Properties

Label 798.2.k.a.463.1
Level $798$
Weight $2$
Character 798.463
Analytic conductor $6.372$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [798,2,Mod(463,798)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("798.463"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(798, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,-1,-1,-3,-1,2,2,-1,-3,-6,2,-2,-1,-3,-1,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37206208130\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 463.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 798.463
Dual form 798.2.k.a.505.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.50000 - 2.59808i) q^{5} +(-0.500000 + 0.866025i) q^{6} +1.00000 q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-1.50000 + 2.59808i) q^{10} -3.00000 q^{11} +1.00000 q^{12} +(-1.00000 + 1.73205i) q^{13} +(-0.500000 - 0.866025i) q^{14} +(-1.50000 + 2.59808i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-1.50000 - 2.59808i) q^{17} +1.00000 q^{18} +(-3.50000 + 2.59808i) q^{19} +3.00000 q^{20} +(-0.500000 - 0.866025i) q^{21} +(1.50000 + 2.59808i) q^{22} +(-0.500000 - 0.866025i) q^{24} +(-2.00000 + 3.46410i) q^{25} +2.00000 q^{26} +1.00000 q^{27} +(-0.500000 + 0.866025i) q^{28} +3.00000 q^{30} -4.00000 q^{31} +(-0.500000 + 0.866025i) q^{32} +(1.50000 + 2.59808i) q^{33} +(-1.50000 + 2.59808i) q^{34} +(-1.50000 - 2.59808i) q^{35} +(-0.500000 - 0.866025i) q^{36} +5.00000 q^{37} +(4.00000 + 1.73205i) q^{38} +2.00000 q^{39} +(-1.50000 - 2.59808i) q^{40} +(1.50000 + 2.59808i) q^{41} +(-0.500000 + 0.866025i) q^{42} +(5.00000 + 8.66025i) q^{43} +(1.50000 - 2.59808i) q^{44} +3.00000 q^{45} +(-0.500000 + 0.866025i) q^{48} +1.00000 q^{49} +4.00000 q^{50} +(-1.50000 + 2.59808i) q^{51} +(-1.00000 - 1.73205i) q^{52} +(-6.00000 + 10.3923i) q^{53} +(-0.500000 - 0.866025i) q^{54} +(4.50000 + 7.79423i) q^{55} +1.00000 q^{56} +(4.00000 + 1.73205i) q^{57} +(-3.00000 - 5.19615i) q^{59} +(-1.50000 - 2.59808i) q^{60} +(-4.00000 + 6.92820i) q^{61} +(2.00000 + 3.46410i) q^{62} +(-0.500000 + 0.866025i) q^{63} +1.00000 q^{64} +6.00000 q^{65} +(1.50000 - 2.59808i) q^{66} +(-4.00000 + 6.92820i) q^{67} +3.00000 q^{68} +(-1.50000 + 2.59808i) q^{70} +(-0.500000 + 0.866025i) q^{72} +(-7.00000 - 12.1244i) q^{73} +(-2.50000 - 4.33013i) q^{74} +4.00000 q^{75} +(-0.500000 - 4.33013i) q^{76} -3.00000 q^{77} +(-1.00000 - 1.73205i) q^{78} +(2.00000 + 3.46410i) q^{79} +(-1.50000 + 2.59808i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(1.50000 - 2.59808i) q^{82} +1.00000 q^{84} +(-4.50000 + 7.79423i) q^{85} +(5.00000 - 8.66025i) q^{86} -3.00000 q^{88} +(1.50000 - 2.59808i) q^{89} +(-1.50000 - 2.59808i) q^{90} +(-1.00000 + 1.73205i) q^{91} +(2.00000 + 3.46410i) q^{93} +(12.0000 + 5.19615i) q^{95} +1.00000 q^{96} +(-4.00000 - 6.92820i) q^{97} +(-0.500000 - 0.866025i) q^{98} +(1.50000 - 2.59808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{3} - q^{4} - 3 q^{5} - q^{6} + 2 q^{7} + 2 q^{8} - q^{9} - 3 q^{10} - 6 q^{11} + 2 q^{12} - 2 q^{13} - q^{14} - 3 q^{15} - q^{16} - 3 q^{17} + 2 q^{18} - 7 q^{19} + 6 q^{20} - q^{21}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/798\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(211\) \(533\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.50000 2.59808i −0.670820 1.16190i −0.977672 0.210138i \(-0.932609\pi\)
0.306851 0.951757i \(-0.400725\pi\)
\(6\) −0.500000 + 0.866025i −0.204124 + 0.353553i
\(7\) 1.00000 0.377964
\(8\) 1.00000 0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −1.50000 + 2.59808i −0.474342 + 0.821584i
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 1.00000 0.288675
\(13\) −1.00000 + 1.73205i −0.277350 + 0.480384i −0.970725 0.240192i \(-0.922790\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) −0.500000 0.866025i −0.133631 0.231455i
\(15\) −1.50000 + 2.59808i −0.387298 + 0.670820i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.50000 2.59808i −0.363803 0.630126i 0.624780 0.780801i \(-0.285189\pi\)
−0.988583 + 0.150675i \(0.951855\pi\)
\(18\) 1.00000 0.235702
\(19\) −3.50000 + 2.59808i −0.802955 + 0.596040i
\(20\) 3.00000 0.670820
\(21\) −0.500000 0.866025i −0.109109 0.188982i
\(22\) 1.50000 + 2.59808i 0.319801 + 0.553912i
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) −0.500000 0.866025i −0.102062 0.176777i
\(25\) −2.00000 + 3.46410i −0.400000 + 0.692820i
\(26\) 2.00000 0.392232
\(27\) 1.00000 0.192450
\(28\) −0.500000 + 0.866025i −0.0944911 + 0.163663i
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 3.00000 0.547723
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 1.50000 + 2.59808i 0.261116 + 0.452267i
\(34\) −1.50000 + 2.59808i −0.257248 + 0.445566i
\(35\) −1.50000 2.59808i −0.253546 0.439155i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 5.00000 0.821995 0.410997 0.911636i \(-0.365181\pi\)
0.410997 + 0.911636i \(0.365181\pi\)
\(38\) 4.00000 + 1.73205i 0.648886 + 0.280976i
\(39\) 2.00000 0.320256
\(40\) −1.50000 2.59808i −0.237171 0.410792i
\(41\) 1.50000 + 2.59808i 0.234261 + 0.405751i 0.959058 0.283211i \(-0.0913998\pi\)
−0.724797 + 0.688963i \(0.758066\pi\)
\(42\) −0.500000 + 0.866025i −0.0771517 + 0.133631i
\(43\) 5.00000 + 8.66025i 0.762493 + 1.32068i 0.941562 + 0.336840i \(0.109358\pi\)
−0.179069 + 0.983836i \(0.557309\pi\)
\(44\) 1.50000 2.59808i 0.226134 0.391675i
\(45\) 3.00000 0.447214
\(46\) 0 0
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) −0.500000 + 0.866025i −0.0721688 + 0.125000i
\(49\) 1.00000 0.142857
\(50\) 4.00000 0.565685
\(51\) −1.50000 + 2.59808i −0.210042 + 0.363803i
\(52\) −1.00000 1.73205i −0.138675 0.240192i
\(53\) −6.00000 + 10.3923i −0.824163 + 1.42749i 0.0783936 + 0.996922i \(0.475021\pi\)
−0.902557 + 0.430570i \(0.858312\pi\)
\(54\) −0.500000 0.866025i −0.0680414 0.117851i
\(55\) 4.50000 + 7.79423i 0.606780 + 1.05097i
\(56\) 1.00000 0.133631
\(57\) 4.00000 + 1.73205i 0.529813 + 0.229416i
\(58\) 0 0
\(59\) −3.00000 5.19615i −0.390567 0.676481i 0.601958 0.798528i \(-0.294388\pi\)
−0.992524 + 0.122047i \(0.961054\pi\)
\(60\) −1.50000 2.59808i −0.193649 0.335410i
\(61\) −4.00000 + 6.92820i −0.512148 + 0.887066i 0.487753 + 0.872982i \(0.337817\pi\)
−0.999901 + 0.0140840i \(0.995517\pi\)
\(62\) 2.00000 + 3.46410i 0.254000 + 0.439941i
\(63\) −0.500000 + 0.866025i −0.0629941 + 0.109109i
\(64\) 1.00000 0.125000
\(65\) 6.00000 0.744208
\(66\) 1.50000 2.59808i 0.184637 0.319801i
\(67\) −4.00000 + 6.92820i −0.488678 + 0.846415i −0.999915 0.0130248i \(-0.995854\pi\)
0.511237 + 0.859440i \(0.329187\pi\)
\(68\) 3.00000 0.363803
\(69\) 0 0
\(70\) −1.50000 + 2.59808i −0.179284 + 0.310530i
\(71\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(72\) −0.500000 + 0.866025i −0.0589256 + 0.102062i
\(73\) −7.00000 12.1244i −0.819288 1.41905i −0.906208 0.422833i \(-0.861036\pi\)
0.0869195 0.996215i \(-0.472298\pi\)
\(74\) −2.50000 4.33013i −0.290619 0.503367i
\(75\) 4.00000 0.461880
\(76\) −0.500000 4.33013i −0.0573539 0.496700i
\(77\) −3.00000 −0.341882
\(78\) −1.00000 1.73205i −0.113228 0.196116i
\(79\) 2.00000 + 3.46410i 0.225018 + 0.389742i 0.956325 0.292306i \(-0.0944227\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) −1.50000 + 2.59808i −0.167705 + 0.290474i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 1.50000 2.59808i 0.165647 0.286910i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 1.00000 0.109109
\(85\) −4.50000 + 7.79423i −0.488094 + 0.845403i
\(86\) 5.00000 8.66025i 0.539164 0.933859i
\(87\) 0 0
\(88\) −3.00000 −0.319801
\(89\) 1.50000 2.59808i 0.159000 0.275396i −0.775509 0.631337i \(-0.782506\pi\)
0.934508 + 0.355942i \(0.115840\pi\)
\(90\) −1.50000 2.59808i −0.158114 0.273861i
\(91\) −1.00000 + 1.73205i −0.104828 + 0.181568i
\(92\) 0 0
\(93\) 2.00000 + 3.46410i 0.207390 + 0.359211i
\(94\) 0 0
\(95\) 12.0000 + 5.19615i 1.23117 + 0.533114i
\(96\) 1.00000 0.102062
\(97\) −4.00000 6.92820i −0.406138 0.703452i 0.588315 0.808632i \(-0.299792\pi\)
−0.994453 + 0.105180i \(0.966458\pi\)
\(98\) −0.500000 0.866025i −0.0505076 0.0874818i
\(99\) 1.50000 2.59808i 0.150756 0.261116i
\(100\) −2.00000 3.46410i −0.200000 0.346410i
\(101\) 1.50000 2.59808i 0.149256 0.258518i −0.781697 0.623658i \(-0.785646\pi\)
0.930953 + 0.365140i \(0.118979\pi\)
\(102\) 3.00000 0.297044
\(103\) −1.00000 −0.0985329 −0.0492665 0.998786i \(-0.515688\pi\)
−0.0492665 + 0.998786i \(0.515688\pi\)
\(104\) −1.00000 + 1.73205i −0.0980581 + 0.169842i
\(105\) −1.50000 + 2.59808i −0.146385 + 0.253546i
\(106\) 12.0000 1.16554
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) −0.500000 + 0.866025i −0.0481125 + 0.0833333i
\(109\) −5.50000 9.52628i −0.526804 0.912452i −0.999512 0.0312328i \(-0.990057\pi\)
0.472708 0.881219i \(-0.343277\pi\)
\(110\) 4.50000 7.79423i 0.429058 0.743151i
\(111\) −2.50000 4.33013i −0.237289 0.410997i
\(112\) −0.500000 0.866025i −0.0472456 0.0818317i
\(113\) 12.0000 1.12887 0.564433 0.825479i \(-0.309095\pi\)
0.564433 + 0.825479i \(0.309095\pi\)
\(114\) −0.500000 4.33013i −0.0468293 0.405554i
\(115\) 0 0
\(116\) 0 0
\(117\) −1.00000 1.73205i −0.0924500 0.160128i
\(118\) −3.00000 + 5.19615i −0.276172 + 0.478345i
\(119\) −1.50000 2.59808i −0.137505 0.238165i
\(120\) −1.50000 + 2.59808i −0.136931 + 0.237171i
\(121\) −2.00000 −0.181818
\(122\) 8.00000 0.724286
\(123\) 1.50000 2.59808i 0.135250 0.234261i
\(124\) 2.00000 3.46410i 0.179605 0.311086i
\(125\) −3.00000 −0.268328
\(126\) 1.00000 0.0890871
\(127\) −1.00000 + 1.73205i −0.0887357 + 0.153695i −0.906977 0.421180i \(-0.861616\pi\)
0.818241 + 0.574875i \(0.194949\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 5.00000 8.66025i 0.440225 0.762493i
\(130\) −3.00000 5.19615i −0.263117 0.455733i
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) −3.00000 −0.261116
\(133\) −3.50000 + 2.59808i −0.303488 + 0.225282i
\(134\) 8.00000 0.691095
\(135\) −1.50000 2.59808i −0.129099 0.223607i
\(136\) −1.50000 2.59808i −0.128624 0.222783i
\(137\) −3.00000 + 5.19615i −0.256307 + 0.443937i −0.965250 0.261329i \(-0.915839\pi\)
0.708942 + 0.705266i \(0.249173\pi\)
\(138\) 0 0
\(139\) −2.50000 + 4.33013i −0.212047 + 0.367277i −0.952355 0.304991i \(-0.901346\pi\)
0.740308 + 0.672268i \(0.234680\pi\)
\(140\) 3.00000 0.253546
\(141\) 0 0
\(142\) 0 0
\(143\) 3.00000 5.19615i 0.250873 0.434524i
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −7.00000 + 12.1244i −0.579324 + 1.00342i
\(147\) −0.500000 0.866025i −0.0412393 0.0714286i
\(148\) −2.50000 + 4.33013i −0.205499 + 0.355934i
\(149\) −9.00000 15.5885i −0.737309 1.27706i −0.953703 0.300750i \(-0.902763\pi\)
0.216394 0.976306i \(-0.430570\pi\)
\(150\) −2.00000 3.46410i −0.163299 0.282843i
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) −3.50000 + 2.59808i −0.283887 + 0.210732i
\(153\) 3.00000 0.242536
\(154\) 1.50000 + 2.59808i 0.120873 + 0.209359i
\(155\) 6.00000 + 10.3923i 0.481932 + 0.834730i
\(156\) −1.00000 + 1.73205i −0.0800641 + 0.138675i
\(157\) −7.00000 12.1244i −0.558661 0.967629i −0.997609 0.0691164i \(-0.977982\pi\)
0.438948 0.898513i \(-0.355351\pi\)
\(158\) 2.00000 3.46410i 0.159111 0.275589i
\(159\) 12.0000 0.951662
\(160\) 3.00000 0.237171
\(161\) 0 0
\(162\) −0.500000 + 0.866025i −0.0392837 + 0.0680414i
\(163\) −22.0000 −1.72317 −0.861586 0.507611i \(-0.830529\pi\)
−0.861586 + 0.507611i \(0.830529\pi\)
\(164\) −3.00000 −0.234261
\(165\) 4.50000 7.79423i 0.350325 0.606780i
\(166\) 0 0
\(167\) −3.00000 + 5.19615i −0.232147 + 0.402090i −0.958440 0.285295i \(-0.907908\pi\)
0.726293 + 0.687386i \(0.241242\pi\)
\(168\) −0.500000 0.866025i −0.0385758 0.0668153i
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) 9.00000 0.690268
\(171\) −0.500000 4.33013i −0.0382360 0.331133i
\(172\) −10.0000 −0.762493
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) 0 0
\(175\) −2.00000 + 3.46410i −0.151186 + 0.261861i
\(176\) 1.50000 + 2.59808i 0.113067 + 0.195837i
\(177\) −3.00000 + 5.19615i −0.225494 + 0.390567i
\(178\) −3.00000 −0.224860
\(179\) −3.00000 −0.224231 −0.112115 0.993695i \(-0.535763\pi\)
−0.112115 + 0.993695i \(0.535763\pi\)
\(180\) −1.50000 + 2.59808i −0.111803 + 0.193649i
\(181\) 8.00000 13.8564i 0.594635 1.02994i −0.398963 0.916967i \(-0.630630\pi\)
0.993598 0.112972i \(-0.0360369\pi\)
\(182\) 2.00000 0.148250
\(183\) 8.00000 0.591377
\(184\) 0 0
\(185\) −7.50000 12.9904i −0.551411 0.955072i
\(186\) 2.00000 3.46410i 0.146647 0.254000i
\(187\) 4.50000 + 7.79423i 0.329073 + 0.569970i
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) −1.50000 12.9904i −0.108821 0.942421i
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) −0.500000 0.866025i −0.0360844 0.0625000i
\(193\) 0.500000 + 0.866025i 0.0359908 + 0.0623379i 0.883460 0.468507i \(-0.155208\pi\)
−0.847469 + 0.530845i \(0.821875\pi\)
\(194\) −4.00000 + 6.92820i −0.287183 + 0.497416i
\(195\) −3.00000 5.19615i −0.214834 0.372104i
\(196\) −0.500000 + 0.866025i −0.0357143 + 0.0618590i
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) −3.00000 −0.213201
\(199\) −4.00000 + 6.92820i −0.283552 + 0.491127i −0.972257 0.233915i \(-0.924846\pi\)
0.688705 + 0.725042i \(0.258180\pi\)
\(200\) −2.00000 + 3.46410i −0.141421 + 0.244949i
\(201\) 8.00000 0.564276
\(202\) −3.00000 −0.211079
\(203\) 0 0
\(204\) −1.50000 2.59808i −0.105021 0.181902i
\(205\) 4.50000 7.79423i 0.314294 0.544373i
\(206\) 0.500000 + 0.866025i 0.0348367 + 0.0603388i
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) 10.5000 7.79423i 0.726300 0.539138i
\(210\) 3.00000 0.207020
\(211\) −10.0000 17.3205i −0.688428 1.19239i −0.972346 0.233544i \(-0.924968\pi\)
0.283918 0.958849i \(-0.408366\pi\)
\(212\) −6.00000 10.3923i −0.412082 0.713746i
\(213\) 0 0
\(214\) 6.00000 + 10.3923i 0.410152 + 0.710403i
\(215\) 15.0000 25.9808i 1.02299 1.77187i
\(216\) 1.00000 0.0680414
\(217\) −4.00000 −0.271538
\(218\) −5.50000 + 9.52628i −0.372507 + 0.645201i
\(219\) −7.00000 + 12.1244i −0.473016 + 0.819288i
\(220\) −9.00000 −0.606780
\(221\) 6.00000 0.403604
\(222\) −2.50000 + 4.33013i −0.167789 + 0.290619i
\(223\) 0.500000 + 0.866025i 0.0334825 + 0.0579934i 0.882281 0.470723i \(-0.156007\pi\)
−0.848799 + 0.528716i \(0.822674\pi\)
\(224\) −0.500000 + 0.866025i −0.0334077 + 0.0578638i
\(225\) −2.00000 3.46410i −0.133333 0.230940i
\(226\) −6.00000 10.3923i −0.399114 0.691286i
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) −3.50000 + 2.59808i −0.231793 + 0.172062i
\(229\) −28.0000 −1.85029 −0.925146 0.379611i \(-0.876058\pi\)
−0.925146 + 0.379611i \(0.876058\pi\)
\(230\) 0 0
\(231\) 1.50000 + 2.59808i 0.0986928 + 0.170941i
\(232\) 0 0
\(233\) −12.0000 20.7846i −0.786146 1.36165i −0.928312 0.371802i \(-0.878740\pi\)
0.142166 0.989843i \(-0.454593\pi\)
\(234\) −1.00000 + 1.73205i −0.0653720 + 0.113228i
\(235\) 0 0
\(236\) 6.00000 0.390567
\(237\) 2.00000 3.46410i 0.129914 0.225018i
\(238\) −1.50000 + 2.59808i −0.0972306 + 0.168408i
\(239\) −15.0000 −0.970269 −0.485135 0.874439i \(-0.661229\pi\)
−0.485135 + 0.874439i \(0.661229\pi\)
\(240\) 3.00000 0.193649
\(241\) 14.0000 24.2487i 0.901819 1.56200i 0.0766885 0.997055i \(-0.475565\pi\)
0.825131 0.564942i \(-0.191101\pi\)
\(242\) 1.00000 + 1.73205i 0.0642824 + 0.111340i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) −4.00000 6.92820i −0.256074 0.443533i
\(245\) −1.50000 2.59808i −0.0958315 0.165985i
\(246\) −3.00000 −0.191273
\(247\) −1.00000 8.66025i −0.0636285 0.551039i
\(248\) −4.00000 −0.254000
\(249\) 0 0
\(250\) 1.50000 + 2.59808i 0.0948683 + 0.164317i
\(251\) −3.00000 + 5.19615i −0.189358 + 0.327978i −0.945036 0.326965i \(-0.893974\pi\)
0.755678 + 0.654943i \(0.227307\pi\)
\(252\) −0.500000 0.866025i −0.0314970 0.0545545i
\(253\) 0 0
\(254\) 2.00000 0.125491
\(255\) 9.00000 0.563602
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 7.50000 12.9904i 0.467837 0.810318i −0.531487 0.847066i \(-0.678367\pi\)
0.999325 + 0.0367485i \(0.0117000\pi\)
\(258\) −10.0000 −0.622573
\(259\) 5.00000 0.310685
\(260\) −3.00000 + 5.19615i −0.186052 + 0.322252i
\(261\) 0 0
\(262\) 0 0
\(263\) 10.5000 + 18.1865i 0.647458 + 1.12143i 0.983728 + 0.179664i \(0.0575011\pi\)
−0.336270 + 0.941766i \(0.609166\pi\)
\(264\) 1.50000 + 2.59808i 0.0923186 + 0.159901i
\(265\) 36.0000 2.21146
\(266\) 4.00000 + 1.73205i 0.245256 + 0.106199i
\(267\) −3.00000 −0.183597
\(268\) −4.00000 6.92820i −0.244339 0.423207i
\(269\) −7.50000 12.9904i −0.457283 0.792038i 0.541533 0.840679i \(-0.317844\pi\)
−0.998816 + 0.0486418i \(0.984511\pi\)
\(270\) −1.50000 + 2.59808i −0.0912871 + 0.158114i
\(271\) 12.5000 + 21.6506i 0.759321 + 1.31518i 0.943197 + 0.332233i \(0.107802\pi\)
−0.183876 + 0.982949i \(0.558865\pi\)
\(272\) −1.50000 + 2.59808i −0.0909509 + 0.157532i
\(273\) 2.00000 0.121046
\(274\) 6.00000 0.362473
\(275\) 6.00000 10.3923i 0.361814 0.626680i
\(276\) 0 0
\(277\) −19.0000 −1.14160 −0.570800 0.821089i \(-0.693367\pi\)
−0.570800 + 0.821089i \(0.693367\pi\)
\(278\) 5.00000 0.299880
\(279\) 2.00000 3.46410i 0.119737 0.207390i
\(280\) −1.50000 2.59808i −0.0896421 0.155265i
\(281\) −12.0000 + 20.7846i −0.715860 + 1.23991i 0.246767 + 0.969075i \(0.420632\pi\)
−0.962627 + 0.270831i \(0.912702\pi\)
\(282\) 0 0
\(283\) 15.5000 + 26.8468i 0.921379 + 1.59588i 0.797283 + 0.603606i \(0.206270\pi\)
0.124096 + 0.992270i \(0.460397\pi\)
\(284\) 0 0
\(285\) −1.50000 12.9904i −0.0888523 0.769484i
\(286\) −6.00000 −0.354787
\(287\) 1.50000 + 2.59808i 0.0885422 + 0.153360i
\(288\) −0.500000 0.866025i −0.0294628 0.0510310i
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 0 0
\(291\) −4.00000 + 6.92820i −0.234484 + 0.406138i
\(292\) 14.0000 0.819288
\(293\) −27.0000 −1.57736 −0.788678 0.614806i \(-0.789234\pi\)
−0.788678 + 0.614806i \(0.789234\pi\)
\(294\) −0.500000 + 0.866025i −0.0291606 + 0.0505076i
\(295\) −9.00000 + 15.5885i −0.524000 + 0.907595i
\(296\) 5.00000 0.290619
\(297\) −3.00000 −0.174078
\(298\) −9.00000 + 15.5885i −0.521356 + 0.903015i
\(299\) 0 0
\(300\) −2.00000 + 3.46410i −0.115470 + 0.200000i
\(301\) 5.00000 + 8.66025i 0.288195 + 0.499169i
\(302\) −4.00000 6.92820i −0.230174 0.398673i
\(303\) −3.00000 −0.172345
\(304\) 4.00000 + 1.73205i 0.229416 + 0.0993399i
\(305\) 24.0000 1.37424
\(306\) −1.50000 2.59808i −0.0857493 0.148522i
\(307\) 8.00000 + 13.8564i 0.456584 + 0.790827i 0.998778 0.0494267i \(-0.0157394\pi\)
−0.542194 + 0.840254i \(0.682406\pi\)
\(308\) 1.50000 2.59808i 0.0854704 0.148039i
\(309\) 0.500000 + 0.866025i 0.0284440 + 0.0492665i
\(310\) 6.00000 10.3923i 0.340777 0.590243i
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) 2.00000 0.113228
\(313\) −4.00000 + 6.92820i −0.226093 + 0.391605i −0.956647 0.291250i \(-0.905929\pi\)
0.730554 + 0.682855i \(0.239262\pi\)
\(314\) −7.00000 + 12.1244i −0.395033 + 0.684217i
\(315\) 3.00000 0.169031
\(316\) −4.00000 −0.225018
\(317\) −12.0000 + 20.7846i −0.673987 + 1.16738i 0.302777 + 0.953062i \(0.402086\pi\)
−0.976764 + 0.214318i \(0.931247\pi\)
\(318\) −6.00000 10.3923i −0.336463 0.582772i
\(319\) 0 0
\(320\) −1.50000 2.59808i −0.0838525 0.145237i
\(321\) 6.00000 + 10.3923i 0.334887 + 0.580042i
\(322\) 0 0
\(323\) 12.0000 + 5.19615i 0.667698 + 0.289122i
\(324\) 1.00000 0.0555556
\(325\) −4.00000 6.92820i −0.221880 0.384308i
\(326\) 11.0000 + 19.0526i 0.609234 + 1.05522i
\(327\) −5.50000 + 9.52628i −0.304151 + 0.526804i
\(328\) 1.50000 + 2.59808i 0.0828236 + 0.143455i
\(329\) 0 0
\(330\) −9.00000 −0.495434
\(331\) 32.0000 1.75888 0.879440 0.476011i \(-0.157918\pi\)
0.879440 + 0.476011i \(0.157918\pi\)
\(332\) 0 0
\(333\) −2.50000 + 4.33013i −0.136999 + 0.237289i
\(334\) 6.00000 0.328305
\(335\) 24.0000 1.31126
\(336\) −0.500000 + 0.866025i −0.0272772 + 0.0472456i
\(337\) −7.00000 12.1244i −0.381314 0.660456i 0.609936 0.792451i \(-0.291195\pi\)
−0.991250 + 0.131995i \(0.957862\pi\)
\(338\) 4.50000 7.79423i 0.244768 0.423950i
\(339\) −6.00000 10.3923i −0.325875 0.564433i
\(340\) −4.50000 7.79423i −0.244047 0.422701i
\(341\) 12.0000 0.649836
\(342\) −3.50000 + 2.59808i −0.189258 + 0.140488i
\(343\) 1.00000 0.0539949
\(344\) 5.00000 + 8.66025i 0.269582 + 0.466930i
\(345\) 0 0
\(346\) −3.00000 + 5.19615i −0.161281 + 0.279347i
\(347\) 6.00000 + 10.3923i 0.322097 + 0.557888i 0.980921 0.194409i \(-0.0622790\pi\)
−0.658824 + 0.752297i \(0.728946\pi\)
\(348\) 0 0
\(349\) 20.0000 1.07058 0.535288 0.844670i \(-0.320203\pi\)
0.535288 + 0.844670i \(0.320203\pi\)
\(350\) 4.00000 0.213809
\(351\) −1.00000 + 1.73205i −0.0533761 + 0.0924500i
\(352\) 1.50000 2.59808i 0.0799503 0.138478i
\(353\) −33.0000 −1.75641 −0.878206 0.478282i \(-0.841260\pi\)
−0.878206 + 0.478282i \(0.841260\pi\)
\(354\) 6.00000 0.318896
\(355\) 0 0
\(356\) 1.50000 + 2.59808i 0.0794998 + 0.137698i
\(357\) −1.50000 + 2.59808i −0.0793884 + 0.137505i
\(358\) 1.50000 + 2.59808i 0.0792775 + 0.137313i
\(359\) −12.0000 20.7846i −0.633336 1.09697i −0.986865 0.161546i \(-0.948352\pi\)
0.353529 0.935423i \(-0.384981\pi\)
\(360\) 3.00000 0.158114
\(361\) 5.50000 18.1865i 0.289474 0.957186i
\(362\) −16.0000 −0.840941
\(363\) 1.00000 + 1.73205i 0.0524864 + 0.0909091i
\(364\) −1.00000 1.73205i −0.0524142 0.0907841i
\(365\) −21.0000 + 36.3731i −1.09919 + 1.90385i
\(366\) −4.00000 6.92820i −0.209083 0.362143i
\(367\) 0.500000 0.866025i 0.0260998 0.0452062i −0.852680 0.522433i \(-0.825025\pi\)
0.878780 + 0.477227i \(0.158358\pi\)
\(368\) 0 0
\(369\) −3.00000 −0.156174
\(370\) −7.50000 + 12.9904i −0.389906 + 0.675338i
\(371\) −6.00000 + 10.3923i −0.311504 + 0.539542i
\(372\) −4.00000 −0.207390
\(373\) 23.0000 1.19089 0.595447 0.803394i \(-0.296975\pi\)
0.595447 + 0.803394i \(0.296975\pi\)
\(374\) 4.50000 7.79423i 0.232689 0.403030i
\(375\) 1.50000 + 2.59808i 0.0774597 + 0.134164i
\(376\) 0 0
\(377\) 0 0
\(378\) −0.500000 0.866025i −0.0257172 0.0445435i
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) −10.5000 + 7.79423i −0.538639 + 0.399835i
\(381\) 2.00000 0.102463
\(382\) 6.00000 + 10.3923i 0.306987 + 0.531717i
\(383\) 6.00000 + 10.3923i 0.306586 + 0.531022i 0.977613 0.210411i \(-0.0674801\pi\)
−0.671027 + 0.741433i \(0.734147\pi\)
\(384\) −0.500000 + 0.866025i −0.0255155 + 0.0441942i
\(385\) 4.50000 + 7.79423i 0.229341 + 0.397231i
\(386\) 0.500000 0.866025i 0.0254493 0.0440795i
\(387\) −10.0000 −0.508329
\(388\) 8.00000 0.406138
\(389\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(390\) −3.00000 + 5.19615i −0.151911 + 0.263117i
\(391\) 0 0
\(392\) 1.00000 0.0505076
\(393\) 0 0
\(394\) 6.00000 + 10.3923i 0.302276 + 0.523557i
\(395\) 6.00000 10.3923i 0.301893 0.522894i
\(396\) 1.50000 + 2.59808i 0.0753778 + 0.130558i
\(397\) −1.00000 1.73205i −0.0501886 0.0869291i 0.839840 0.542834i \(-0.182649\pi\)
−0.890028 + 0.455905i \(0.849316\pi\)
\(398\) 8.00000 0.401004
\(399\) 4.00000 + 1.73205i 0.200250 + 0.0867110i
\(400\) 4.00000 0.200000
\(401\) 18.0000 + 31.1769i 0.898877 + 1.55690i 0.828932 + 0.559350i \(0.188949\pi\)
0.0699455 + 0.997551i \(0.477717\pi\)
\(402\) −4.00000 6.92820i −0.199502 0.345547i
\(403\) 4.00000 6.92820i 0.199254 0.345118i
\(404\) 1.50000 + 2.59808i 0.0746278 + 0.129259i
\(405\) −1.50000 + 2.59808i −0.0745356 + 0.129099i
\(406\) 0 0
\(407\) −15.0000 −0.743522
\(408\) −1.50000 + 2.59808i −0.0742611 + 0.128624i
\(409\) 20.0000 34.6410i 0.988936 1.71289i 0.366002 0.930614i \(-0.380726\pi\)
0.622935 0.782274i \(-0.285940\pi\)
\(410\) −9.00000 −0.444478
\(411\) 6.00000 0.295958
\(412\) 0.500000 0.866025i 0.0246332 0.0426660i
\(413\) −3.00000 5.19615i −0.147620 0.255686i
\(414\) 0 0
\(415\) 0 0
\(416\) −1.00000 1.73205i −0.0490290 0.0849208i
\(417\) 5.00000 0.244851
\(418\) −12.0000 5.19615i −0.586939 0.254152i
\(419\) −6.00000 −0.293119 −0.146560 0.989202i \(-0.546820\pi\)
−0.146560 + 0.989202i \(0.546820\pi\)
\(420\) −1.50000 2.59808i −0.0731925 0.126773i
\(421\) 9.50000 + 16.4545i 0.463002 + 0.801942i 0.999109 0.0422075i \(-0.0134391\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) −10.0000 + 17.3205i −0.486792 + 0.843149i
\(423\) 0 0
\(424\) −6.00000 + 10.3923i −0.291386 + 0.504695i
\(425\) 12.0000 0.582086
\(426\) 0 0
\(427\) −4.00000 + 6.92820i −0.193574 + 0.335279i
\(428\) 6.00000 10.3923i 0.290021 0.502331i
\(429\) −6.00000 −0.289683
\(430\) −30.0000 −1.44673
\(431\) 16.5000 28.5788i 0.794777 1.37659i −0.128204 0.991748i \(-0.540921\pi\)
0.922981 0.384846i \(-0.125746\pi\)
\(432\) −0.500000 0.866025i −0.0240563 0.0416667i
\(433\) 8.00000 13.8564i 0.384455 0.665896i −0.607238 0.794520i \(-0.707723\pi\)
0.991693 + 0.128624i \(0.0410559\pi\)
\(434\) 2.00000 + 3.46410i 0.0960031 + 0.166282i
\(435\) 0 0
\(436\) 11.0000 0.526804
\(437\) 0 0
\(438\) 14.0000 0.668946
\(439\) −11.5000 19.9186i −0.548865 0.950662i −0.998353 0.0573756i \(-0.981727\pi\)
0.449488 0.893287i \(-0.351607\pi\)
\(440\) 4.50000 + 7.79423i 0.214529 + 0.371575i
\(441\) −0.500000 + 0.866025i −0.0238095 + 0.0412393i
\(442\) −3.00000 5.19615i −0.142695 0.247156i
\(443\) −18.0000 + 31.1769i −0.855206 + 1.48126i 0.0212481 + 0.999774i \(0.493236\pi\)
−0.876454 + 0.481486i \(0.840097\pi\)
\(444\) 5.00000 0.237289
\(445\) −9.00000 −0.426641
\(446\) 0.500000 0.866025i 0.0236757 0.0410075i
\(447\) −9.00000 + 15.5885i −0.425685 + 0.737309i
\(448\) 1.00000 0.0472456
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) −2.00000 + 3.46410i −0.0942809 + 0.163299i
\(451\) −4.50000 7.79423i −0.211897 0.367016i
\(452\) −6.00000 + 10.3923i −0.282216 + 0.488813i
\(453\) −4.00000 6.92820i −0.187936 0.325515i
\(454\) −6.00000 10.3923i −0.281594 0.487735i
\(455\) 6.00000 0.281284
\(456\) 4.00000 + 1.73205i 0.187317 + 0.0811107i
\(457\) 29.0000 1.35656 0.678281 0.734802i \(-0.262725\pi\)
0.678281 + 0.734802i \(0.262725\pi\)
\(458\) 14.0000 + 24.2487i 0.654177 + 1.13307i
\(459\) −1.50000 2.59808i −0.0700140 0.121268i
\(460\) 0 0
\(461\) 7.50000 + 12.9904i 0.349310 + 0.605022i 0.986127 0.165992i \(-0.0530827\pi\)
−0.636817 + 0.771015i \(0.719749\pi\)
\(462\) 1.50000 2.59808i 0.0697863 0.120873i
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) 6.00000 10.3923i 0.278243 0.481932i
\(466\) −12.0000 + 20.7846i −0.555889 + 0.962828i
\(467\) −36.0000 −1.66588 −0.832941 0.553362i \(-0.813345\pi\)
−0.832941 + 0.553362i \(0.813345\pi\)
\(468\) 2.00000 0.0924500
\(469\) −4.00000 + 6.92820i −0.184703 + 0.319915i
\(470\) 0 0
\(471\) −7.00000 + 12.1244i −0.322543 + 0.558661i
\(472\) −3.00000 5.19615i −0.138086 0.239172i
\(473\) −15.0000 25.9808i −0.689701 1.19460i
\(474\) −4.00000 −0.183726
\(475\) −2.00000 17.3205i −0.0917663 0.794719i
\(476\) 3.00000 0.137505
\(477\) −6.00000 10.3923i −0.274721 0.475831i
\(478\) 7.50000 + 12.9904i 0.343042 + 0.594166i
\(479\) −15.0000 + 25.9808i −0.685367 + 1.18709i 0.287954 + 0.957644i \(0.407025\pi\)
−0.973321 + 0.229447i \(0.926308\pi\)
\(480\) −1.50000 2.59808i −0.0684653 0.118585i
\(481\) −5.00000 + 8.66025i −0.227980 + 0.394874i
\(482\) −28.0000 −1.27537
\(483\) 0 0
\(484\) 1.00000 1.73205i 0.0454545 0.0787296i
\(485\) −12.0000 + 20.7846i −0.544892 + 0.943781i
\(486\) 1.00000 0.0453609
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) −4.00000 + 6.92820i −0.181071 + 0.313625i
\(489\) 11.0000 + 19.0526i 0.497437 + 0.861586i
\(490\) −1.50000 + 2.59808i −0.0677631 + 0.117369i
\(491\) 16.5000 + 28.5788i 0.744635 + 1.28974i 0.950365 + 0.311136i \(0.100710\pi\)
−0.205731 + 0.978609i \(0.565957\pi\)
\(492\) 1.50000 + 2.59808i 0.0676252 + 0.117130i
\(493\) 0 0
\(494\) −7.00000 + 5.19615i −0.314945 + 0.233786i
\(495\) −9.00000 −0.404520
\(496\) 2.00000 + 3.46410i 0.0898027 + 0.155543i
\(497\) 0 0
\(498\) 0 0
\(499\) −10.0000 17.3205i −0.447661 0.775372i 0.550572 0.834788i \(-0.314410\pi\)
−0.998233 + 0.0594153i \(0.981076\pi\)
\(500\) 1.50000 2.59808i 0.0670820 0.116190i
\(501\) 6.00000 0.268060
\(502\) 6.00000 0.267793
\(503\) 21.0000 36.3731i 0.936344 1.62179i 0.164124 0.986440i \(-0.447520\pi\)
0.772220 0.635355i \(-0.219146\pi\)
\(504\) −0.500000 + 0.866025i −0.0222718 + 0.0385758i
\(505\) −9.00000 −0.400495
\(506\) 0 0
\(507\) 4.50000 7.79423i 0.199852 0.346154i
\(508\) −1.00000 1.73205i −0.0443678 0.0768473i
\(509\) 4.50000 7.79423i 0.199459 0.345473i −0.748894 0.662690i \(-0.769415\pi\)
0.948353 + 0.317217i \(0.102748\pi\)
\(510\) −4.50000 7.79423i −0.199263 0.345134i
\(511\) −7.00000 12.1244i −0.309662 0.536350i
\(512\) 1.00000 0.0441942
\(513\) −3.50000 + 2.59808i −0.154529 + 0.114708i
\(514\) −15.0000 −0.661622
\(515\) 1.50000 + 2.59808i 0.0660979 + 0.114485i
\(516\) 5.00000 + 8.66025i 0.220113 + 0.381246i
\(517\) 0 0
\(518\) −2.50000 4.33013i −0.109844 0.190255i
\(519\) −3.00000 + 5.19615i −0.131685 + 0.228086i
\(520\) 6.00000 0.263117
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) −14.5000 + 25.1147i −0.634041 + 1.09819i 0.352677 + 0.935745i \(0.385272\pi\)
−0.986718 + 0.162446i \(0.948062\pi\)
\(524\) 0 0
\(525\) 4.00000 0.174574
\(526\) 10.5000 18.1865i 0.457822 0.792971i
\(527\) 6.00000 + 10.3923i 0.261364 + 0.452696i
\(528\) 1.50000 2.59808i 0.0652791 0.113067i
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) −18.0000 31.1769i −0.781870 1.35424i
\(531\) 6.00000 0.260378
\(532\) −0.500000 4.33013i −0.0216777 0.187735i
\(533\) −6.00000 −0.259889
\(534\) 1.50000 + 2.59808i 0.0649113 + 0.112430i
\(535\) 18.0000 + 31.1769i 0.778208 + 1.34790i
\(536\) −4.00000 + 6.92820i −0.172774 + 0.299253i
\(537\) 1.50000 + 2.59808i 0.0647298 + 0.112115i
\(538\) −7.50000 + 12.9904i −0.323348 + 0.560055i
\(539\) −3.00000 −0.129219
\(540\) 3.00000 0.129099
\(541\) 15.5000 26.8468i 0.666397 1.15423i −0.312507 0.949915i \(-0.601169\pi\)
0.978905 0.204318i \(-0.0654977\pi\)
\(542\) 12.5000 21.6506i 0.536921 0.929974i
\(543\) −16.0000 −0.686626
\(544\) 3.00000 0.128624
\(545\) −16.5000 + 28.5788i −0.706782 + 1.22418i
\(546\) −1.00000 1.73205i −0.0427960 0.0741249i
\(547\) 5.00000 8.66025i 0.213785 0.370286i −0.739111 0.673583i \(-0.764754\pi\)
0.952896 + 0.303298i \(0.0980876\pi\)
\(548\) −3.00000 5.19615i −0.128154 0.221969i
\(549\) −4.00000 6.92820i −0.170716 0.295689i
\(550\) −12.0000 −0.511682
\(551\) 0 0
\(552\) 0 0
\(553\) 2.00000 + 3.46410i 0.0850487 + 0.147309i
\(554\) 9.50000 + 16.4545i 0.403616 + 0.699084i
\(555\) −7.50000 + 12.9904i −0.318357 + 0.551411i
\(556\) −2.50000 4.33013i −0.106024 0.183638i
\(557\) 6.00000 10.3923i 0.254228 0.440336i −0.710457 0.703740i \(-0.751512\pi\)
0.964686 + 0.263404i \(0.0848453\pi\)
\(558\) −4.00000 −0.169334
\(559\) −20.0000 −0.845910
\(560\) −1.50000 + 2.59808i −0.0633866 + 0.109789i
\(561\) 4.50000 7.79423i 0.189990 0.329073i
\(562\) 24.0000 1.01238
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) 0 0
\(565\) −18.0000 31.1769i −0.757266 1.31162i
\(566\) 15.5000 26.8468i 0.651514 1.12845i
\(567\) −0.500000 0.866025i −0.0209980 0.0363696i
\(568\) 0 0
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) −10.5000 + 7.79423i −0.439797 + 0.326464i
\(571\) 44.0000 1.84134 0.920671 0.390339i \(-0.127642\pi\)
0.920671 + 0.390339i \(0.127642\pi\)
\(572\) 3.00000 + 5.19615i 0.125436 + 0.217262i
\(573\) 6.00000 + 10.3923i 0.250654 + 0.434145i
\(574\) 1.50000 2.59808i 0.0626088 0.108442i
\(575\) 0 0
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) −8.00000 −0.332756
\(579\) 0.500000 0.866025i 0.0207793 0.0359908i
\(580\) 0 0
\(581\) 0 0
\(582\) 8.00000 0.331611
\(583\) 18.0000 31.1769i 0.745484 1.29122i
\(584\) −7.00000 12.1244i −0.289662 0.501709i
\(585\) −3.00000 + 5.19615i −0.124035 + 0.214834i
\(586\) 13.5000 + 23.3827i 0.557680 + 0.965930i
\(587\) −21.0000 36.3731i −0.866763 1.50128i −0.865286 0.501278i \(-0.832863\pi\)
−0.00147660 0.999999i \(-0.500470\pi\)
\(588\) 1.00000 0.0412393
\(589\) 14.0000 10.3923i 0.576860 0.428207i
\(590\) 18.0000 0.741048
\(591\) 6.00000 + 10.3923i 0.246807 + 0.427482i
\(592\) −2.50000 4.33013i −0.102749 0.177967i
\(593\) −7.50000 + 12.9904i −0.307988 + 0.533451i −0.977922 0.208970i \(-0.932989\pi\)
0.669934 + 0.742421i \(0.266322\pi\)
\(594\) 1.50000 + 2.59808i 0.0615457 + 0.106600i
\(595\) −4.50000 + 7.79423i −0.184482 + 0.319532i
\(596\) 18.0000 0.737309
\(597\) 8.00000 0.327418
\(598\) 0 0
\(599\) 1.50000 2.59808i 0.0612883 0.106155i −0.833753 0.552137i \(-0.813812\pi\)
0.895042 + 0.445983i \(0.147146\pi\)
\(600\) 4.00000 0.163299
\(601\) 44.0000 1.79480 0.897399 0.441221i \(-0.145454\pi\)
0.897399 + 0.441221i \(0.145454\pi\)
\(602\) 5.00000 8.66025i 0.203785 0.352966i
\(603\) −4.00000 6.92820i −0.162893 0.282138i
\(604\) −4.00000 + 6.92820i −0.162758 + 0.281905i
\(605\) 3.00000 + 5.19615i 0.121967 + 0.211254i
\(606\) 1.50000 + 2.59808i 0.0609333 + 0.105540i
\(607\) −40.0000 −1.62355 −0.811775 0.583970i \(-0.801498\pi\)
−0.811775 + 0.583970i \(0.801498\pi\)
\(608\) −0.500000 4.33013i −0.0202777 0.175610i
\(609\) 0 0
\(610\) −12.0000 20.7846i −0.485866 0.841544i
\(611\) 0 0
\(612\) −1.50000 + 2.59808i −0.0606339 + 0.105021i
\(613\) 3.50000 + 6.06218i 0.141364 + 0.244849i 0.928010 0.372554i \(-0.121518\pi\)
−0.786647 + 0.617403i \(0.788185\pi\)
\(614\) 8.00000 13.8564i 0.322854 0.559199i
\(615\) −9.00000 −0.362915
\(616\) −3.00000 −0.120873
\(617\) 15.0000 25.9808i 0.603877 1.04595i −0.388351 0.921512i \(-0.626955\pi\)
0.992228 0.124434i \(-0.0397116\pi\)
\(618\) 0.500000 0.866025i 0.0201129 0.0348367i
\(619\) −28.0000 −1.12542 −0.562708 0.826656i \(-0.690240\pi\)
−0.562708 + 0.826656i \(0.690240\pi\)
\(620\) −12.0000 −0.481932
\(621\) 0 0
\(622\) −9.00000 15.5885i −0.360867 0.625040i
\(623\) 1.50000 2.59808i 0.0600962 0.104090i
\(624\) −1.00000 1.73205i −0.0400320 0.0693375i
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) 8.00000 0.319744
\(627\) −12.0000 5.19615i −0.479234 0.207514i
\(628\) 14.0000 0.558661
\(629\) −7.50000 12.9904i −0.299045 0.517960i
\(630\) −1.50000 2.59808i −0.0597614 0.103510i
\(631\) 11.0000 19.0526i 0.437903 0.758470i −0.559625 0.828746i \(-0.689055\pi\)
0.997528 + 0.0702759i \(0.0223880\pi\)
\(632\) 2.00000 + 3.46410i 0.0795557 + 0.137795i
\(633\) −10.0000 + 17.3205i −0.397464 + 0.688428i
\(634\) 24.0000 0.953162
\(635\) 6.00000 0.238103
\(636\) −6.00000 + 10.3923i −0.237915 + 0.412082i
\(637\) −1.00000 + 1.73205i −0.0396214 + 0.0686264i
\(638\) 0 0
\(639\) 0 0
\(640\) −1.50000 + 2.59808i −0.0592927 + 0.102698i
\(641\) 12.0000 + 20.7846i 0.473972 + 0.820943i 0.999556 0.0297987i \(-0.00948663\pi\)
−0.525584 + 0.850741i \(0.676153\pi\)
\(642\) 6.00000 10.3923i 0.236801 0.410152i
\(643\) 12.5000 + 21.6506i 0.492952 + 0.853818i 0.999967 0.00811944i \(-0.00258453\pi\)
−0.507015 + 0.861937i \(0.669251\pi\)
\(644\) 0 0
\(645\) −30.0000 −1.18125
\(646\) −1.50000 12.9904i −0.0590167 0.511100i
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) 9.00000 + 15.5885i 0.353281 + 0.611900i
\(650\) −4.00000 + 6.92820i −0.156893 + 0.271746i
\(651\) 2.00000 + 3.46410i 0.0783862 + 0.135769i
\(652\) 11.0000 19.0526i 0.430793 0.746156i
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) 11.0000 0.430134
\(655\) 0 0
\(656\) 1.50000 2.59808i 0.0585652 0.101438i
\(657\) 14.0000 0.546192
\(658\) 0 0
\(659\) 4.50000 7.79423i 0.175295 0.303620i −0.764968 0.644068i \(-0.777245\pi\)
0.940263 + 0.340448i \(0.110579\pi\)
\(660\) 4.50000 + 7.79423i 0.175162 + 0.303390i
\(661\) −7.00000 + 12.1244i −0.272268 + 0.471583i −0.969442 0.245319i \(-0.921107\pi\)
0.697174 + 0.716902i \(0.254441\pi\)
\(662\) −16.0000 27.7128i −0.621858 1.07709i
\(663\) −3.00000 5.19615i −0.116510 0.201802i
\(664\) 0 0
\(665\) 12.0000 + 5.19615i 0.465340 + 0.201498i
\(666\) 5.00000 0.193746
\(667\) 0 0
\(668\) −3.00000 5.19615i −0.116073 0.201045i
\(669\) 0.500000 0.866025i 0.0193311 0.0334825i
\(670\) −12.0000 20.7846i −0.463600 0.802980i
\(671\) 12.0000 20.7846i 0.463255 0.802381i
\(672\) 1.00000 0.0385758
\(673\) 5.00000 0.192736 0.0963679 0.995346i \(-0.469277\pi\)
0.0963679 + 0.995346i \(0.469277\pi\)
\(674\) −7.00000 + 12.1244i −0.269630 + 0.467013i
\(675\) −2.00000 + 3.46410i −0.0769800 + 0.133333i
\(676\) −9.00000 −0.346154
\(677\) −3.00000 −0.115299 −0.0576497 0.998337i \(-0.518361\pi\)
−0.0576497 + 0.998337i \(0.518361\pi\)
\(678\) −6.00000 + 10.3923i −0.230429 + 0.399114i
\(679\) −4.00000 6.92820i −0.153506 0.265880i
\(680\) −4.50000 + 7.79423i −0.172567 + 0.298895i
\(681\) −6.00000 10.3923i −0.229920 0.398234i
\(682\) −6.00000 10.3923i −0.229752 0.397942i
\(683\) −15.0000 −0.573959 −0.286980 0.957937i \(-0.592651\pi\)
−0.286980 + 0.957937i \(0.592651\pi\)
\(684\) 4.00000 + 1.73205i 0.152944 + 0.0662266i
\(685\) 18.0000 0.687745
\(686\) −0.500000 0.866025i −0.0190901 0.0330650i
\(687\) 14.0000 + 24.2487i 0.534133 + 0.925146i
\(688\) 5.00000 8.66025i 0.190623 0.330169i
\(689\) −12.0000 20.7846i −0.457164 0.791831i
\(690\) 0 0
\(691\) −19.0000 −0.722794 −0.361397 0.932412i \(-0.617700\pi\)
−0.361397 + 0.932412i \(0.617700\pi\)
\(692\) 6.00000 0.228086
\(693\) 1.50000 2.59808i 0.0569803 0.0986928i
\(694\) 6.00000 10.3923i 0.227757 0.394486i
\(695\) 15.0000 0.568982
\(696\) 0 0
\(697\) 4.50000 7.79423i 0.170450 0.295227i
\(698\) −10.0000 17.3205i −0.378506 0.655591i
\(699\) −12.0000 + 20.7846i −0.453882 + 0.786146i
\(700\) −2.00000 3.46410i −0.0755929 0.130931i
\(701\) −15.0000 25.9808i −0.566542 0.981280i −0.996904 0.0786236i \(-0.974947\pi\)
0.430362 0.902656i \(-0.358386\pi\)
\(702\) 2.00000 0.0754851
\(703\) −17.5000 + 12.9904i −0.660025 + 0.489942i
\(704\) −3.00000 −0.113067
\(705\) 0 0
\(706\) 16.5000 + 28.5788i 0.620986 + 1.07558i
\(707\) 1.50000 2.59808i 0.0564133 0.0977107i
\(708\) −3.00000 5.19615i −0.112747 0.195283i
\(709\) 6.50000 11.2583i 0.244113 0.422815i −0.717769 0.696281i \(-0.754837\pi\)
0.961882 + 0.273466i \(0.0881700\pi\)
\(710\) 0 0
\(711\) −4.00000 −0.150012
\(712\) 1.50000 2.59808i 0.0562149 0.0973670i
\(713\) 0 0
\(714\) 3.00000 0.112272
\(715\) −18.0000 −0.673162
\(716\) 1.50000 2.59808i 0.0560576 0.0970947i
\(717\) 7.50000 + 12.9904i 0.280093 + 0.485135i
\(718\) −12.0000 + 20.7846i −0.447836 + 0.775675i
\(719\) −9.00000 15.5885i −0.335643 0.581351i 0.647965 0.761670i \(-0.275620\pi\)
−0.983608 + 0.180319i \(0.942287\pi\)
\(720\) −1.50000 2.59808i −0.0559017 0.0968246i
\(721\) −1.00000 −0.0372419
\(722\) −18.5000 + 4.33013i −0.688499 + 0.161151i
\(723\) −28.0000 −1.04133
\(724\) 8.00000 + 13.8564i 0.297318 + 0.514969i
\(725\) 0 0
\(726\) 1.00000 1.73205i 0.0371135 0.0642824i
\(727\) −11.5000 19.9186i −0.426511 0.738739i 0.570049 0.821611i \(-0.306924\pi\)
−0.996560 + 0.0828714i \(0.973591\pi\)
\(728\) −1.00000 + 1.73205i −0.0370625 + 0.0641941i
\(729\) 1.00000 0.0370370
\(730\) 42.0000 1.55449
\(731\) 15.0000 25.9808i 0.554795 0.960933i
\(732\) −4.00000 + 6.92820i −0.147844 + 0.256074i
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) −1.00000 −0.0369107
\(735\) −1.50000 + 2.59808i −0.0553283 + 0.0958315i
\(736\) 0 0
\(737\) 12.0000 20.7846i 0.442026 0.765611i
\(738\) 1.50000 + 2.59808i 0.0552158 + 0.0956365i
\(739\) −7.00000 12.1244i −0.257499 0.446002i 0.708072 0.706140i \(-0.249565\pi\)
−0.965571 + 0.260138i \(0.916232\pi\)
\(740\) 15.0000 0.551411
\(741\) −7.00000 + 5.19615i −0.257151 + 0.190885i
\(742\) 12.0000 0.440534
\(743\) −16.5000 28.5788i −0.605326 1.04846i −0.992000 0.126239i \(-0.959709\pi\)
0.386674 0.922217i \(-0.373624\pi\)
\(744\) 2.00000 + 3.46410i 0.0733236 + 0.127000i
\(745\) −27.0000 + 46.7654i −0.989203 + 1.71335i
\(746\) −11.5000 19.9186i −0.421045 0.729271i
\(747\) 0 0
\(748\) −9.00000 −0.329073
\(749\) −12.0000 −0.438470
\(750\) 1.50000 2.59808i 0.0547723 0.0948683i
\(751\) 5.00000 8.66025i 0.182453 0.316017i −0.760263 0.649616i \(-0.774930\pi\)
0.942715 + 0.333599i \(0.108263\pi\)
\(752\) 0 0
\(753\) 6.00000 0.218652
\(754\) 0 0
\(755\) −12.0000 20.7846i −0.436725 0.756429i
\(756\) −0.500000 + 0.866025i −0.0181848 + 0.0314970i
\(757\) −5.50000 9.52628i −0.199901 0.346239i 0.748595 0.663027i \(-0.230729\pi\)
−0.948496 + 0.316789i \(0.897395\pi\)
\(758\) −10.0000 17.3205i −0.363216 0.629109i
\(759\) 0 0
\(760\) 12.0000 + 5.19615i 0.435286 + 0.188484i
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) −1.00000 1.73205i −0.0362262 0.0627456i
\(763\) −5.50000 9.52628i −0.199113 0.344874i
\(764\) 6.00000 10.3923i 0.217072 0.375980i
\(765\) −4.50000 7.79423i −0.162698 0.281801i
\(766\) 6.00000 10.3923i 0.216789 0.375489i
\(767\) 12.0000 0.433295
\(768\) 1.00000 0.0360844
\(769\) −10.0000 + 17.3205i −0.360609 + 0.624593i −0.988061 0.154062i \(-0.950765\pi\)
0.627452 + 0.778655i \(0.284098\pi\)
\(770\) 4.50000 7.79423i 0.162169 0.280885i
\(771\) −15.0000 −0.540212
\(772\) −1.00000 −0.0359908
\(773\) 19.5000 33.7750i 0.701366 1.21480i −0.266621 0.963802i \(-0.585907\pi\)
0.967987 0.251000i \(-0.0807596\pi\)
\(774\) 5.00000 + 8.66025i 0.179721 + 0.311286i
\(775\) 8.00000 13.8564i 0.287368 0.497737i
\(776\) −4.00000 6.92820i −0.143592 0.248708i
\(777\) −2.50000 4.33013i −0.0896870 0.155342i
\(778\) 0 0
\(779\) −12.0000 5.19615i −0.429945 0.186171i
\(780\) 6.00000 0.214834
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.500000 0.866025i −0.0178571 0.0309295i
\(785\) −21.0000 + 36.3731i −0.749522 + 1.29821i
\(786\) 0 0
\(787\) 23.0000 0.819861 0.409931 0.912117i \(-0.365553\pi\)
0.409931 + 0.912117i \(0.365553\pi\)
\(788\) 6.00000 10.3923i 0.213741 0.370211i
\(789\) 10.5000 18.1865i 0.373810 0.647458i
\(790\) −12.0000 −0.426941
\(791\) 12.0000 0.426671
\(792\) 1.50000 2.59808i 0.0533002 0.0923186i
\(793\) −8.00000 13.8564i −0.284088 0.492055i
\(794\) −1.00000 + 1.73205i −0.0354887 + 0.0614682i
\(795\) −18.0000 31.1769i −0.638394 1.10573i
\(796\) −4.00000 6.92820i −0.141776 0.245564i
\(797\) −15.0000 −0.531327 −0.265664 0.964066i \(-0.585591\pi\)
−0.265664 + 0.964066i \(0.585591\pi\)
\(798\) −0.500000 4.33013i −0.0176998 0.153285i
\(799\) 0 0
\(800\) −2.00000 3.46410i −0.0707107 0.122474i
\(801\) 1.50000 + 2.59808i 0.0529999 + 0.0917985i
\(802\) 18.0000 31.1769i 0.635602 1.10090i
\(803\) 21.0000 + 36.3731i 0.741074 + 1.28358i
\(804\) −4.00000 + 6.92820i −0.141069 + 0.244339i
\(805\) 0 0
\(806\) −8.00000 −0.281788
\(807\) −7.50000 + 12.9904i −0.264013 + 0.457283i
\(808\) 1.50000 2.59808i 0.0527698 0.0914000i
\(809\) −12.0000 −0.421898 −0.210949 0.977497i \(-0.567655\pi\)
−0.210949 + 0.977497i \(0.567655\pi\)
\(810\) 3.00000 0.105409
\(811\) 3.50000 6.06218i 0.122902 0.212872i −0.798009 0.602645i \(-0.794113\pi\)
0.920911 + 0.389774i \(0.127447\pi\)
\(812\) 0 0
\(813\) 12.5000 21.6506i 0.438394 0.759321i
\(814\) 7.50000 + 12.9904i 0.262875 + 0.455313i
\(815\) 33.0000 + 57.1577i 1.15594 + 2.00215i
\(816\) 3.00000 0.105021
\(817\) −40.0000 17.3205i −1.39942 0.605968i
\(818\) −40.0000 −1.39857
\(819\) −1.00000 1.73205i −0.0349428 0.0605228i
\(820\) 4.50000 + 7.79423i 0.157147 + 0.272186i
\(821\) −24.0000 + 41.5692i −0.837606 + 1.45078i 0.0542853 + 0.998525i \(0.482712\pi\)
−0.891891 + 0.452250i \(0.850621\pi\)
\(822\) −3.00000 5.19615i −0.104637 0.181237i
\(823\) −7.00000 + 12.1244i −0.244005 + 0.422628i −0.961851 0.273573i \(-0.911795\pi\)
0.717847 + 0.696201i \(0.245128\pi\)
\(824\) −1.00000 −0.0348367
\(825\) −12.0000 −0.417786
\(826\) −3.00000 + 5.19615i −0.104383 + 0.180797i
\(827\) −10.5000 + 18.1865i −0.365121 + 0.632408i −0.988796 0.149276i \(-0.952306\pi\)
0.623675 + 0.781684i \(0.285639\pi\)
\(828\) 0 0
\(829\) −46.0000 −1.59765 −0.798823 0.601566i \(-0.794544\pi\)
−0.798823 + 0.601566i \(0.794544\pi\)
\(830\) 0 0
\(831\) 9.50000 + 16.4545i 0.329551 + 0.570800i
\(832\) −1.00000 + 1.73205i −0.0346688 + 0.0600481i
\(833\) −1.50000 2.59808i −0.0519719 0.0900180i
\(834\) −2.50000 4.33013i −0.0865679 0.149940i
\(835\) 18.0000 0.622916
\(836\) 1.50000 + 12.9904i 0.0518786 + 0.449282i
\(837\) −4.00000 −0.138260
\(838\) 3.00000 + 5.19615i 0.103633 + 0.179498i
\(839\) −21.0000 36.3731i −0.725001 1.25574i −0.958974 0.283495i \(-0.908506\pi\)
0.233973 0.972243i \(-0.424827\pi\)
\(840\) −1.50000 + 2.59808i −0.0517549 + 0.0896421i
\(841\) 14.5000 + 25.1147i 0.500000 + 0.866025i
\(842\) 9.50000 16.4545i 0.327392 0.567059i
\(843\) 24.0000 0.826604
\(844\) 20.0000 0.688428
\(845\) 13.5000 23.3827i 0.464414 0.804389i
\(846\) 0 0
\(847\) −2.00000 −0.0687208
\(848\) 12.0000 0.412082
\(849\) 15.5000 26.8468i 0.531959 0.921379i
\(850\) −6.00000 10.3923i −0.205798 0.356453i
\(851\) 0 0
\(852\) 0 0
\(853\) −10.0000 17.3205i −0.342393 0.593043i 0.642483 0.766300i \(-0.277904\pi\)
−0.984877 + 0.173257i \(0.944571\pi\)
\(854\) 8.00000 0.273754
\(855\) −10.5000 + 7.79423i −0.359092 + 0.266557i
\(856\) −12.0000 −0.410152
\(857\) 19.5000 + 33.7750i 0.666107 + 1.15373i 0.978984 + 0.203938i \(0.0653741\pi\)
−0.312877 + 0.949794i \(0.601293\pi\)
\(858\) 3.00000 + 5.19615i 0.102418 + 0.177394i
\(859\) 9.50000 16.4545i 0.324136 0.561420i −0.657201 0.753715i \(-0.728260\pi\)
0.981337 + 0.192295i \(0.0615932\pi\)
\(860\) 15.0000 + 25.9808i 0.511496 + 0.885937i
\(861\) 1.50000 2.59808i 0.0511199 0.0885422i
\(862\) −33.0000 −1.12398
\(863\) 15.0000 0.510606 0.255303 0.966861i \(-0.417825\pi\)
0.255303 + 0.966861i \(0.417825\pi\)
\(864\) −0.500000 + 0.866025i −0.0170103 + 0.0294628i
\(865\) −9.00000 + 15.5885i −0.306009 + 0.530023i
\(866\) −16.0000 −0.543702
\(867\) −8.00000 −0.271694
\(868\) 2.00000 3.46410i 0.0678844 0.117579i
\(869\) −6.00000 10.3923i −0.203536 0.352535i
\(870\) 0 0
\(871\) −8.00000 13.8564i −0.271070 0.469506i
\(872\) −5.50000 9.52628i −0.186254 0.322601i
\(873\) 8.00000 0.270759
\(874\) 0 0
\(875\) −3.00000 −0.101419
\(876\) −7.00000 12.1244i −0.236508 0.409644i
\(877\) 5.00000 + 8.66025i 0.168838 + 0.292436i 0.938012 0.346604i \(-0.112665\pi\)
−0.769174 + 0.639040i \(0.779332\pi\)
\(878\) −11.5000 + 19.9186i −0.388106 + 0.672220i
\(879\) 13.5000 + 23.3827i 0.455344 + 0.788678i
\(880\) 4.50000 7.79423i 0.151695 0.262743i
\(881\) 39.0000 1.31394 0.656972 0.753915i \(-0.271837\pi\)
0.656972 + 0.753915i \(0.271837\pi\)
\(882\) 1.00000 0.0336718
\(883\) 23.0000 39.8372i 0.774012 1.34063i −0.161337 0.986899i \(-0.551581\pi\)
0.935348 0.353728i \(-0.115086\pi\)
\(884\) −3.00000 + 5.19615i −0.100901 + 0.174766i
\(885\) 18.0000 0.605063
\(886\) 36.0000 1.20944
\(887\) 9.00000 15.5885i 0.302190 0.523409i −0.674441 0.738328i \(-0.735615\pi\)
0.976632 + 0.214919i \(0.0689488\pi\)
\(888\) −2.50000 4.33013i −0.0838945 0.145310i
\(889\) −1.00000 + 1.73205i −0.0335389 + 0.0580911i
\(890\) 4.50000 + 7.79423i 0.150840 + 0.261263i
\(891\) 1.50000 + 2.59808i 0.0502519 + 0.0870388i
\(892\) −1.00000 −0.0334825
\(893\) 0 0
\(894\) 18.0000 0.602010
\(895\) 4.50000 + 7.79423i 0.150418 + 0.260532i
\(896\) −0.500000 0.866025i −0.0167038 0.0289319i
\(897\) 0 0
\(898\) 3.00000 + 5.19615i 0.100111 + 0.173398i
\(899\) 0 0
\(900\) 4.00000 0.133333
\(901\) 36.0000 1.19933
\(902\) −4.50000 + 7.79423i −0.149834 + 0.259519i
\(903\) 5.00000 8.66025i 0.166390 0.288195i
\(904\) 12.0000 0.399114
\(905\) −48.0000 −1.59557
\(906\) −4.00000 + 6.92820i −0.132891 + 0.230174i
\(907\) 5.00000 + 8.66025i 0.166022 + 0.287559i 0.937018 0.349281i \(-0.113574\pi\)
−0.770996 + 0.636841i \(0.780241\pi\)
\(908\) −6.00000 + 10.3923i −0.199117 + 0.344881i
\(909\) 1.50000 + 2.59808i 0.0497519 + 0.0861727i
\(910\) −3.00000 5.19615i −0.0994490 0.172251i
\(911\) −15.0000 −0.496972 −0.248486 0.968635i \(-0.579933\pi\)
−0.248486 + 0.968635i \(0.579933\pi\)
\(912\) −0.500000 4.33013i −0.0165567 0.143385i
\(913\) 0 0
\(914\) −14.5000 25.1147i −0.479617 0.830722i
\(915\) −12.0000 20.7846i −0.396708 0.687118i
\(916\) 14.0000 24.2487i 0.462573 0.801200i
\(917\) 0 0
\(918\) −1.50000 + 2.59808i −0.0495074 + 0.0857493i
\(919\) −46.0000 −1.51740 −0.758700 0.651440i \(-0.774165\pi\)
−0.758700 + 0.651440i \(0.774165\pi\)
\(920\) 0 0
\(921\) 8.00000 13.8564i 0.263609 0.456584i
\(922\) 7.50000 12.9904i 0.246999 0.427815i
\(923\) 0 0
\(924\) −3.00000 −0.0986928
\(925\) −10.0000 + 17.3205i −0.328798 + 0.569495i
\(926\) 8.00000 + 13.8564i 0.262896 + 0.455350i
\(927\) 0.500000 0.866025i 0.0164222 0.0284440i
\(928\) 0 0
\(929\) 13.5000 + 23.3827i 0.442921 + 0.767161i 0.997905 0.0646999i \(-0.0206090\pi\)
−0.554984 + 0.831861i \(0.687276\pi\)
\(930\) −12.0000 −0.393496
\(931\) −3.50000 + 2.59808i −0.114708 + 0.0851485i
\(932\) 24.0000 0.786146
\(933\) −9.00000 15.5885i −0.294647 0.510343i
\(934\) 18.0000 + 31.1769i 0.588978 + 1.02014i
\(935\) 13.5000 23.3827i 0.441497 0.764696i
\(936\) −1.00000 1.73205i −0.0326860 0.0566139i
\(937\) −7.00000 + 12.1244i −0.228680 + 0.396085i −0.957417 0.288708i \(-0.906774\pi\)
0.728737 + 0.684794i \(0.240108\pi\)
\(938\) 8.00000 0.261209
\(939\) 8.00000 0.261070
\(940\) 0 0
\(941\) 16.5000 28.5788i 0.537885 0.931644i −0.461133 0.887331i \(-0.652557\pi\)
0.999018 0.0443125i \(-0.0141097\pi\)
\(942\) 14.0000 0.456145
\(943\) 0 0
\(944\) −3.00000 + 5.19615i −0.0976417 + 0.169120i
\(945\) −1.50000 2.59808i −0.0487950 0.0845154i
\(946\) −15.0000 + 25.9808i −0.487692 + 0.844707i
\(947\) 13.5000 + 23.3827i 0.438691 + 0.759835i 0.997589 0.0694014i \(-0.0221089\pi\)
−0.558898 + 0.829237i \(0.688776\pi\)
\(948\) 2.00000 + 3.46410i 0.0649570 + 0.112509i
\(949\) 28.0000 0.908918
\(950\) −14.0000 + 10.3923i −0.454220 + 0.337171i
\(951\) 24.0000 0.778253
\(952\) −1.50000 2.59808i −0.0486153 0.0842041i
\(953\) 18.0000 + 31.1769i 0.583077 + 1.00992i 0.995112 + 0.0987513i \(0.0314848\pi\)
−0.412035 + 0.911168i \(0.635182\pi\)
\(954\) −6.00000 + 10.3923i −0.194257 + 0.336463i
\(955\) 18.0000 + 31.1769i 0.582466 + 1.00886i
\(956\) 7.50000 12.9904i 0.242567 0.420139i
\(957\) 0 0
\(958\) 30.0000 0.969256
\(959\) −3.00000 + 5.19615i −0.0968751 + 0.167793i
\(960\) −1.50000 + 2.59808i −0.0484123 + 0.0838525i
\(961\) −15.0000 −0.483871
\(962\) 10.0000 0.322413
\(963\) 6.00000 10.3923i 0.193347 0.334887i
\(964\) 14.0000 + 24.2487i 0.450910 + 0.780998i
\(965\) 1.50000 2.59808i 0.0482867 0.0836350i
\(966\) 0 0
\(967\) 5.00000 + 8.66025i 0.160789 + 0.278495i 0.935152 0.354247i \(-0.115263\pi\)
−0.774363 + 0.632742i \(0.781929\pi\)
\(968\) −2.00000 −0.0642824
\(969\) −1.50000 12.9904i −0.0481869 0.417311i
\(970\) 24.0000 0.770594
\(971\) 12.0000 + 20.7846i 0.385098 + 0.667010i 0.991783 0.127933i \(-0.0408342\pi\)
−0.606685 + 0.794943i \(0.707501\pi\)
\(972\) −0.500000 0.866025i −0.0160375 0.0277778i
\(973\) −2.50000 + 4.33013i −0.0801463 + 0.138817i
\(974\) 8.00000 + 13.8564i 0.256337 + 0.443988i
\(975\) −4.00000 + 6.92820i −0.128103 + 0.221880i
\(976\) 8.00000 0.256074
\(977\) 12.0000 0.383914 0.191957 0.981403i \(-0.438517\pi\)
0.191957 + 0.981403i \(0.438517\pi\)
\(978\) 11.0000 19.0526i 0.351741 0.609234i
\(979\) −4.50000 + 7.79423i −0.143821 + 0.249105i
\(980\) 3.00000 0.0958315
\(981\) 11.0000 0.351203
\(982\) 16.5000 28.5788i 0.526536 0.911987i
\(983\) 18.0000 + 31.1769i 0.574111 + 0.994389i 0.996138 + 0.0878058i \(0.0279855\pi\)
−0.422027 + 0.906583i \(0.638681\pi\)
\(984\) 1.50000 2.59808i 0.0478183 0.0828236i
\(985\) 18.0000 + 31.1769i 0.573528 + 0.993379i
\(986\) 0 0
\(987\) 0 0
\(988\) 8.00000 + 3.46410i 0.254514 + 0.110208i
\(989\) 0 0
\(990\) 4.50000 + 7.79423i 0.143019 + 0.247717i
\(991\) −10.0000 17.3205i −0.317660 0.550204i 0.662339 0.749204i \(-0.269564\pi\)
−0.979999 + 0.199000i \(0.936231\pi\)
\(992\) 2.00000 3.46410i 0.0635001 0.109985i
\(993\) −16.0000 27.7128i −0.507745 0.879440i
\(994\) 0 0
\(995\) 24.0000 0.760851
\(996\) 0 0
\(997\) 2.00000 3.46410i 0.0633406 0.109709i −0.832616 0.553851i \(-0.813158\pi\)
0.895957 + 0.444141i \(0.146491\pi\)
\(998\) −10.0000 + 17.3205i −0.316544 + 0.548271i
\(999\) 5.00000 0.158193
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 798.2.k.a.463.1 2
3.2 odd 2 2394.2.o.j.1261.1 2
19.11 even 3 inner 798.2.k.a.505.1 yes 2
57.11 odd 6 2394.2.o.j.505.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
798.2.k.a.463.1 2 1.1 even 1 trivial
798.2.k.a.505.1 yes 2 19.11 even 3 inner
2394.2.o.j.505.1 2 57.11 odd 6
2394.2.o.j.1261.1 2 3.2 odd 2