Properties

Label 81.10.a.c.1.2
Level $81$
Weight $10$
Character 81.1
Self dual yes
Analytic conductor $41.718$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,10,Mod(1,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7179027293\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 2930 x^{6} - 1276 x^{5} + 2487472 x^{4} + 3423248 x^{3} - 586568096 x^{2} + \cdots + 965565184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{18}\cdot 17 \)
Twist minimal: no (minimal twist has level 9)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-32.8660\) of defining polynomial
Character \(\chi\) \(=\) 81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-34.8660 q^{2} +703.639 q^{4} +2006.52 q^{5} +4867.88 q^{7} -6681.68 q^{8} -69959.4 q^{10} -73917.1 q^{11} +26492.1 q^{13} -169724. q^{14} -127299. q^{16} -300444. q^{17} +180460. q^{19} +1.41187e6 q^{20} +2.57720e6 q^{22} -2.13285e6 q^{23} +2.07300e6 q^{25} -923673. q^{26} +3.42523e6 q^{28} -1.89635e6 q^{29} +5.07398e6 q^{31} +7.85945e6 q^{32} +1.04753e7 q^{34} +9.76750e6 q^{35} -2.17155e6 q^{37} -6.29194e6 q^{38} -1.34069e7 q^{40} -7.63351e6 q^{41} -1.37351e7 q^{43} -5.20110e7 q^{44} +7.43639e7 q^{46} -5.06676e7 q^{47} -1.66573e7 q^{49} -7.22772e7 q^{50} +1.86409e7 q^{52} +2.60958e7 q^{53} -1.48316e8 q^{55} -3.25256e7 q^{56} +6.61182e7 q^{58} +4.22136e7 q^{59} -4.87874e7 q^{61} -1.76910e8 q^{62} -2.08850e8 q^{64} +5.31569e7 q^{65} -1.71276e8 q^{67} -2.11404e8 q^{68} -3.40554e8 q^{70} +8.48941e7 q^{71} +1.62304e8 q^{73} +7.57135e7 q^{74} +1.26979e8 q^{76} -3.59820e8 q^{77} +1.90082e8 q^{79} -2.55429e8 q^{80} +2.66150e8 q^{82} -4.43914e8 q^{83} -6.02848e8 q^{85} +4.78889e8 q^{86} +4.93891e8 q^{88} -4.26398e8 q^{89} +1.28960e8 q^{91} -1.50076e9 q^{92} +1.76658e9 q^{94} +3.62098e8 q^{95} +1.61351e9 q^{97} +5.80775e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 15 q^{2} + 1793 q^{4} - 453 q^{5} + 343 q^{7} - 7239 q^{8} + 510 q^{10} - 99150 q^{11} - 32435 q^{13} - 394824 q^{14} + 328193 q^{16} - 415539 q^{17} - 85277 q^{19} - 1855164 q^{20} - 529359 q^{22}+ \cdots + 2413650159 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −34.8660 −1.54087 −0.770437 0.637516i \(-0.779962\pi\)
−0.770437 + 0.637516i \(0.779962\pi\)
\(3\) 0 0
\(4\) 703.639 1.37429
\(5\) 2006.52 1.43575 0.717874 0.696173i \(-0.245115\pi\)
0.717874 + 0.696173i \(0.245115\pi\)
\(6\) 0 0
\(7\) 4867.88 0.766300 0.383150 0.923686i \(-0.374839\pi\)
0.383150 + 0.923686i \(0.374839\pi\)
\(8\) −6681.68 −0.576741
\(9\) 0 0
\(10\) −69959.4 −2.21231
\(11\) −73917.1 −1.52222 −0.761111 0.648621i \(-0.775346\pi\)
−0.761111 + 0.648621i \(0.775346\pi\)
\(12\) 0 0
\(13\) 26492.1 0.257259 0.128630 0.991693i \(-0.458942\pi\)
0.128630 + 0.991693i \(0.458942\pi\)
\(14\) −169724. −1.18077
\(15\) 0 0
\(16\) −127299. −0.485609
\(17\) −300444. −0.872457 −0.436228 0.899836i \(-0.643686\pi\)
−0.436228 + 0.899836i \(0.643686\pi\)
\(18\) 0 0
\(19\) 180460. 0.317681 0.158840 0.987304i \(-0.449224\pi\)
0.158840 + 0.987304i \(0.449224\pi\)
\(20\) 1.41187e6 1.97314
\(21\) 0 0
\(22\) 2.57720e6 2.34555
\(23\) −2.13285e6 −1.58922 −0.794611 0.607119i \(-0.792325\pi\)
−0.794611 + 0.607119i \(0.792325\pi\)
\(24\) 0 0
\(25\) 2.07300e6 1.06138
\(26\) −923673. −0.396404
\(27\) 0 0
\(28\) 3.42523e6 1.05312
\(29\) −1.89635e6 −0.497884 −0.248942 0.968518i \(-0.580083\pi\)
−0.248942 + 0.968518i \(0.580083\pi\)
\(30\) 0 0
\(31\) 5.07398e6 0.986782 0.493391 0.869808i \(-0.335757\pi\)
0.493391 + 0.869808i \(0.335757\pi\)
\(32\) 7.85945e6 1.32500
\(33\) 0 0
\(34\) 1.04753e7 1.34435
\(35\) 9.76750e6 1.10021
\(36\) 0 0
\(37\) −2.17155e6 −0.190486 −0.0952430 0.995454i \(-0.530363\pi\)
−0.0952430 + 0.995454i \(0.530363\pi\)
\(38\) −6.29194e6 −0.489506
\(39\) 0 0
\(40\) −1.34069e7 −0.828056
\(41\) −7.63351e6 −0.421888 −0.210944 0.977498i \(-0.567654\pi\)
−0.210944 + 0.977498i \(0.567654\pi\)
\(42\) 0 0
\(43\) −1.37351e7 −0.612667 −0.306333 0.951924i \(-0.599102\pi\)
−0.306333 + 0.951924i \(0.599102\pi\)
\(44\) −5.20110e7 −2.09198
\(45\) 0 0
\(46\) 7.43639e7 2.44879
\(47\) −5.06676e7 −1.51457 −0.757286 0.653083i \(-0.773475\pi\)
−0.757286 + 0.653083i \(0.773475\pi\)
\(48\) 0 0
\(49\) −1.66573e7 −0.412784
\(50\) −7.22772e7 −1.63545
\(51\) 0 0
\(52\) 1.86409e7 0.353550
\(53\) 2.60958e7 0.454286 0.227143 0.973861i \(-0.427062\pi\)
0.227143 + 0.973861i \(0.427062\pi\)
\(54\) 0 0
\(55\) −1.48316e8 −2.18553
\(56\) −3.25256e7 −0.441957
\(57\) 0 0
\(58\) 6.61182e7 0.767176
\(59\) 4.22136e7 0.453543 0.226771 0.973948i \(-0.427183\pi\)
0.226771 + 0.973948i \(0.427183\pi\)
\(60\) 0 0
\(61\) −4.87874e7 −0.451153 −0.225576 0.974225i \(-0.572427\pi\)
−0.225576 + 0.974225i \(0.572427\pi\)
\(62\) −1.76910e8 −1.52051
\(63\) 0 0
\(64\) −2.08850e8 −1.55606
\(65\) 5.31569e7 0.369360
\(66\) 0 0
\(67\) −1.71276e8 −1.03839 −0.519194 0.854656i \(-0.673768\pi\)
−0.519194 + 0.854656i \(0.673768\pi\)
\(68\) −2.11404e8 −1.19901
\(69\) 0 0
\(70\) −3.40554e8 −1.69529
\(71\) 8.48941e7 0.396474 0.198237 0.980154i \(-0.436478\pi\)
0.198237 + 0.980154i \(0.436478\pi\)
\(72\) 0 0
\(73\) 1.62304e8 0.668923 0.334462 0.942409i \(-0.391445\pi\)
0.334462 + 0.942409i \(0.391445\pi\)
\(74\) 7.57135e7 0.293515
\(75\) 0 0
\(76\) 1.26979e8 0.436587
\(77\) −3.59820e8 −1.16648
\(78\) 0 0
\(79\) 1.90082e8 0.549059 0.274530 0.961579i \(-0.411478\pi\)
0.274530 + 0.961579i \(0.411478\pi\)
\(80\) −2.55429e8 −0.697212
\(81\) 0 0
\(82\) 2.66150e8 0.650076
\(83\) −4.43914e8 −1.02671 −0.513354 0.858177i \(-0.671597\pi\)
−0.513354 + 0.858177i \(0.671597\pi\)
\(84\) 0 0
\(85\) −6.02848e8 −1.25263
\(86\) 4.78889e8 0.944043
\(87\) 0 0
\(88\) 4.93891e8 0.877928
\(89\) −4.26398e8 −0.720377 −0.360189 0.932879i \(-0.617288\pi\)
−0.360189 + 0.932879i \(0.617288\pi\)
\(90\) 0 0
\(91\) 1.28960e8 0.197138
\(92\) −1.50076e9 −2.18406
\(93\) 0 0
\(94\) 1.76658e9 2.33377
\(95\) 3.62098e8 0.456110
\(96\) 0 0
\(97\) 1.61351e9 1.85055 0.925273 0.379301i \(-0.123836\pi\)
0.925273 + 0.379301i \(0.123836\pi\)
\(98\) 5.80775e8 0.636049
\(99\) 0 0
\(100\) 1.45864e9 1.45864
\(101\) 6.30985e8 0.603355 0.301677 0.953410i \(-0.402453\pi\)
0.301677 + 0.953410i \(0.402453\pi\)
\(102\) 0 0
\(103\) −9.06864e8 −0.793916 −0.396958 0.917837i \(-0.629934\pi\)
−0.396958 + 0.917837i \(0.629934\pi\)
\(104\) −1.77012e8 −0.148372
\(105\) 0 0
\(106\) −9.09856e8 −0.699997
\(107\) 1.81912e9 1.34163 0.670817 0.741623i \(-0.265944\pi\)
0.670817 + 0.741623i \(0.265944\pi\)
\(108\) 0 0
\(109\) −8.90034e8 −0.603931 −0.301966 0.953319i \(-0.597643\pi\)
−0.301966 + 0.953319i \(0.597643\pi\)
\(110\) 5.17120e9 3.36763
\(111\) 0 0
\(112\) −6.19679e8 −0.372122
\(113\) 6.76258e7 0.0390175 0.0195088 0.999810i \(-0.493790\pi\)
0.0195088 + 0.999810i \(0.493790\pi\)
\(114\) 0 0
\(115\) −4.27960e9 −2.28172
\(116\) −1.33435e9 −0.684239
\(117\) 0 0
\(118\) −1.47182e9 −0.698853
\(119\) −1.46253e9 −0.668564
\(120\) 0 0
\(121\) 3.10580e9 1.31716
\(122\) 1.70102e9 0.695170
\(123\) 0 0
\(124\) 3.57025e9 1.35613
\(125\) 2.40528e8 0.0881191
\(126\) 0 0
\(127\) −3.43570e9 −1.17192 −0.585960 0.810340i \(-0.699283\pi\)
−0.585960 + 0.810340i \(0.699283\pi\)
\(128\) 3.25774e9 1.07268
\(129\) 0 0
\(130\) −1.85337e9 −0.569137
\(131\) −1.42075e9 −0.421500 −0.210750 0.977540i \(-0.567591\pi\)
−0.210750 + 0.977540i \(0.567591\pi\)
\(132\) 0 0
\(133\) 8.78460e8 0.243439
\(134\) 5.97171e9 1.60003
\(135\) 0 0
\(136\) 2.00747e9 0.503182
\(137\) −4.08435e9 −0.990558 −0.495279 0.868734i \(-0.664934\pi\)
−0.495279 + 0.868734i \(0.664934\pi\)
\(138\) 0 0
\(139\) −4.29846e9 −0.976667 −0.488333 0.872657i \(-0.662395\pi\)
−0.488333 + 0.872657i \(0.662395\pi\)
\(140\) 6.87279e9 1.51202
\(141\) 0 0
\(142\) −2.95992e9 −0.610917
\(143\) −1.95822e9 −0.391606
\(144\) 0 0
\(145\) −3.80507e9 −0.714836
\(146\) −5.65889e9 −1.03073
\(147\) 0 0
\(148\) −1.52799e9 −0.261784
\(149\) −1.90031e8 −0.0315855 −0.0157927 0.999875i \(-0.505027\pi\)
−0.0157927 + 0.999875i \(0.505027\pi\)
\(150\) 0 0
\(151\) −9.42107e9 −1.47470 −0.737351 0.675510i \(-0.763923\pi\)
−0.737351 + 0.675510i \(0.763923\pi\)
\(152\) −1.20578e9 −0.183220
\(153\) 0 0
\(154\) 1.25455e10 1.79740
\(155\) 1.01810e10 1.41677
\(156\) 0 0
\(157\) −1.18095e10 −1.55125 −0.775625 0.631194i \(-0.782565\pi\)
−0.775625 + 0.631194i \(0.782565\pi\)
\(158\) −6.62740e9 −0.846031
\(159\) 0 0
\(160\) 1.57701e10 1.90237
\(161\) −1.03825e10 −1.21782
\(162\) 0 0
\(163\) −1.93114e9 −0.214274 −0.107137 0.994244i \(-0.534168\pi\)
−0.107137 + 0.994244i \(0.534168\pi\)
\(164\) −5.37123e9 −0.579798
\(165\) 0 0
\(166\) 1.54775e10 1.58203
\(167\) 8.70120e8 0.0865675 0.0432838 0.999063i \(-0.486218\pi\)
0.0432838 + 0.999063i \(0.486218\pi\)
\(168\) 0 0
\(169\) −9.90267e9 −0.933818
\(170\) 2.10189e10 1.93014
\(171\) 0 0
\(172\) −9.66456e9 −0.841985
\(173\) 1.60328e9 0.136083 0.0680413 0.997683i \(-0.478325\pi\)
0.0680413 + 0.997683i \(0.478325\pi\)
\(174\) 0 0
\(175\) 1.00911e10 0.813332
\(176\) 9.40961e9 0.739205
\(177\) 0 0
\(178\) 1.48668e10 1.11001
\(179\) 1.20800e9 0.0879486 0.0439743 0.999033i \(-0.485998\pi\)
0.0439743 + 0.999033i \(0.485998\pi\)
\(180\) 0 0
\(181\) 2.02866e10 1.40494 0.702468 0.711715i \(-0.252081\pi\)
0.702468 + 0.711715i \(0.252081\pi\)
\(182\) −4.49633e9 −0.303765
\(183\) 0 0
\(184\) 1.42510e10 0.916570
\(185\) −4.35727e9 −0.273490
\(186\) 0 0
\(187\) 2.22080e10 1.32807
\(188\) −3.56517e10 −2.08147
\(189\) 0 0
\(190\) −1.26249e10 −0.702808
\(191\) −3.50273e9 −0.190439 −0.0952197 0.995456i \(-0.530355\pi\)
−0.0952197 + 0.995456i \(0.530355\pi\)
\(192\) 0 0
\(193\) 2.43071e10 1.26103 0.630514 0.776178i \(-0.282844\pi\)
0.630514 + 0.776178i \(0.282844\pi\)
\(194\) −5.62568e10 −2.85146
\(195\) 0 0
\(196\) −1.17207e10 −0.567287
\(197\) −3.50660e10 −1.65878 −0.829390 0.558670i \(-0.811312\pi\)
−0.829390 + 0.558670i \(0.811312\pi\)
\(198\) 0 0
\(199\) −3.04182e9 −0.137498 −0.0687488 0.997634i \(-0.521901\pi\)
−0.0687488 + 0.997634i \(0.521901\pi\)
\(200\) −1.38511e10 −0.612139
\(201\) 0 0
\(202\) −2.19999e10 −0.929694
\(203\) −9.23121e9 −0.381528
\(204\) 0 0
\(205\) −1.53168e10 −0.605725
\(206\) 3.16187e10 1.22332
\(207\) 0 0
\(208\) −3.37243e9 −0.124927
\(209\) −1.33391e10 −0.483581
\(210\) 0 0
\(211\) −2.02783e10 −0.704303 −0.352151 0.935943i \(-0.614550\pi\)
−0.352151 + 0.935943i \(0.614550\pi\)
\(212\) 1.83620e10 0.624322
\(213\) 0 0
\(214\) −6.34254e10 −2.06729
\(215\) −2.75598e10 −0.879636
\(216\) 0 0
\(217\) 2.46995e10 0.756171
\(218\) 3.10320e10 0.930582
\(219\) 0 0
\(220\) −1.04361e11 −3.00356
\(221\) −7.95940e9 −0.224448
\(222\) 0 0
\(223\) 3.13424e10 0.848712 0.424356 0.905495i \(-0.360500\pi\)
0.424356 + 0.905495i \(0.360500\pi\)
\(224\) 3.82589e10 1.01535
\(225\) 0 0
\(226\) −2.35784e9 −0.0601211
\(227\) −7.23264e10 −1.80792 −0.903962 0.427612i \(-0.859355\pi\)
−0.903962 + 0.427612i \(0.859355\pi\)
\(228\) 0 0
\(229\) 2.34943e10 0.564550 0.282275 0.959334i \(-0.408911\pi\)
0.282275 + 0.959334i \(0.408911\pi\)
\(230\) 1.49213e11 3.51585
\(231\) 0 0
\(232\) 1.26708e10 0.287150
\(233\) 8.06827e10 1.79341 0.896703 0.442633i \(-0.145955\pi\)
0.896703 + 0.442633i \(0.145955\pi\)
\(234\) 0 0
\(235\) −1.01666e11 −2.17455
\(236\) 2.97031e10 0.623301
\(237\) 0 0
\(238\) 5.09925e10 1.03017
\(239\) −7.38972e10 −1.46500 −0.732500 0.680767i \(-0.761647\pi\)
−0.732500 + 0.680767i \(0.761647\pi\)
\(240\) 0 0
\(241\) 2.76671e10 0.528307 0.264154 0.964481i \(-0.414907\pi\)
0.264154 + 0.964481i \(0.414907\pi\)
\(242\) −1.08287e11 −2.02958
\(243\) 0 0
\(244\) −3.43287e10 −0.620017
\(245\) −3.34233e10 −0.592655
\(246\) 0 0
\(247\) 4.78077e9 0.0817263
\(248\) −3.39027e10 −0.569118
\(249\) 0 0
\(250\) −8.38625e9 −0.135781
\(251\) 6.64513e10 1.05675 0.528375 0.849011i \(-0.322802\pi\)
0.528375 + 0.849011i \(0.322802\pi\)
\(252\) 0 0
\(253\) 1.57654e11 2.41915
\(254\) 1.19789e11 1.80578
\(255\) 0 0
\(256\) −6.65304e9 −0.0968145
\(257\) 6.64345e10 0.949936 0.474968 0.880003i \(-0.342460\pi\)
0.474968 + 0.880003i \(0.342460\pi\)
\(258\) 0 0
\(259\) −1.05709e10 −0.145969
\(260\) 3.74033e10 0.507609
\(261\) 0 0
\(262\) 4.95359e10 0.649478
\(263\) 1.35863e11 1.75105 0.875526 0.483172i \(-0.160515\pi\)
0.875526 + 0.483172i \(0.160515\pi\)
\(264\) 0 0
\(265\) 5.23617e10 0.652240
\(266\) −3.06284e10 −0.375109
\(267\) 0 0
\(268\) −1.20516e11 −1.42705
\(269\) −9.96606e10 −1.16048 −0.580241 0.814445i \(-0.697042\pi\)
−0.580241 + 0.814445i \(0.697042\pi\)
\(270\) 0 0
\(271\) −4.00569e10 −0.451145 −0.225572 0.974226i \(-0.572425\pi\)
−0.225572 + 0.974226i \(0.572425\pi\)
\(272\) 3.82464e10 0.423673
\(273\) 0 0
\(274\) 1.42405e11 1.52633
\(275\) −1.53230e11 −1.61565
\(276\) 0 0
\(277\) 1.65483e11 1.68886 0.844432 0.535662i \(-0.179938\pi\)
0.844432 + 0.535662i \(0.179938\pi\)
\(278\) 1.49870e11 1.50492
\(279\) 0 0
\(280\) −6.52634e10 −0.634539
\(281\) −1.83536e11 −1.75608 −0.878038 0.478591i \(-0.841148\pi\)
−0.878038 + 0.478591i \(0.841148\pi\)
\(282\) 0 0
\(283\) −7.83487e10 −0.726094 −0.363047 0.931771i \(-0.618264\pi\)
−0.363047 + 0.931771i \(0.618264\pi\)
\(284\) 5.97348e10 0.544872
\(285\) 0 0
\(286\) 6.82753e10 0.603415
\(287\) −3.71590e10 −0.323293
\(288\) 0 0
\(289\) −2.83210e10 −0.238819
\(290\) 1.32668e11 1.10147
\(291\) 0 0
\(292\) 1.14203e11 0.919298
\(293\) 1.84598e11 1.46326 0.731632 0.681700i \(-0.238759\pi\)
0.731632 + 0.681700i \(0.238759\pi\)
\(294\) 0 0
\(295\) 8.47024e10 0.651174
\(296\) 1.45096e10 0.109861
\(297\) 0 0
\(298\) 6.62564e9 0.0486693
\(299\) −5.65036e10 −0.408842
\(300\) 0 0
\(301\) −6.68609e10 −0.469487
\(302\) 3.28475e11 2.27233
\(303\) 0 0
\(304\) −2.29725e10 −0.154269
\(305\) −9.78930e10 −0.647742
\(306\) 0 0
\(307\) 1.19307e11 0.766554 0.383277 0.923633i \(-0.374795\pi\)
0.383277 + 0.923633i \(0.374795\pi\)
\(308\) −2.53183e11 −1.60309
\(309\) 0 0
\(310\) −3.54973e11 −2.18307
\(311\) −5.79966e9 −0.0351545 −0.0175773 0.999846i \(-0.505595\pi\)
−0.0175773 + 0.999846i \(0.505595\pi\)
\(312\) 0 0
\(313\) −3.08296e11 −1.81559 −0.907796 0.419412i \(-0.862236\pi\)
−0.907796 + 0.419412i \(0.862236\pi\)
\(314\) 4.11749e11 2.39028
\(315\) 0 0
\(316\) 1.33749e11 0.754569
\(317\) 2.29270e11 1.27521 0.637603 0.770365i \(-0.279926\pi\)
0.637603 + 0.770365i \(0.279926\pi\)
\(318\) 0 0
\(319\) 1.40173e11 0.757890
\(320\) −4.19062e11 −2.23411
\(321\) 0 0
\(322\) 3.61995e11 1.87651
\(323\) −5.42183e10 −0.277163
\(324\) 0 0
\(325\) 5.49180e10 0.273049
\(326\) 6.73312e10 0.330169
\(327\) 0 0
\(328\) 5.10047e10 0.243320
\(329\) −2.46644e11 −1.16062
\(330\) 0 0
\(331\) −1.45906e11 −0.668110 −0.334055 0.942554i \(-0.608417\pi\)
−0.334055 + 0.942554i \(0.608417\pi\)
\(332\) −3.12355e11 −1.41100
\(333\) 0 0
\(334\) −3.03376e10 −0.133390
\(335\) −3.43669e11 −1.49087
\(336\) 0 0
\(337\) −2.82273e11 −1.19216 −0.596081 0.802924i \(-0.703276\pi\)
−0.596081 + 0.802924i \(0.703276\pi\)
\(338\) 3.45267e11 1.43890
\(339\) 0 0
\(340\) −4.24187e11 −1.72148
\(341\) −3.75054e11 −1.50210
\(342\) 0 0
\(343\) −2.77523e11 −1.08262
\(344\) 9.17737e10 0.353350
\(345\) 0 0
\(346\) −5.59001e10 −0.209686
\(347\) −3.18802e11 −1.18042 −0.590212 0.807248i \(-0.700956\pi\)
−0.590212 + 0.807248i \(0.700956\pi\)
\(348\) 0 0
\(349\) −1.39860e11 −0.504638 −0.252319 0.967644i \(-0.581193\pi\)
−0.252319 + 0.967644i \(0.581193\pi\)
\(350\) −3.51837e11 −1.25324
\(351\) 0 0
\(352\) −5.80948e11 −2.01695
\(353\) 1.61673e11 0.554181 0.277090 0.960844i \(-0.410630\pi\)
0.277090 + 0.960844i \(0.410630\pi\)
\(354\) 0 0
\(355\) 1.70342e11 0.569237
\(356\) −3.00030e11 −0.990011
\(357\) 0 0
\(358\) −4.21182e10 −0.135518
\(359\) 3.30259e11 1.04937 0.524687 0.851295i \(-0.324182\pi\)
0.524687 + 0.851295i \(0.324182\pi\)
\(360\) 0 0
\(361\) −2.90122e11 −0.899079
\(362\) −7.07314e11 −2.16483
\(363\) 0 0
\(364\) 9.07415e10 0.270925
\(365\) 3.25666e11 0.960406
\(366\) 0 0
\(367\) 4.26074e11 1.22599 0.612996 0.790086i \(-0.289964\pi\)
0.612996 + 0.790086i \(0.289964\pi\)
\(368\) 2.71510e11 0.771740
\(369\) 0 0
\(370\) 1.51921e11 0.421414
\(371\) 1.27031e11 0.348119
\(372\) 0 0
\(373\) 2.01040e11 0.537766 0.268883 0.963173i \(-0.413345\pi\)
0.268883 + 0.963173i \(0.413345\pi\)
\(374\) −7.74304e11 −2.04639
\(375\) 0 0
\(376\) 3.38545e11 0.873517
\(377\) −5.02383e10 −0.128085
\(378\) 0 0
\(379\) 7.50298e10 0.186792 0.0933959 0.995629i \(-0.470228\pi\)
0.0933959 + 0.995629i \(0.470228\pi\)
\(380\) 2.54786e11 0.626829
\(381\) 0 0
\(382\) 1.22126e11 0.293443
\(383\) 1.64739e11 0.391204 0.195602 0.980683i \(-0.437334\pi\)
0.195602 + 0.980683i \(0.437334\pi\)
\(384\) 0 0
\(385\) −7.21986e11 −1.67477
\(386\) −8.47490e11 −1.94308
\(387\) 0 0
\(388\) 1.13533e12 2.54320
\(389\) 1.03184e11 0.228474 0.114237 0.993454i \(-0.463558\pi\)
0.114237 + 0.993454i \(0.463558\pi\)
\(390\) 0 0
\(391\) 6.40802e11 1.38653
\(392\) 1.11299e11 0.238070
\(393\) 0 0
\(394\) 1.22261e12 2.55597
\(395\) 3.81403e11 0.788311
\(396\) 0 0
\(397\) 7.76925e11 1.56972 0.784860 0.619673i \(-0.212735\pi\)
0.784860 + 0.619673i \(0.212735\pi\)
\(398\) 1.06056e11 0.211867
\(399\) 0 0
\(400\) −2.63891e11 −0.515413
\(401\) 5.66184e11 1.09347 0.546736 0.837305i \(-0.315870\pi\)
0.546736 + 0.837305i \(0.315870\pi\)
\(402\) 0 0
\(403\) 1.34420e11 0.253859
\(404\) 4.43986e11 0.829188
\(405\) 0 0
\(406\) 3.21856e11 0.587887
\(407\) 1.60515e11 0.289962
\(408\) 0 0
\(409\) −7.56762e11 −1.33722 −0.668612 0.743611i \(-0.733111\pi\)
−0.668612 + 0.743611i \(0.733111\pi\)
\(410\) 5.34035e11 0.933346
\(411\) 0 0
\(412\) −6.38104e11 −1.09107
\(413\) 2.05491e11 0.347550
\(414\) 0 0
\(415\) −8.90722e11 −1.47410
\(416\) 2.08213e11 0.340869
\(417\) 0 0
\(418\) 4.65082e11 0.745137
\(419\) −4.02426e11 −0.637856 −0.318928 0.947779i \(-0.603323\pi\)
−0.318928 + 0.947779i \(0.603323\pi\)
\(420\) 0 0
\(421\) −4.00580e11 −0.621470 −0.310735 0.950497i \(-0.600575\pi\)
−0.310735 + 0.950497i \(0.600575\pi\)
\(422\) 7.07022e11 1.08524
\(423\) 0 0
\(424\) −1.74364e11 −0.262005
\(425\) −6.22821e11 −0.926004
\(426\) 0 0
\(427\) −2.37491e11 −0.345718
\(428\) 1.28000e12 1.84380
\(429\) 0 0
\(430\) 9.60900e11 1.35541
\(431\) −5.54723e11 −0.774335 −0.387167 0.922009i \(-0.626546\pi\)
−0.387167 + 0.922009i \(0.626546\pi\)
\(432\) 0 0
\(433\) −4.39147e11 −0.600364 −0.300182 0.953882i \(-0.597047\pi\)
−0.300182 + 0.953882i \(0.597047\pi\)
\(434\) −8.61175e11 −1.16517
\(435\) 0 0
\(436\) −6.26263e11 −0.829980
\(437\) −3.84895e11 −0.504865
\(438\) 0 0
\(439\) 5.91760e11 0.760424 0.380212 0.924899i \(-0.375851\pi\)
0.380212 + 0.924899i \(0.375851\pi\)
\(440\) 9.91002e11 1.26048
\(441\) 0 0
\(442\) 2.77512e11 0.345846
\(443\) 5.70684e11 0.704010 0.352005 0.935998i \(-0.385500\pi\)
0.352005 + 0.935998i \(0.385500\pi\)
\(444\) 0 0
\(445\) −8.55576e11 −1.03428
\(446\) −1.09278e12 −1.30776
\(447\) 0 0
\(448\) −1.01666e12 −1.19241
\(449\) −1.06817e12 −1.24031 −0.620156 0.784479i \(-0.712931\pi\)
−0.620156 + 0.784479i \(0.712931\pi\)
\(450\) 0 0
\(451\) 5.64247e11 0.642207
\(452\) 4.75841e10 0.0536215
\(453\) 0 0
\(454\) 2.52173e12 2.78579
\(455\) 2.58761e11 0.283040
\(456\) 0 0
\(457\) −2.83903e11 −0.304471 −0.152236 0.988344i \(-0.548647\pi\)
−0.152236 + 0.988344i \(0.548647\pi\)
\(458\) −8.19152e11 −0.869901
\(459\) 0 0
\(460\) −3.01130e12 −3.13576
\(461\) −2.67602e11 −0.275953 −0.137977 0.990435i \(-0.544060\pi\)
−0.137977 + 0.990435i \(0.544060\pi\)
\(462\) 0 0
\(463\) −1.12929e12 −1.14206 −0.571032 0.820928i \(-0.693457\pi\)
−0.571032 + 0.820928i \(0.693457\pi\)
\(464\) 2.41404e11 0.241777
\(465\) 0 0
\(466\) −2.81308e12 −2.76341
\(467\) 1.35767e12 1.32089 0.660446 0.750873i \(-0.270367\pi\)
0.660446 + 0.750873i \(0.270367\pi\)
\(468\) 0 0
\(469\) −8.33752e11 −0.795717
\(470\) 3.54467e12 3.35070
\(471\) 0 0
\(472\) −2.82058e11 −0.261577
\(473\) 1.01526e12 0.932615
\(474\) 0 0
\(475\) 3.74094e11 0.337178
\(476\) −1.02909e12 −0.918804
\(477\) 0 0
\(478\) 2.57650e12 2.25738
\(479\) 1.73815e12 1.50861 0.754304 0.656525i \(-0.227974\pi\)
0.754304 + 0.656525i \(0.227974\pi\)
\(480\) 0 0
\(481\) −5.75290e10 −0.0490043
\(482\) −9.64640e11 −0.814055
\(483\) 0 0
\(484\) 2.18536e12 1.81017
\(485\) 3.23755e12 2.65692
\(486\) 0 0
\(487\) 3.33116e11 0.268358 0.134179 0.990957i \(-0.457160\pi\)
0.134179 + 0.990957i \(0.457160\pi\)
\(488\) 3.25982e11 0.260198
\(489\) 0 0
\(490\) 1.16534e12 0.913206
\(491\) −3.75694e11 −0.291721 −0.145860 0.989305i \(-0.546595\pi\)
−0.145860 + 0.989305i \(0.546595\pi\)
\(492\) 0 0
\(493\) 5.69748e11 0.434382
\(494\) −1.66687e11 −0.125930
\(495\) 0 0
\(496\) −6.45915e11 −0.479190
\(497\) 4.13254e11 0.303818
\(498\) 0 0
\(499\) −6.39178e11 −0.461497 −0.230749 0.973013i \(-0.574117\pi\)
−0.230749 + 0.973013i \(0.574117\pi\)
\(500\) 1.69245e11 0.121102
\(501\) 0 0
\(502\) −2.31689e12 −1.62832
\(503\) −6.06590e11 −0.422513 −0.211256 0.977431i \(-0.567755\pi\)
−0.211256 + 0.977431i \(0.567755\pi\)
\(504\) 0 0
\(505\) 1.26608e12 0.866266
\(506\) −5.49677e12 −3.72761
\(507\) 0 0
\(508\) −2.41749e12 −1.61056
\(509\) 2.03325e12 1.34264 0.671321 0.741167i \(-0.265727\pi\)
0.671321 + 0.741167i \(0.265727\pi\)
\(510\) 0 0
\(511\) 7.90077e11 0.512596
\(512\) −1.43600e12 −0.923504
\(513\) 0 0
\(514\) −2.31630e12 −1.46373
\(515\) −1.81964e12 −1.13986
\(516\) 0 0
\(517\) 3.74521e12 2.30552
\(518\) 3.68564e11 0.224921
\(519\) 0 0
\(520\) −3.55178e11 −0.213025
\(521\) 4.96377e9 0.00295150 0.00147575 0.999999i \(-0.499530\pi\)
0.00147575 + 0.999999i \(0.499530\pi\)
\(522\) 0 0
\(523\) 5.29813e11 0.309646 0.154823 0.987942i \(-0.450519\pi\)
0.154823 + 0.987942i \(0.450519\pi\)
\(524\) −9.99696e11 −0.579265
\(525\) 0 0
\(526\) −4.73698e12 −2.69815
\(527\) −1.52445e12 −0.860925
\(528\) 0 0
\(529\) 2.74789e12 1.52563
\(530\) −1.82564e12 −1.00502
\(531\) 0 0
\(532\) 6.18119e11 0.334557
\(533\) −2.02228e11 −0.108535
\(534\) 0 0
\(535\) 3.65010e12 1.92625
\(536\) 1.14441e12 0.598882
\(537\) 0 0
\(538\) 3.47477e12 1.78816
\(539\) 1.23126e12 0.628349
\(540\) 0 0
\(541\) 2.56439e11 0.128705 0.0643526 0.997927i \(-0.479502\pi\)
0.0643526 + 0.997927i \(0.479502\pi\)
\(542\) 1.39663e12 0.695157
\(543\) 0 0
\(544\) −2.36133e12 −1.15601
\(545\) −1.78587e12 −0.867094
\(546\) 0 0
\(547\) −1.27191e12 −0.607456 −0.303728 0.952759i \(-0.598231\pi\)
−0.303728 + 0.952759i \(0.598231\pi\)
\(548\) −2.87390e12 −1.36132
\(549\) 0 0
\(550\) 5.34252e12 2.48951
\(551\) −3.42216e11 −0.158168
\(552\) 0 0
\(553\) 9.25297e11 0.420744
\(554\) −5.76974e12 −2.60233
\(555\) 0 0
\(556\) −3.02456e12 −1.34223
\(557\) 2.20000e11 0.0968446 0.0484223 0.998827i \(-0.484581\pi\)
0.0484223 + 0.998827i \(0.484581\pi\)
\(558\) 0 0
\(559\) −3.63872e11 −0.157614
\(560\) −1.24340e12 −0.534274
\(561\) 0 0
\(562\) 6.39918e12 2.70589
\(563\) 3.60793e12 1.51346 0.756730 0.653728i \(-0.226796\pi\)
0.756730 + 0.653728i \(0.226796\pi\)
\(564\) 0 0
\(565\) 1.35693e11 0.0560193
\(566\) 2.73171e12 1.11882
\(567\) 0 0
\(568\) −5.67235e11 −0.228663
\(569\) 1.16911e12 0.467573 0.233786 0.972288i \(-0.424888\pi\)
0.233786 + 0.972288i \(0.424888\pi\)
\(570\) 0 0
\(571\) −1.99352e12 −0.784797 −0.392398 0.919795i \(-0.628355\pi\)
−0.392398 + 0.919795i \(0.628355\pi\)
\(572\) −1.37788e12 −0.538182
\(573\) 0 0
\(574\) 1.29559e12 0.498153
\(575\) −4.42139e12 −1.68676
\(576\) 0 0
\(577\) 4.79261e12 1.80003 0.900017 0.435854i \(-0.143554\pi\)
0.900017 + 0.435854i \(0.143554\pi\)
\(578\) 9.87441e11 0.367990
\(579\) 0 0
\(580\) −2.67739e12 −0.982395
\(581\) −2.16092e12 −0.786767
\(582\) 0 0
\(583\) −1.92893e12 −0.691524
\(584\) −1.08446e12 −0.385796
\(585\) 0 0
\(586\) −6.43620e12 −2.25471
\(587\) −7.78336e11 −0.270580 −0.135290 0.990806i \(-0.543197\pi\)
−0.135290 + 0.990806i \(0.543197\pi\)
\(588\) 0 0
\(589\) 9.15653e11 0.313482
\(590\) −2.95324e12 −1.00338
\(591\) 0 0
\(592\) 2.76438e11 0.0925017
\(593\) 3.16841e11 0.105219 0.0526097 0.998615i \(-0.483246\pi\)
0.0526097 + 0.998615i \(0.483246\pi\)
\(594\) 0 0
\(595\) −2.93459e12 −0.959890
\(596\) −1.33714e11 −0.0434077
\(597\) 0 0
\(598\) 1.97006e12 0.629975
\(599\) 4.31656e12 1.36999 0.684994 0.728548i \(-0.259805\pi\)
0.684994 + 0.728548i \(0.259805\pi\)
\(600\) 0 0
\(601\) 3.25888e11 0.101891 0.0509453 0.998701i \(-0.483777\pi\)
0.0509453 + 0.998701i \(0.483777\pi\)
\(602\) 2.33117e12 0.723420
\(603\) 0 0
\(604\) −6.62903e12 −2.02667
\(605\) 6.23184e12 1.89111
\(606\) 0 0
\(607\) −9.34391e11 −0.279370 −0.139685 0.990196i \(-0.544609\pi\)
−0.139685 + 0.990196i \(0.544609\pi\)
\(608\) 1.41832e12 0.420928
\(609\) 0 0
\(610\) 3.41314e12 0.998089
\(611\) −1.34229e12 −0.389638
\(612\) 0 0
\(613\) −5.38098e12 −1.53918 −0.769590 0.638538i \(-0.779540\pi\)
−0.769590 + 0.638538i \(0.779540\pi\)
\(614\) −4.15976e12 −1.18116
\(615\) 0 0
\(616\) 2.40420e12 0.672756
\(617\) 3.76946e11 0.104712 0.0523560 0.998628i \(-0.483327\pi\)
0.0523560 + 0.998628i \(0.483327\pi\)
\(618\) 0 0
\(619\) −3.68366e12 −1.00849 −0.504245 0.863561i \(-0.668229\pi\)
−0.504245 + 0.863561i \(0.668229\pi\)
\(620\) 7.16378e12 1.94706
\(621\) 0 0
\(622\) 2.02211e11 0.0541687
\(623\) −2.07565e12 −0.552025
\(624\) 0 0
\(625\) −3.56620e12 −0.934858
\(626\) 1.07490e13 2.79760
\(627\) 0 0
\(628\) −8.30960e12 −2.13188
\(629\) 6.52432e11 0.166191
\(630\) 0 0
\(631\) 6.53753e12 1.64165 0.820827 0.571178i \(-0.193513\pi\)
0.820827 + 0.571178i \(0.193513\pi\)
\(632\) −1.27007e12 −0.316665
\(633\) 0 0
\(634\) −7.99373e12 −1.96493
\(635\) −6.89380e12 −1.68258
\(636\) 0 0
\(637\) −4.41288e11 −0.106193
\(638\) −4.88727e12 −1.16781
\(639\) 0 0
\(640\) 6.53672e12 1.54010
\(641\) 6.40714e12 1.49900 0.749502 0.662002i \(-0.230293\pi\)
0.749502 + 0.662002i \(0.230293\pi\)
\(642\) 0 0
\(643\) −5.48032e12 −1.26432 −0.632159 0.774839i \(-0.717831\pi\)
−0.632159 + 0.774839i \(0.717831\pi\)
\(644\) −7.30550e12 −1.67365
\(645\) 0 0
\(646\) 1.89038e12 0.427073
\(647\) −2.31980e12 −0.520454 −0.260227 0.965548i \(-0.583797\pi\)
−0.260227 + 0.965548i \(0.583797\pi\)
\(648\) 0 0
\(649\) −3.12031e12 −0.690393
\(650\) −1.91477e12 −0.420734
\(651\) 0 0
\(652\) −1.35883e12 −0.294476
\(653\) 5.42695e11 0.116801 0.0584005 0.998293i \(-0.481400\pi\)
0.0584005 + 0.998293i \(0.481400\pi\)
\(654\) 0 0
\(655\) −2.85077e12 −0.605168
\(656\) 9.71741e11 0.204872
\(657\) 0 0
\(658\) 8.59949e12 1.78837
\(659\) −2.93198e12 −0.605587 −0.302793 0.953056i \(-0.597919\pi\)
−0.302793 + 0.953056i \(0.597919\pi\)
\(660\) 0 0
\(661\) −1.79719e12 −0.366173 −0.183087 0.983097i \(-0.558609\pi\)
−0.183087 + 0.983097i \(0.558609\pi\)
\(662\) 5.08717e12 1.02947
\(663\) 0 0
\(664\) 2.96609e12 0.592145
\(665\) 1.76265e12 0.349517
\(666\) 0 0
\(667\) 4.04463e12 0.791248
\(668\) 6.12250e11 0.118969
\(669\) 0 0
\(670\) 1.19824e13 2.29724
\(671\) 3.60623e12 0.686755
\(672\) 0 0
\(673\) 6.97900e12 1.31137 0.655686 0.755034i \(-0.272380\pi\)
0.655686 + 0.755034i \(0.272380\pi\)
\(674\) 9.84174e12 1.83697
\(675\) 0 0
\(676\) −6.96790e12 −1.28334
\(677\) −2.44120e12 −0.446636 −0.223318 0.974746i \(-0.571689\pi\)
−0.223318 + 0.974746i \(0.571689\pi\)
\(678\) 0 0
\(679\) 7.85440e12 1.41807
\(680\) 4.02804e12 0.722443
\(681\) 0 0
\(682\) 1.30766e13 2.31455
\(683\) −3.80854e12 −0.669676 −0.334838 0.942276i \(-0.608682\pi\)
−0.334838 + 0.942276i \(0.608682\pi\)
\(684\) 0 0
\(685\) −8.19532e12 −1.42219
\(686\) 9.67610e12 1.66818
\(687\) 0 0
\(688\) 1.74847e12 0.297516
\(689\) 6.91332e11 0.116869
\(690\) 0 0
\(691\) −9.58272e12 −1.59896 −0.799480 0.600693i \(-0.794891\pi\)
−0.799480 + 0.600693i \(0.794891\pi\)
\(692\) 1.12813e12 0.187018
\(693\) 0 0
\(694\) 1.11153e13 1.81888
\(695\) −8.62495e12 −1.40225
\(696\) 0 0
\(697\) 2.29344e12 0.368079
\(698\) 4.87637e12 0.777583
\(699\) 0 0
\(700\) 7.10050e12 1.11776
\(701\) 4.17769e12 0.653439 0.326720 0.945121i \(-0.394057\pi\)
0.326720 + 0.945121i \(0.394057\pi\)
\(702\) 0 0
\(703\) −3.91880e11 −0.0605137
\(704\) 1.54376e13 2.36866
\(705\) 0 0
\(706\) −5.63689e12 −0.853923
\(707\) 3.07156e12 0.462351
\(708\) 0 0
\(709\) 2.71135e12 0.402975 0.201487 0.979491i \(-0.435423\pi\)
0.201487 + 0.979491i \(0.435423\pi\)
\(710\) −5.93913e12 −0.877123
\(711\) 0 0
\(712\) 2.84906e12 0.415471
\(713\) −1.08220e13 −1.56822
\(714\) 0 0
\(715\) −3.92921e12 −0.562248
\(716\) 8.49997e11 0.120867
\(717\) 0 0
\(718\) −1.15148e13 −1.61695
\(719\) 4.34037e12 0.605684 0.302842 0.953041i \(-0.402064\pi\)
0.302842 + 0.953041i \(0.402064\pi\)
\(720\) 0 0
\(721\) −4.41450e12 −0.608378
\(722\) 1.01154e13 1.38537
\(723\) 0 0
\(724\) 1.42745e13 1.93080
\(725\) −3.93113e12 −0.528441
\(726\) 0 0
\(727\) 8.81788e12 1.17074 0.585368 0.810768i \(-0.300950\pi\)
0.585368 + 0.810768i \(0.300950\pi\)
\(728\) −8.61672e11 −0.113697
\(729\) 0 0
\(730\) −1.13547e13 −1.47987
\(731\) 4.12664e12 0.534525
\(732\) 0 0
\(733\) 4.56782e12 0.584442 0.292221 0.956351i \(-0.405606\pi\)
0.292221 + 0.956351i \(0.405606\pi\)
\(734\) −1.48555e13 −1.88910
\(735\) 0 0
\(736\) −1.67630e13 −2.10573
\(737\) 1.26602e13 1.58066
\(738\) 0 0
\(739\) −5.19636e12 −0.640913 −0.320456 0.947263i \(-0.603836\pi\)
−0.320456 + 0.947263i \(0.603836\pi\)
\(740\) −3.06594e12 −0.375856
\(741\) 0 0
\(742\) −4.42907e12 −0.536408
\(743\) −1.10644e13 −1.33192 −0.665962 0.745986i \(-0.731979\pi\)
−0.665962 + 0.745986i \(0.731979\pi\)
\(744\) 0 0
\(745\) −3.81302e11 −0.0453488
\(746\) −7.00948e12 −0.828630
\(747\) 0 0
\(748\) 1.56264e13 1.82516
\(749\) 8.85525e12 1.02809
\(750\) 0 0
\(751\) −1.12230e13 −1.28745 −0.643724 0.765258i \(-0.722612\pi\)
−0.643724 + 0.765258i \(0.722612\pi\)
\(752\) 6.44996e12 0.735490
\(753\) 0 0
\(754\) 1.75161e12 0.197363
\(755\) −1.89036e13 −2.11730
\(756\) 0 0
\(757\) 6.89383e11 0.0763008 0.0381504 0.999272i \(-0.487853\pi\)
0.0381504 + 0.999272i \(0.487853\pi\)
\(758\) −2.61599e12 −0.287823
\(759\) 0 0
\(760\) −2.41942e12 −0.263057
\(761\) −9.56410e12 −1.03374 −0.516872 0.856062i \(-0.672904\pi\)
−0.516872 + 0.856062i \(0.672904\pi\)
\(762\) 0 0
\(763\) −4.33258e12 −0.462793
\(764\) −2.46466e12 −0.261720
\(765\) 0 0
\(766\) −5.74381e12 −0.602796
\(767\) 1.11833e12 0.116678
\(768\) 0 0
\(769\) 7.19521e12 0.741951 0.370975 0.928643i \(-0.379023\pi\)
0.370975 + 0.928643i \(0.379023\pi\)
\(770\) 2.51728e13 2.58061
\(771\) 0 0
\(772\) 1.71034e13 1.73302
\(773\) 6.24748e12 0.629357 0.314678 0.949198i \(-0.398103\pi\)
0.314678 + 0.949198i \(0.398103\pi\)
\(774\) 0 0
\(775\) 1.05184e13 1.04735
\(776\) −1.07810e13 −1.06729
\(777\) 0 0
\(778\) −3.59760e12 −0.352050
\(779\) −1.37755e12 −0.134026
\(780\) 0 0
\(781\) −6.27513e12 −0.603522
\(782\) −2.23422e13 −2.13647
\(783\) 0 0
\(784\) 2.12047e12 0.200452
\(785\) −2.36959e13 −2.22721
\(786\) 0 0
\(787\) −6.65966e12 −0.618822 −0.309411 0.950928i \(-0.600132\pi\)
−0.309411 + 0.950928i \(0.600132\pi\)
\(788\) −2.46738e13 −2.27965
\(789\) 0 0
\(790\) −1.32980e13 −1.21469
\(791\) 3.29194e11 0.0298991
\(792\) 0 0
\(793\) −1.29248e12 −0.116063
\(794\) −2.70883e13 −2.41874
\(795\) 0 0
\(796\) −2.14035e12 −0.188962
\(797\) 9.51973e12 0.835723 0.417861 0.908511i \(-0.362780\pi\)
0.417861 + 0.908511i \(0.362780\pi\)
\(798\) 0 0
\(799\) 1.52228e13 1.32140
\(800\) 1.62926e13 1.40633
\(801\) 0 0
\(802\) −1.97406e13 −1.68490
\(803\) −1.19971e13 −1.01825
\(804\) 0 0
\(805\) −2.08326e13 −1.74849
\(806\) −4.68670e12 −0.391165
\(807\) 0 0
\(808\) −4.21604e12 −0.347980
\(809\) −1.32179e13 −1.08491 −0.542454 0.840085i \(-0.682505\pi\)
−0.542454 + 0.840085i \(0.682505\pi\)
\(810\) 0 0
\(811\) −1.21897e13 −0.989459 −0.494729 0.869047i \(-0.664733\pi\)
−0.494729 + 0.869047i \(0.664733\pi\)
\(812\) −6.49544e12 −0.524332
\(813\) 0 0
\(814\) −5.59652e12 −0.446795
\(815\) −3.87487e12 −0.307644
\(816\) 0 0
\(817\) −2.47865e12 −0.194632
\(818\) 2.63853e13 2.06050
\(819\) 0 0
\(820\) −1.07775e13 −0.832444
\(821\) 2.20788e13 1.69602 0.848010 0.529981i \(-0.177801\pi\)
0.848010 + 0.529981i \(0.177801\pi\)
\(822\) 0 0
\(823\) 9.75977e12 0.741550 0.370775 0.928723i \(-0.379092\pi\)
0.370775 + 0.928723i \(0.379092\pi\)
\(824\) 6.05938e12 0.457884
\(825\) 0 0
\(826\) −7.16464e12 −0.535531
\(827\) 1.29365e12 0.0961706 0.0480853 0.998843i \(-0.484688\pi\)
0.0480853 + 0.998843i \(0.484688\pi\)
\(828\) 0 0
\(829\) 1.67176e13 1.22936 0.614681 0.788776i \(-0.289285\pi\)
0.614681 + 0.788776i \(0.289285\pi\)
\(830\) 3.10559e13 2.27140
\(831\) 0 0
\(832\) −5.53288e12 −0.400310
\(833\) 5.00460e12 0.360137
\(834\) 0 0
\(835\) 1.74591e12 0.124289
\(836\) −9.38593e12 −0.664582
\(837\) 0 0
\(838\) 1.40310e13 0.982857
\(839\) 2.39369e12 0.166778 0.0833889 0.996517i \(-0.473426\pi\)
0.0833889 + 0.996517i \(0.473426\pi\)
\(840\) 0 0
\(841\) −1.09110e13 −0.752112
\(842\) 1.39666e13 0.957607
\(843\) 0 0
\(844\) −1.42686e13 −0.967920
\(845\) −1.98699e13 −1.34073
\(846\) 0 0
\(847\) 1.51186e13 1.00934
\(848\) −3.32198e12 −0.220605
\(849\) 0 0
\(850\) 2.17153e13 1.42686
\(851\) 4.63160e12 0.302725
\(852\) 0 0
\(853\) −2.04942e12 −0.132544 −0.0662719 0.997802i \(-0.521110\pi\)
−0.0662719 + 0.997802i \(0.521110\pi\)
\(854\) 8.28038e12 0.532709
\(855\) 0 0
\(856\) −1.21548e13 −0.773775
\(857\) 1.46083e13 0.925094 0.462547 0.886595i \(-0.346936\pi\)
0.462547 + 0.886595i \(0.346936\pi\)
\(858\) 0 0
\(859\) 2.65526e13 1.66394 0.831970 0.554820i \(-0.187213\pi\)
0.831970 + 0.554820i \(0.187213\pi\)
\(860\) −1.93921e13 −1.20888
\(861\) 0 0
\(862\) 1.93410e13 1.19315
\(863\) −2.27251e13 −1.39463 −0.697313 0.716766i \(-0.745621\pi\)
−0.697313 + 0.716766i \(0.745621\pi\)
\(864\) 0 0
\(865\) 3.21702e12 0.195381
\(866\) 1.53113e13 0.925085
\(867\) 0 0
\(868\) 1.73796e13 1.03920
\(869\) −1.40503e13 −0.835790
\(870\) 0 0
\(871\) −4.53746e12 −0.267135
\(872\) 5.94693e12 0.348312
\(873\) 0 0
\(874\) 1.34197e13 0.777934
\(875\) 1.17086e12 0.0675257
\(876\) 0 0
\(877\) 1.36504e13 0.779194 0.389597 0.920985i \(-0.372614\pi\)
0.389597 + 0.920985i \(0.372614\pi\)
\(878\) −2.06323e13 −1.17172
\(879\) 0 0
\(880\) 1.88806e13 1.06131
\(881\) 2.64554e13 1.47953 0.739763 0.672867i \(-0.234938\pi\)
0.739763 + 0.672867i \(0.234938\pi\)
\(882\) 0 0
\(883\) −2.86010e13 −1.58328 −0.791641 0.610987i \(-0.790773\pi\)
−0.791641 + 0.610987i \(0.790773\pi\)
\(884\) −5.60054e12 −0.308457
\(885\) 0 0
\(886\) −1.98975e13 −1.08479
\(887\) −2.34532e13 −1.27217 −0.636085 0.771619i \(-0.719447\pi\)
−0.636085 + 0.771619i \(0.719447\pi\)
\(888\) 0 0
\(889\) −1.67246e13 −0.898043
\(890\) 2.98305e13 1.59370
\(891\) 0 0
\(892\) 2.20537e13 1.16638
\(893\) −9.14350e12 −0.481151
\(894\) 0 0
\(895\) 2.42388e12 0.126272
\(896\) 1.58583e13 0.821997
\(897\) 0 0
\(898\) 3.72427e13 1.91116
\(899\) −9.62205e12 −0.491303
\(900\) 0 0
\(901\) −7.84033e12 −0.396345
\(902\) −1.96730e13 −0.989560
\(903\) 0 0
\(904\) −4.51854e11 −0.0225030
\(905\) 4.07056e13 2.01714
\(906\) 0 0
\(907\) 8.68701e12 0.426224 0.213112 0.977028i \(-0.431640\pi\)
0.213112 + 0.977028i \(0.431640\pi\)
\(908\) −5.08916e13 −2.48462
\(909\) 0 0
\(910\) −9.02198e12 −0.436130
\(911\) −2.67001e13 −1.28434 −0.642169 0.766563i \(-0.721965\pi\)
−0.642169 + 0.766563i \(0.721965\pi\)
\(912\) 0 0
\(913\) 3.28128e13 1.56288
\(914\) 9.89855e12 0.469152
\(915\) 0 0
\(916\) 1.65315e13 0.775858
\(917\) −6.91605e12 −0.322995
\(918\) 0 0
\(919\) 3.64071e13 1.68371 0.841853 0.539707i \(-0.181465\pi\)
0.841853 + 0.539707i \(0.181465\pi\)
\(920\) 2.85950e13 1.31596
\(921\) 0 0
\(922\) 9.33022e12 0.425209
\(923\) 2.24902e12 0.101997
\(924\) 0 0
\(925\) −4.50163e12 −0.202177
\(926\) 3.93738e13 1.75978
\(927\) 0 0
\(928\) −1.49043e13 −0.659698
\(929\) 7.69628e12 0.339008 0.169504 0.985529i \(-0.445783\pi\)
0.169504 + 0.985529i \(0.445783\pi\)
\(930\) 0 0
\(931\) −3.00599e12 −0.131134
\(932\) 5.67715e13 2.46467
\(933\) 0 0
\(934\) −4.73364e13 −2.03533
\(935\) 4.45608e13 1.90678
\(936\) 0 0
\(937\) 2.28334e13 0.967702 0.483851 0.875150i \(-0.339238\pi\)
0.483851 + 0.875150i \(0.339238\pi\)
\(938\) 2.90696e13 1.22610
\(939\) 0 0
\(940\) −7.15359e13 −2.98847
\(941\) 4.41700e12 0.183643 0.0918214 0.995775i \(-0.470731\pi\)
0.0918214 + 0.995775i \(0.470731\pi\)
\(942\) 0 0
\(943\) 1.62811e13 0.670473
\(944\) −5.37377e12 −0.220244
\(945\) 0 0
\(946\) −3.53981e13 −1.43704
\(947\) 1.20960e13 0.488727 0.244363 0.969684i \(-0.421421\pi\)
0.244363 + 0.969684i \(0.421421\pi\)
\(948\) 0 0
\(949\) 4.29977e12 0.172087
\(950\) −1.30432e13 −0.519550
\(951\) 0 0
\(952\) 9.77215e12 0.385588
\(953\) 1.37598e13 0.540372 0.270186 0.962808i \(-0.412915\pi\)
0.270186 + 0.962808i \(0.412915\pi\)
\(954\) 0 0
\(955\) −7.02830e12 −0.273423
\(956\) −5.19970e13 −2.01334
\(957\) 0 0
\(958\) −6.06022e13 −2.32458
\(959\) −1.98821e13 −0.759065
\(960\) 0 0
\(961\) −6.94330e11 −0.0262610
\(962\) 2.00581e12 0.0755095
\(963\) 0 0
\(964\) 1.94676e13 0.726050
\(965\) 4.87726e13 1.81052
\(966\) 0 0
\(967\) 3.43806e13 1.26443 0.632213 0.774794i \(-0.282147\pi\)
0.632213 + 0.774794i \(0.282147\pi\)
\(968\) −2.07519e13 −0.759661
\(969\) 0 0
\(970\) −1.12880e14 −4.09398
\(971\) −2.24449e13 −0.810271 −0.405135 0.914257i \(-0.632776\pi\)
−0.405135 + 0.914257i \(0.632776\pi\)
\(972\) 0 0
\(973\) −2.09244e13 −0.748420
\(974\) −1.16144e13 −0.413506
\(975\) 0 0
\(976\) 6.21061e12 0.219084
\(977\) 3.36242e13 1.18066 0.590332 0.807160i \(-0.298997\pi\)
0.590332 + 0.807160i \(0.298997\pi\)
\(978\) 0 0
\(979\) 3.15181e13 1.09657
\(980\) −2.35179e13 −0.814482
\(981\) 0 0
\(982\) 1.30990e13 0.449505
\(983\) −5.23017e11 −0.0178659 −0.00893296 0.999960i \(-0.502843\pi\)
−0.00893296 + 0.999960i \(0.502843\pi\)
\(984\) 0 0
\(985\) −7.03607e13 −2.38159
\(986\) −1.98648e13 −0.669328
\(987\) 0 0
\(988\) 3.36394e12 0.112316
\(989\) 2.92949e13 0.973664
\(990\) 0 0
\(991\) 3.32760e12 0.109597 0.0547985 0.998497i \(-0.482548\pi\)
0.0547985 + 0.998497i \(0.482548\pi\)
\(992\) 3.98787e13 1.30749
\(993\) 0 0
\(994\) −1.44085e13 −0.468146
\(995\) −6.10348e12 −0.197412
\(996\) 0 0
\(997\) −1.15804e13 −0.371188 −0.185594 0.982626i \(-0.559421\pi\)
−0.185594 + 0.982626i \(0.559421\pi\)
\(998\) 2.22856e13 0.711109
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.a.c.1.2 8
3.2 odd 2 81.10.a.d.1.7 8
9.2 odd 6 27.10.c.a.10.2 16
9.4 even 3 9.10.c.a.7.7 yes 16
9.5 odd 6 27.10.c.a.19.2 16
9.7 even 3 9.10.c.a.4.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.10.c.a.4.7 16 9.7 even 3
9.10.c.a.7.7 yes 16 9.4 even 3
27.10.c.a.10.2 16 9.2 odd 6
27.10.c.a.19.2 16 9.5 odd 6
81.10.a.c.1.2 8 1.1 even 1 trivial
81.10.a.d.1.7 8 3.2 odd 2