Properties

Label 2-798-19.7-c1-0-19
Degree $2$
Conductor $798$
Sign $0.0977 - 0.995i$
Analytic cond. $6.37206$
Root an. cond. $2.52429$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (−1.5 − 2.59i)5-s + (−0.499 + 0.866i)6-s + 7-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (−1.5 + 2.59i)10-s − 3·11-s + 0.999·12-s + (−1 + 1.73i)13-s + (−0.5 − 0.866i)14-s + (−1.5 + 2.59i)15-s + (−0.5 − 0.866i)16-s + (−1.5 − 2.59i)17-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (−0.670 − 1.16i)5-s + (−0.204 + 0.353i)6-s + 0.377·7-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.474 + 0.821i)10-s − 0.904·11-s + 0.288·12-s + (−0.277 + 0.480i)13-s + (−0.133 − 0.231i)14-s + (−0.387 + 0.670i)15-s + (−0.125 − 0.216i)16-s + (−0.363 − 0.630i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0977 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0977 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(798\)    =    \(2 \cdot 3 \cdot 7 \cdot 19\)
Sign: $0.0977 - 0.995i$
Analytic conductor: \(6.37206\)
Root analytic conductor: \(2.52429\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{798} (463, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(1\)
Selberg data: \((2,\ 798,\ (\ :1/2),\ 0.0977 - 0.995i)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 + 0.866i)T \)
3 \( 1 + (0.5 + 0.866i)T \)
7 \( 1 - T \)
19 \( 1 + (3.5 - 2.59i)T \)
good5 \( 1 + (1.5 + 2.59i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + 3T + 11T^{2} \)
13 \( 1 + (1 - 1.73i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \)
23 \( 1 + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 - 5T + 37T^{2} \)
41 \( 1 + (-1.5 - 2.59i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-5 - 8.66i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (6 - 10.3i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (3 + 5.19i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (4 - 6.92i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (4 - 6.92i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (7 + 12.1i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-2 - 3.46i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + (-1.5 + 2.59i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (4 + 6.92i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.521903013324959838112264744960, −8.756679010834746010673833879847, −7.954099752844920277957270271054, −7.42308098689035675350555100075, −6.01337469704176359323853427053, −4.84277143551477497551103929605, −4.27263699259265462391071441314, −2.66746499340246831876257016720, −1.39826194892826037370489395469, 0, 2.44184921397294294102385812420, 3.70183904165865515263418188146, 4.75253277311570382978476549973, 5.73902166262572921232151321700, 6.69780348898074673408696787750, 7.51138137152719060383778265759, 8.198097400396529220604886674622, 9.171406242799514398654942562421, 10.29539504942211567853248875346

Graph of the $Z$-function along the critical line