968\nu + 2648031904 ) / 265216 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -43\nu^{5} + 1139\nu^{4} + 382598\nu^{3} - 7326188\nu^{2} - 588726264\nu + 6065568544 ) / 132608 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 8\beta _1 + 3494 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 9\beta_{2} + 5717\beta _1 + 28407 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 8\beta_{5} + 688\beta_{4} + 11\beta_{3} + 7799\beta_{2} + 92627\beta _1 + 19981061 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -2872\beta_{5} + 18224\beta_{4} + 9189\beta_{3} + 116285\beta_{2} + 38266957\beta _1 + 327785059 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
88.4079
54.9496
18.4719
−28.7124
−48.9535
−81.1635
−86.4079 0 5418.33 11308.6 0 7656.19 −291223. 0 −977155.
1.2 −52.9496 0 755.665 −9078.67 0 9377.64 68428.7 0 480712.
1.3 −16.4719 0 −1776.68 6657.94 0 −23707.4 62999.6 0 −109669.
1.4 30.7124 0 −1104.75 −553.176 0 72114.9 −96828.5 0 −16989.4
1.5 50.9535 0 548.260 −7102.15 0 −78935.2 −76417.0 0 −361880.
1.6 83.1635 0 4868.17 9045.43 0 36437.9 234535. 0 752249.
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.12.a.b yes 6
3.b odd 2 1 81.12.a.a 6
9.c even 3 2 81.12.c.k 12
9.d odd 6 2 81.12.c.l 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
81.12.a.a 6 3.b odd 2 1
81.12.a.b yes 6 1.a even 1 1 trivial
81.12.c.k 12 9.c even 3 2
81.12.c.l 12 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 9T_{2}^{5} - 10458T_{2}^{4} + 114912T_{2}^{3} + 24713424T_{2}^{2} - 264404736T_{2} - 9807989760 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(81))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + \cdots - 9807989760 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots - 24\!\cdots\!75 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 35\!\cdots\!40 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 24\!\cdots\!40 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 28\!\cdots\!39 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 49\!\cdots\!69 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 40\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 38\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 11\!\cdots\!85 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 17\!\cdots\!04 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 23\!\cdots\!55 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 42\!\cdots\!16 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 66\!\cdots\!12 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 51\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 66\!\cdots\!68 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 32\!\cdots\!68 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 11\!\cdots\!55 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 23\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 12\!\cdots\!48 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 11\!\cdots\!91 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 36\!\cdots\!88 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 70\!\cdots\!28 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 30\!\cdots\!05 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 38\!\cdots\!56 \) Copy content Toggle raw display
show more
show less