Properties

Label 81.10
Level 81
Weight 10
Dimension 1700
Nonzero newspaces 4
Newform subspaces 19
Sturm bound 4860
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 81 = 3^{4} \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 19 \)
Sturm bound: \(4860\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(81))\).

Total New Old
Modular forms 2241 1756 485
Cusp forms 2133 1700 433
Eisenstein series 108 56 52

Trace form

\( 1700 q - 12 q^{2} - 18 q^{3} - 532 q^{4} - 2400 q^{5} - 18 q^{6} + 1006 q^{7} - 36879 q^{8} - 18 q^{9} + 60291 q^{10} + 121749 q^{11} - 18 q^{12} - 210134 q^{13} + 720399 q^{14} - 18 q^{15} - 598240 q^{16}+ \cdots - 14260687902 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(81))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
81.10.a \(\chi_{81}(1, \cdot)\) 81.10.a.a 4 1
81.10.a.b 4
81.10.a.c 8
81.10.a.d 8
81.10.a.e 10
81.10.c \(\chi_{81}(28, \cdot)\) 81.10.c.a 2 2
81.10.c.b 2
81.10.c.c 2
81.10.c.d 2
81.10.c.e 2
81.10.c.f 4
81.10.c.g 6
81.10.c.h 6
81.10.c.i 8
81.10.c.j 8
81.10.c.k 8
81.10.c.l 20
81.10.e \(\chi_{81}(10, \cdot)\) 81.10.e.a 156 6
81.10.g \(\chi_{81}(4, \cdot)\) 81.10.g.a 1440 18

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(81))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(81)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)