Properties

Label 81.10.a
Level $81$
Weight $10$
Character orbit 81.a
Rep. character $\chi_{81}(1,\cdot)$
Character field $\Q$
Dimension $34$
Newform subspaces $5$
Sturm bound $90$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(90\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(81))\).

Total New Old
Modular forms 87 38 49
Cusp forms 75 34 41
Eisenstein series 12 4 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)Dim
\(+\)\(16\)
\(-\)\(18\)

Trace form

\( 34 q + 8194 q^{4} - 682 q^{7} + 62364 q^{10} - 47932 q^{13} + 1496374 q^{16} - 617314 q^{19} - 2188290 q^{22} + 13461862 q^{25} - 9769504 q^{28} - 10897882 q^{31} + 36491958 q^{34} + 552650 q^{37} + 22448184 q^{40}+ \cdots - 460250296 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(81))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
81.10.a.a 81.a 1.a $4$ $41.718$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 81.10.a.a \(-33\) \(0\) \(-570\) \(-3238\) $+$ $\mathrm{SU}(2)$ \(q+(-8-\beta _{1})q^{2}+(212+6\beta _{1}+\beta _{3})q^{4}+\cdots\)
81.10.a.b 81.a 1.a $4$ $41.718$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 81.10.a.a \(33\) \(0\) \(570\) \(-3238\) $+$ $\mathrm{SU}(2)$ \(q+(8+\beta _{1})q^{2}+(212+6\beta _{1}+\beta _{3})q^{4}+\cdots\)
81.10.a.c 81.a 1.a $8$ $41.718$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 9.10.c.a \(-15\) \(0\) \(-453\) \(343\) $+$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{2}+(224-2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
81.10.a.d 81.a 1.a $8$ $41.718$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 9.10.c.a \(15\) \(0\) \(453\) \(343\) $-$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1})q^{2}+(224-2\beta _{1}+\beta _{2})q^{4}+\cdots\)
81.10.a.e 81.a 1.a $10$ $41.718$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 81.10.a.e \(0\) \(0\) \(0\) \(5108\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(290+\beta _{2})q^{4}+(10\beta _{1}-\beta _{3}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(81))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(81)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)