Properties

Label 798.2
Level 798
Weight 2
Dimension 4113
Nonzero newspaces 32
Newform subspaces 133
Sturm bound 69120
Trace bound 18

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 32 \)
Newform subspaces: \( 133 \)
Sturm bound: \(69120\)
Trace bound: \(18\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(798))\).

Total New Old
Modular forms 18144 4113 14031
Cusp forms 16417 4113 12304
Eisenstein series 1727 0 1727

Trace form

\( 4113 q - 3 q^{2} + q^{3} + 5 q^{4} + 6 q^{5} + 9 q^{6} + 17 q^{7} - 3 q^{8} + 13 q^{9} + 6 q^{10} + 12 q^{11} + 13 q^{12} + 86 q^{13} + 21 q^{14} + 54 q^{15} - 3 q^{16} + 42 q^{17} - 27 q^{18} + 145 q^{19}+ \cdots + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(798))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
798.2.a \(\chi_{798}(1, \cdot)\) 798.2.a.a 1 1
798.2.a.b 1
798.2.a.c 1
798.2.a.d 1
798.2.a.e 1
798.2.a.f 1
798.2.a.g 1
798.2.a.h 1
798.2.a.i 1
798.2.a.j 2
798.2.a.k 2
798.2.a.l 2
798.2.a.m 2
798.2.b \(\chi_{798}(113, \cdot)\) 798.2.b.a 2 1
798.2.b.b 2
798.2.b.c 2
798.2.b.d 2
798.2.b.e 8
798.2.b.f 8
798.2.b.g 8
798.2.b.h 8
798.2.e \(\chi_{798}(265, \cdot)\) 798.2.e.a 12 1
798.2.e.b 12
798.2.f \(\chi_{798}(419, \cdot)\) 798.2.f.a 24 1
798.2.f.b 24
798.2.i \(\chi_{798}(163, \cdot)\) 798.2.i.a 14 2
798.2.i.b 14
798.2.i.c 14
798.2.i.d 14
798.2.j \(\chi_{798}(457, \cdot)\) 798.2.j.a 2 2
798.2.j.b 2
798.2.j.c 2
798.2.j.d 2
798.2.j.e 2
798.2.j.f 2
798.2.j.g 4
798.2.j.h 4
798.2.j.i 6
798.2.j.j 6
798.2.j.k 8
798.2.j.l 8
798.2.k \(\chi_{798}(463, \cdot)\) 798.2.k.a 2 2
798.2.k.b 2
798.2.k.c 2
798.2.k.d 2
798.2.k.e 2
798.2.k.f 2
798.2.k.g 2
798.2.k.h 2
798.2.k.i 2
798.2.k.j 4
798.2.k.k 4
798.2.k.l 4
798.2.k.m 4
798.2.k.n 6
798.2.l \(\chi_{798}(121, \cdot)\) 798.2.l.a 14 2
798.2.l.b 14
798.2.l.c 14
798.2.l.d 14
798.2.m \(\chi_{798}(145, \cdot)\) 798.2.m.a 28 2
798.2.m.b 28
798.2.p \(\chi_{798}(107, \cdot)\) 798.2.p.a 2 2
798.2.p.b 2
798.2.p.c 50
798.2.p.d 50
798.2.r \(\chi_{798}(83, \cdot)\) 798.2.r.a 112 2
798.2.u \(\chi_{798}(647, \cdot)\) 798.2.u.a 48 2
798.2.u.b 48
798.2.w \(\chi_{798}(311, \cdot)\) 798.2.w.a 104 2
798.2.ba \(\chi_{798}(407, \cdot)\) 798.2.ba.a 2 2
798.2.ba.b 2
798.2.ba.c 2
798.2.ba.d 2
798.2.ba.e 2
798.2.ba.f 2
798.2.ba.g 4
798.2.ba.h 4
798.2.ba.i 4
798.2.ba.j 4
798.2.ba.k 12
798.2.ba.l 12
798.2.ba.m 14
798.2.ba.n 14
798.2.bc \(\chi_{798}(31, \cdot)\) 798.2.bc.a 28 2
798.2.bc.b 28
798.2.be \(\chi_{798}(493, \cdot)\) 798.2.be.a 28 2
798.2.be.b 28
798.2.bf \(\chi_{798}(569, \cdot)\) 798.2.bf.a 52 2
798.2.bf.b 52
798.2.bh \(\chi_{798}(65, \cdot)\) 798.2.bh.a 2 2
798.2.bh.b 2
798.2.bh.c 50
798.2.bh.d 50
798.2.bj \(\chi_{798}(559, \cdot)\) 798.2.bj.a 24 2
798.2.bj.b 24
798.2.bn \(\chi_{798}(353, \cdot)\) 798.2.bn.a 104 2
798.2.bo \(\chi_{798}(43, \cdot)\) 798.2.bo.a 12 6
798.2.bo.b 12
798.2.bo.c 12
798.2.bo.d 12
798.2.bo.e 18
798.2.bo.f 18
798.2.bo.g 18
798.2.bo.h 18
798.2.bp \(\chi_{798}(289, \cdot)\) 798.2.bp.a 12 6
798.2.bp.b 12
798.2.bp.c 12
798.2.bp.d 36
798.2.bp.e 42
798.2.bp.f 42
798.2.bq \(\chi_{798}(25, \cdot)\) 798.2.bq.a 12 6
798.2.bq.b 12
798.2.bq.c 12
798.2.bq.d 36
798.2.bq.e 42
798.2.bq.f 42
798.2.bt \(\chi_{798}(5, \cdot)\) 798.2.bt.a 324 6
798.2.bu \(\chi_{798}(53, \cdot)\) 798.2.bu.a 162 6
798.2.bu.b 162
798.2.bx \(\chi_{798}(13, \cdot)\) 798.2.bx.a 84 6
798.2.bx.b 84
798.2.ca \(\chi_{798}(325, \cdot)\) 798.2.ca.a 72 6
798.2.ca.b 84
798.2.cb \(\chi_{798}(17, \cdot)\) 798.2.cb.a 324 6
798.2.cc \(\chi_{798}(317, \cdot)\) 798.2.cc.a 162 6
798.2.cc.b 162
798.2.cf \(\chi_{798}(29, \cdot)\) 798.2.cf.a 60 6
798.2.cf.b 60
798.2.cf.c 60
798.2.cf.d 60
798.2.cg \(\chi_{798}(251, \cdot)\) 798.2.cg.a 312 6
798.2.cj \(\chi_{798}(241, \cdot)\) 798.2.cj.a 72 6
798.2.cj.b 84

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(798))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(798)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(114))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(133))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(266))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(399))\)\(^{\oplus 2}\)