L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (−1.5 − 2.59i)5-s + (−0.499 + 0.866i)6-s + 7-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (−1.5 + 2.59i)10-s − 3·11-s + 0.999·12-s + (−1 + 1.73i)13-s + (−0.5 − 0.866i)14-s + (−1.5 + 2.59i)15-s + (−0.5 − 0.866i)16-s + (−1.5 − 2.59i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (−0.670 − 1.16i)5-s + (−0.204 + 0.353i)6-s + 0.377·7-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.474 + 0.821i)10-s − 0.904·11-s + 0.288·12-s + (−0.277 + 0.480i)13-s + (−0.133 − 0.231i)14-s + (−0.387 + 0.670i)15-s + (−0.125 − 0.216i)16-s + (−0.363 − 0.630i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0977 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0977 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 - T \) |
| 19 | \( 1 + (3.5 - 2.59i)T \) |
good | 5 | \( 1 + (1.5 + 2.59i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + 3T + 11T^{2} \) |
| 13 | \( 1 + (1 - 1.73i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 - 5T + 37T^{2} \) |
| 41 | \( 1 + (-1.5 - 2.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5 - 8.66i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6 - 10.3i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3 + 5.19i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4 - 6.92i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4 - 6.92i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (7 + 12.1i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2 - 3.46i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-1.5 + 2.59i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (4 + 6.92i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.521903013324959838112264744960, −8.756679010834746010673833879847, −7.954099752844920277957270271054, −7.42308098689035675350555100075, −6.01337469704176359323853427053, −4.84277143551477497551103929605, −4.27263699259265462391071441314, −2.66746499340246831876257016720, −1.39826194892826037370489395469, 0,
2.44184921397294294102385812420, 3.70183904165865515263418188146, 4.75253277311570382978476549973, 5.73902166262572921232151321700, 6.69780348898074673408696787750, 7.51138137152719060383778265759, 8.198097400396529220604886674622, 9.171406242799514398654942562421, 10.29539504942211567853248875346