Defining parameters
Level: | \( N \) | \(=\) | \( 81 = 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 81.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(81))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 87 | 38 | 49 |
Cusp forms | 75 | 34 | 41 |
Eisenstein series | 12 | 4 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | Dim |
---|---|
\(+\) | \(16\) |
\(-\) | \(18\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(81))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
81.10.a.a | $4$ | $41.718$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(-33\) | \(0\) | \(-570\) | \(-3238\) | $+$ | \(q+(-8-\beta _{1})q^{2}+(212+6\beta _{1}+\beta _{3})q^{4}+\cdots\) | |
81.10.a.b | $4$ | $41.718$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(33\) | \(0\) | \(570\) | \(-3238\) | $+$ | \(q+(8+\beta _{1})q^{2}+(212+6\beta _{1}+\beta _{3})q^{4}+\cdots\) | |
81.10.a.c | $8$ | $41.718$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(-15\) | \(0\) | \(-453\) | \(343\) | $+$ | \(q+(-2+\beta _{1})q^{2}+(224-2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) | |
81.10.a.d | $8$ | $41.718$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(15\) | \(0\) | \(453\) | \(343\) | $-$ | \(q+(2-\beta _{1})q^{2}+(224-2\beta _{1}+\beta _{2})q^{4}+\cdots\) | |
81.10.a.e | $10$ | $41.718$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(5108\) | $-$ | \(q+\beta _{1}q^{2}+(290+\beta _{2})q^{4}+(10\beta _{1}-\beta _{3}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(81))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(81)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)