Properties

Label 81.12.c.l
Level $81$
Weight $12$
Character orbit 81.c
Analytic conductor $62.236$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,12,Mod(28,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.28"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,9,0,-8709] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.2357976253\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 7011 x^{10} - 35000 x^{9} + 17884836 x^{8} - 71329410 x^{7} + 20475172451 x^{6} + \cdots + 14\!\cdots\!75 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{21} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{7} - \beta_{6}) q^{2} + (\beta_{8} - 1453 \beta_{7} + \cdots - 1449) q^{4} + ( - \beta_{9} - \beta_{8} + \cdots + 1707) q^{5} + ( - \beta_{11} - 2 \beta_{9} + \cdots - 2 \beta_{3}) q^{7}+ \cdots + ( - 460274 \beta_{5} + \cdots - 91537902498) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 9 q^{2} - 8709 q^{4} + 10278 q^{5} - 22944 q^{7} + 197010 q^{8} - 465462 q^{10} + 668448 q^{11} - 1861770 q^{13} + 455508 q^{14} - 15304209 q^{16} + 24634260 q^{17} + 35867472 q^{19} + 83336409 q^{20}+ \cdots - 1101686223906 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 6 x^{11} + 7011 x^{10} - 35000 x^{9} + 17884836 x^{8} - 71329410 x^{7} + 20475172451 x^{6} + \cdots + 14\!\cdots\!75 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 3713329 \nu^{10} + 18566645 \nu^{9} - 21503329409 \nu^{8} + 85901917766 \nu^{7} + \cdots - 17\!\cdots\!35 ) / 76\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 25993303 \nu^{10} + 129966515 \nu^{9} - 150523305863 \nu^{8} + 601313424362 \nu^{7} + \cdots + 26\!\cdots\!75 ) / 76\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 56788284859 \nu^{10} - 283941424295 \nu^{9} + 349614115343159 \nu^{8} + \cdots + 58\!\cdots\!45 ) / 35\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 4552616241979 \nu^{10} + 22763081209895 \nu^{9} + \cdots - 15\!\cdots\!45 ) / 53\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 7458401471 \nu^{10} - 37292007355 \nu^{9} + 43190480481391 \nu^{8} - 172538169881434 \nu^{7} + \cdots - 14\!\cdots\!95 ) / 76\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 176482897265 \nu^{11} + \cdots - 35\!\cdots\!35 ) / 36\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 352965794530 \nu^{11} + 1941311869915 \nu^{10} + \cdots - 22\!\cdots\!65 ) / 36\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 25\!\cdots\!31 \nu^{11} + \cdots - 79\!\cdots\!45 ) / 36\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 68\!\cdots\!13 \nu^{11} + \cdots - 12\!\cdots\!20 ) / 17\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 20\!\cdots\!45 \nu^{11} + \cdots - 36\!\cdots\!15 ) / 36\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 40\!\cdots\!19 \nu^{11} + \cdots + 38\!\cdots\!20 ) / 25\!\cdots\!20 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} - 2\beta_{6} + \beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{7} - 2\beta_{6} + \beta_{2} - 6\beta _1 - 3493 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{10} + 15\beta_{8} - 57726\beta_{7} + 11407\beta_{6} - \beta_{5} + 12\beta_{2} - 5735\beta _1 - 38877 ) / 9 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 4 \beta_{10} + 30 \beta_{8} - 115455 \beta_{7} + 22820 \beta_{6} + 7 \beta_{5} + 8 \beta_{4} + \cdots + 19859662 ) / 9 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 5784 \beta_{11} - 18313 \beta_{10} - 33008 \beta_{9} - 193505 \beta_{8} + 631270881 \beta_{7} + \cdots + 426992828 ) / 27 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 5784 \beta_{11} - 18323 \beta_{10} - 33008 \beta_{9} - 193580 \beta_{8} + 631559520 \beta_{7} + \cdots - 43920644365 ) / 9 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 6640080 \beta_{11} + 15862495 \beta_{10} + 46375968 \beta_{9} + 231396834 \beta_{8} + \cdots - 454665140795 ) / 9 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 79761936 \beta_{11} + 190606490 \beta_{10} + 556973728 \beta_{9} + 2779472338 \beta_{8} + \cdots + 308536451093351 ) / 27 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 17611827672 \beta_{11} - 39603167573 \beta_{10} - 149455947120 \beta_{9} - 744255081033 \beta_{8} + \cdots + 13\!\cdots\!37 ) / 9 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 88258583688 \beta_{11} - 198492482371 \beta_{10} - 748672400976 \beta_{9} - 3728225441220 \beta_{8} + \cdots - 24\!\cdots\!56 ) / 9 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 130374864366576 \beta_{11} + 293431744566487 \beta_{10} + \cdots - 12\!\cdots\!76 ) / 27 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1 - \beta_{7}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
0.500000 50.7537i
0.500000 31.4365i
0.500000 10.3761i
0.500000 + 16.8658i
0.500000 + 28.5520i
0.500000 + 47.1485i
0.500000 + 50.7537i
0.500000 + 31.4365i
0.500000 + 10.3761i
0.500000 16.8658i
0.500000 28.5520i
0.500000 47.1485i
−43.2040 74.8315i 0 −2709.16 + 4692.41i 5654.31 9793.56i 0 −3828.09 6630.45i 291223. 0 −977155.
28.2 −26.4748 45.8557i 0 −377.832 + 654.425i −4539.33 + 7862.36i 0 −4688.82 8121.28i −68428.7 0 480712.
28.3 −8.23593 14.2651i 0 888.339 1538.65i 3328.97 5765.95i 0 11853.7 + 20531.2i −62999.6 0 −109669.
28.4 15.3562 + 26.5977i 0 552.374 956.740i −276.588 + 479.064i 0 −36057.4 62453.3i 96828.5 0 −16989.4
28.5 25.4768 + 44.1270i 0 −274.130 + 474.807i −3551.08 + 6150.64i 0 39467.6 + 68359.8i 76417.0 0 −361880.
28.6 41.5818 + 72.0217i 0 −2434.09 + 4215.96i 4522.71 7833.57i 0 −18218.9 31556.1i −234535. 0 752249.
55.1 −43.2040 + 74.8315i 0 −2709.16 4692.41i 5654.31 + 9793.56i 0 −3828.09 + 6630.45i 291223. 0 −977155.
55.2 −26.4748 + 45.8557i 0 −377.832 654.425i −4539.33 7862.36i 0 −4688.82 + 8121.28i −68428.7 0 480712.
55.3 −8.23593 + 14.2651i 0 888.339 + 1538.65i 3328.97 + 5765.95i 0 11853.7 20531.2i −62999.6 0 −109669.
55.4 15.3562 26.5977i 0 552.374 + 956.740i −276.588 479.064i 0 −36057.4 + 62453.3i 96828.5 0 −16989.4
55.5 25.4768 44.1270i 0 −274.130 474.807i −3551.08 6150.64i 0 39467.6 68359.8i 76417.0 0 −361880.
55.6 41.5818 72.0217i 0 −2434.09 4215.96i 4522.71 + 7833.57i 0 −18218.9 + 31556.1i −234535. 0 752249.
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 28.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.12.c.l 12
3.b odd 2 1 81.12.c.k 12
9.c even 3 1 81.12.a.a 6
9.c even 3 1 inner 81.12.c.l 12
9.d odd 6 1 81.12.a.b yes 6
9.d odd 6 1 81.12.c.k 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
81.12.a.a 6 9.c even 3 1
81.12.a.b yes 6 9.d odd 6 1
81.12.c.k 12 3.b odd 2 1
81.12.c.k 12 9.d odd 6 1
81.12.c.l 12 1.a even 1 1 trivial
81.12.c.l 12 9.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{12} - 9 T_{2}^{11} + 10539 T_{2}^{10} - 135702 T_{2}^{9} + 85690548 T_{2}^{8} + \cdots + 96\!\cdots\!00 \) acting on \(S_{12}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} + \cdots + 96\!\cdots\!00 \) Copy content Toggle raw display
$3$ \( T^{12} \) Copy content Toggle raw display
$5$ \( T^{12} + \cdots + 59\!\cdots\!25 \) Copy content Toggle raw display
$7$ \( T^{12} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{12} + \cdots + 58\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{12} + \cdots + 80\!\cdots\!21 \) Copy content Toggle raw display
$17$ \( (T^{6} + \cdots + 49\!\cdots\!69)^{2} \) Copy content Toggle raw display
$19$ \( (T^{6} + \cdots + 40\!\cdots\!00)^{2} \) Copy content Toggle raw display
$23$ \( T^{12} + \cdots + 14\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 13\!\cdots\!25 \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots + 31\!\cdots\!16 \) Copy content Toggle raw display
$37$ \( (T^{6} + \cdots - 23\!\cdots\!55)^{2} \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 17\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 44\!\cdots\!44 \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots + 26\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( (T^{6} + \cdots - 66\!\cdots\!68)^{2} \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 10\!\cdots\!24 \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 14\!\cdots\!25 \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 56\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( (T^{6} + \cdots - 12\!\cdots\!48)^{2} \) Copy content Toggle raw display
$73$ \( (T^{6} + \cdots - 11\!\cdots\!91)^{2} \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 13\!\cdots\!44 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 49\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( (T^{6} + \cdots + 30\!\cdots\!05)^{2} \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 14\!\cdots\!36 \) Copy content Toggle raw display
show more
show less