Properties

Label 2394.2.o.j.1261.1
Level $2394$
Weight $2$
Character 2394.1261
Analytic conductor $19.116$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2394,2,Mod(505,2394)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2394.505"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2394, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2394 = 2 \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2394.o (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,-1,3,0,2,-2,0,-3,6,0,-2,1,0,-1,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1161862439\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 798)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1261.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2394.1261
Dual form 2394.2.o.j.505.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(1.50000 + 2.59808i) q^{5} +1.00000 q^{7} -1.00000 q^{8} +(-1.50000 + 2.59808i) q^{10} +3.00000 q^{11} +(-1.00000 + 1.73205i) q^{13} +(0.500000 + 0.866025i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(1.50000 + 2.59808i) q^{17} +(-3.50000 + 2.59808i) q^{19} -3.00000 q^{20} +(1.50000 + 2.59808i) q^{22} +(-2.00000 + 3.46410i) q^{25} -2.00000 q^{26} +(-0.500000 + 0.866025i) q^{28} -4.00000 q^{31} +(0.500000 - 0.866025i) q^{32} +(-1.50000 + 2.59808i) q^{34} +(1.50000 + 2.59808i) q^{35} +5.00000 q^{37} +(-4.00000 - 1.73205i) q^{38} +(-1.50000 - 2.59808i) q^{40} +(-1.50000 - 2.59808i) q^{41} +(5.00000 + 8.66025i) q^{43} +(-1.50000 + 2.59808i) q^{44} +1.00000 q^{49} -4.00000 q^{50} +(-1.00000 - 1.73205i) q^{52} +(6.00000 - 10.3923i) q^{53} +(4.50000 + 7.79423i) q^{55} -1.00000 q^{56} +(3.00000 + 5.19615i) q^{59} +(-4.00000 + 6.92820i) q^{61} +(-2.00000 - 3.46410i) q^{62} +1.00000 q^{64} -6.00000 q^{65} +(-4.00000 + 6.92820i) q^{67} -3.00000 q^{68} +(-1.50000 + 2.59808i) q^{70} +(-7.00000 - 12.1244i) q^{73} +(2.50000 + 4.33013i) q^{74} +(-0.500000 - 4.33013i) q^{76} +3.00000 q^{77} +(2.00000 + 3.46410i) q^{79} +(1.50000 - 2.59808i) q^{80} +(1.50000 - 2.59808i) q^{82} +(-4.50000 + 7.79423i) q^{85} +(-5.00000 + 8.66025i) q^{86} -3.00000 q^{88} +(-1.50000 + 2.59808i) q^{89} +(-1.00000 + 1.73205i) q^{91} +(-12.0000 - 5.19615i) q^{95} +(-4.00000 - 6.92820i) q^{97} +(0.500000 + 0.866025i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} + 3 q^{5} + 2 q^{7} - 2 q^{8} - 3 q^{10} + 6 q^{11} - 2 q^{13} + q^{14} - q^{16} + 3 q^{17} - 7 q^{19} - 6 q^{20} + 3 q^{22} - 4 q^{25} - 4 q^{26} - q^{28} - 8 q^{31} + q^{32}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2394\mathbb{Z}\right)^\times\).

\(n\) \(533\) \(1009\) \(1711\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.50000 + 2.59808i 0.670820 + 1.16190i 0.977672 + 0.210138i \(0.0673912\pi\)
−0.306851 + 0.951757i \(0.599275\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.50000 + 2.59808i −0.474342 + 0.821584i
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) −1.00000 + 1.73205i −0.277350 + 0.480384i −0.970725 0.240192i \(-0.922790\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0.500000 + 0.866025i 0.133631 + 0.231455i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 0 0
\(19\) −3.50000 + 2.59808i −0.802955 + 0.596040i
\(20\) −3.00000 −0.670820
\(21\) 0 0
\(22\) 1.50000 + 2.59808i 0.319801 + 0.553912i
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) −2.00000 + 3.46410i −0.400000 + 0.692820i
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) −0.500000 + 0.866025i −0.0944911 + 0.163663i
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) −1.50000 + 2.59808i −0.257248 + 0.445566i
\(35\) 1.50000 + 2.59808i 0.253546 + 0.439155i
\(36\) 0 0
\(37\) 5.00000 0.821995 0.410997 0.911636i \(-0.365181\pi\)
0.410997 + 0.911636i \(0.365181\pi\)
\(38\) −4.00000 1.73205i −0.648886 0.280976i
\(39\) 0 0
\(40\) −1.50000 2.59808i −0.237171 0.410792i
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) 0 0
\(43\) 5.00000 + 8.66025i 0.762493 + 1.32068i 0.941562 + 0.336840i \(0.109358\pi\)
−0.179069 + 0.983836i \(0.557309\pi\)
\(44\) −1.50000 + 2.59808i −0.226134 + 0.391675i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −4.00000 −0.565685
\(51\) 0 0
\(52\) −1.00000 1.73205i −0.138675 0.240192i
\(53\) 6.00000 10.3923i 0.824163 1.42749i −0.0783936 0.996922i \(-0.524979\pi\)
0.902557 0.430570i \(-0.141688\pi\)
\(54\) 0 0
\(55\) 4.50000 + 7.79423i 0.606780 + 1.05097i
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) 0 0
\(59\) 3.00000 + 5.19615i 0.390567 + 0.676481i 0.992524 0.122047i \(-0.0389457\pi\)
−0.601958 + 0.798528i \(0.705612\pi\)
\(60\) 0 0
\(61\) −4.00000 + 6.92820i −0.512148 + 0.887066i 0.487753 + 0.872982i \(0.337817\pi\)
−0.999901 + 0.0140840i \(0.995517\pi\)
\(62\) −2.00000 3.46410i −0.254000 0.439941i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −6.00000 −0.744208
\(66\) 0 0
\(67\) −4.00000 + 6.92820i −0.488678 + 0.846415i −0.999915 0.0130248i \(-0.995854\pi\)
0.511237 + 0.859440i \(0.329187\pi\)
\(68\) −3.00000 −0.363803
\(69\) 0 0
\(70\) −1.50000 + 2.59808i −0.179284 + 0.310530i
\(71\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(72\) 0 0
\(73\) −7.00000 12.1244i −0.819288 1.41905i −0.906208 0.422833i \(-0.861036\pi\)
0.0869195 0.996215i \(-0.472298\pi\)
\(74\) 2.50000 + 4.33013i 0.290619 + 0.503367i
\(75\) 0 0
\(76\) −0.500000 4.33013i −0.0573539 0.496700i
\(77\) 3.00000 0.341882
\(78\) 0 0
\(79\) 2.00000 + 3.46410i 0.225018 + 0.389742i 0.956325 0.292306i \(-0.0944227\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) 1.50000 2.59808i 0.167705 0.290474i
\(81\) 0 0
\(82\) 1.50000 2.59808i 0.165647 0.286910i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) −4.50000 + 7.79423i −0.488094 + 0.845403i
\(86\) −5.00000 + 8.66025i −0.539164 + 0.933859i
\(87\) 0 0
\(88\) −3.00000 −0.319801
\(89\) −1.50000 + 2.59808i −0.159000 + 0.275396i −0.934508 0.355942i \(-0.884160\pi\)
0.775509 + 0.631337i \(0.217494\pi\)
\(90\) 0 0
\(91\) −1.00000 + 1.73205i −0.104828 + 0.181568i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −12.0000 5.19615i −1.23117 0.533114i
\(96\) 0 0
\(97\) −4.00000 6.92820i −0.406138 0.703452i 0.588315 0.808632i \(-0.299792\pi\)
−0.994453 + 0.105180i \(0.966458\pi\)
\(98\) 0.500000 + 0.866025i 0.0505076 + 0.0874818i
\(99\) 0 0
\(100\) −2.00000 3.46410i −0.200000 0.346410i
\(101\) −1.50000 + 2.59808i −0.149256 + 0.258518i −0.930953 0.365140i \(-0.881021\pi\)
0.781697 + 0.623658i \(0.214354\pi\)
\(102\) 0 0
\(103\) −1.00000 −0.0985329 −0.0492665 0.998786i \(-0.515688\pi\)
−0.0492665 + 0.998786i \(0.515688\pi\)
\(104\) 1.00000 1.73205i 0.0980581 0.169842i
\(105\) 0 0
\(106\) 12.0000 1.16554
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) −5.50000 9.52628i −0.526804 0.912452i −0.999512 0.0312328i \(-0.990057\pi\)
0.472708 0.881219i \(-0.343277\pi\)
\(110\) −4.50000 + 7.79423i −0.429058 + 0.743151i
\(111\) 0 0
\(112\) −0.500000 0.866025i −0.0472456 0.0818317i
\(113\) −12.0000 −1.12887 −0.564433 0.825479i \(-0.690905\pi\)
−0.564433 + 0.825479i \(0.690905\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −3.00000 + 5.19615i −0.276172 + 0.478345i
\(119\) 1.50000 + 2.59808i 0.137505 + 0.238165i
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) −8.00000 −0.724286
\(123\) 0 0
\(124\) 2.00000 3.46410i 0.179605 0.311086i
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −1.00000 + 1.73205i −0.0887357 + 0.153695i −0.906977 0.421180i \(-0.861616\pi\)
0.818241 + 0.574875i \(0.194949\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −3.00000 5.19615i −0.263117 0.455733i
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) −3.50000 + 2.59808i −0.303488 + 0.225282i
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) −1.50000 2.59808i −0.128624 0.222783i
\(137\) 3.00000 5.19615i 0.256307 0.443937i −0.708942 0.705266i \(-0.750827\pi\)
0.965250 + 0.261329i \(0.0841608\pi\)
\(138\) 0 0
\(139\) −2.50000 + 4.33013i −0.212047 + 0.367277i −0.952355 0.304991i \(-0.901346\pi\)
0.740308 + 0.672268i \(0.234680\pi\)
\(140\) −3.00000 −0.253546
\(141\) 0 0
\(142\) 0 0
\(143\) −3.00000 + 5.19615i −0.250873 + 0.434524i
\(144\) 0 0
\(145\) 0 0
\(146\) 7.00000 12.1244i 0.579324 1.00342i
\(147\) 0 0
\(148\) −2.50000 + 4.33013i −0.205499 + 0.355934i
\(149\) 9.00000 + 15.5885i 0.737309 + 1.27706i 0.953703 + 0.300750i \(0.0972370\pi\)
−0.216394 + 0.976306i \(0.569430\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 3.50000 2.59808i 0.283887 0.210732i
\(153\) 0 0
\(154\) 1.50000 + 2.59808i 0.120873 + 0.209359i
\(155\) −6.00000 10.3923i −0.481932 0.834730i
\(156\) 0 0
\(157\) −7.00000 12.1244i −0.558661 0.967629i −0.997609 0.0691164i \(-0.977982\pi\)
0.438948 0.898513i \(-0.355351\pi\)
\(158\) −2.00000 + 3.46410i −0.159111 + 0.275589i
\(159\) 0 0
\(160\) 3.00000 0.237171
\(161\) 0 0
\(162\) 0 0
\(163\) −22.0000 −1.72317 −0.861586 0.507611i \(-0.830529\pi\)
−0.861586 + 0.507611i \(0.830529\pi\)
\(164\) 3.00000 0.234261
\(165\) 0 0
\(166\) 0 0
\(167\) 3.00000 5.19615i 0.232147 0.402090i −0.726293 0.687386i \(-0.758758\pi\)
0.958440 + 0.285295i \(0.0920916\pi\)
\(168\) 0 0
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) −9.00000 −0.690268
\(171\) 0 0
\(172\) −10.0000 −0.762493
\(173\) 3.00000 + 5.19615i 0.228086 + 0.395056i 0.957241 0.289292i \(-0.0934200\pi\)
−0.729155 + 0.684349i \(0.760087\pi\)
\(174\) 0 0
\(175\) −2.00000 + 3.46410i −0.151186 + 0.261861i
\(176\) −1.50000 2.59808i −0.113067 0.195837i
\(177\) 0 0
\(178\) −3.00000 −0.224860
\(179\) 3.00000 0.224231 0.112115 0.993695i \(-0.464237\pi\)
0.112115 + 0.993695i \(0.464237\pi\)
\(180\) 0 0
\(181\) 8.00000 13.8564i 0.594635 1.02994i −0.398963 0.916967i \(-0.630630\pi\)
0.993598 0.112972i \(-0.0360369\pi\)
\(182\) −2.00000 −0.148250
\(183\) 0 0
\(184\) 0 0
\(185\) 7.50000 + 12.9904i 0.551411 + 0.955072i
\(186\) 0 0
\(187\) 4.50000 + 7.79423i 0.329073 + 0.569970i
\(188\) 0 0
\(189\) 0 0
\(190\) −1.50000 12.9904i −0.108821 0.942421i
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) 0.500000 + 0.866025i 0.0359908 + 0.0623379i 0.883460 0.468507i \(-0.155208\pi\)
−0.847469 + 0.530845i \(0.821875\pi\)
\(194\) 4.00000 6.92820i 0.287183 0.497416i
\(195\) 0 0
\(196\) −0.500000 + 0.866025i −0.0357143 + 0.0618590i
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) −4.00000 + 6.92820i −0.283552 + 0.491127i −0.972257 0.233915i \(-0.924846\pi\)
0.688705 + 0.725042i \(0.258180\pi\)
\(200\) 2.00000 3.46410i 0.141421 0.244949i
\(201\) 0 0
\(202\) −3.00000 −0.211079
\(203\) 0 0
\(204\) 0 0
\(205\) 4.50000 7.79423i 0.314294 0.544373i
\(206\) −0.500000 0.866025i −0.0348367 0.0603388i
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) −10.5000 + 7.79423i −0.726300 + 0.539138i
\(210\) 0 0
\(211\) −10.0000 17.3205i −0.688428 1.19239i −0.972346 0.233544i \(-0.924968\pi\)
0.283918 0.958849i \(-0.408366\pi\)
\(212\) 6.00000 + 10.3923i 0.412082 + 0.713746i
\(213\) 0 0
\(214\) 6.00000 + 10.3923i 0.410152 + 0.710403i
\(215\) −15.0000 + 25.9808i −1.02299 + 1.77187i
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 5.50000 9.52628i 0.372507 0.645201i
\(219\) 0 0
\(220\) −9.00000 −0.606780
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) 0.500000 + 0.866025i 0.0334825 + 0.0579934i 0.882281 0.470723i \(-0.156007\pi\)
−0.848799 + 0.528716i \(0.822674\pi\)
\(224\) 0.500000 0.866025i 0.0334077 0.0578638i
\(225\) 0 0
\(226\) −6.00000 10.3923i −0.399114 0.691286i
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) −28.0000 −1.85029 −0.925146 0.379611i \(-0.876058\pi\)
−0.925146 + 0.379611i \(0.876058\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.0000 + 20.7846i 0.786146 + 1.36165i 0.928312 + 0.371802i \(0.121260\pi\)
−0.142166 + 0.989843i \(0.545407\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −6.00000 −0.390567
\(237\) 0 0
\(238\) −1.50000 + 2.59808i −0.0972306 + 0.168408i
\(239\) 15.0000 0.970269 0.485135 0.874439i \(-0.338771\pi\)
0.485135 + 0.874439i \(0.338771\pi\)
\(240\) 0 0
\(241\) 14.0000 24.2487i 0.901819 1.56200i 0.0766885 0.997055i \(-0.475565\pi\)
0.825131 0.564942i \(-0.191101\pi\)
\(242\) −1.00000 1.73205i −0.0642824 0.111340i
\(243\) 0 0
\(244\) −4.00000 6.92820i −0.256074 0.443533i
\(245\) 1.50000 + 2.59808i 0.0958315 + 0.165985i
\(246\) 0 0
\(247\) −1.00000 8.66025i −0.0636285 0.551039i
\(248\) 4.00000 0.254000
\(249\) 0 0
\(250\) 1.50000 + 2.59808i 0.0948683 + 0.164317i
\(251\) 3.00000 5.19615i 0.189358 0.327978i −0.755678 0.654943i \(-0.772693\pi\)
0.945036 + 0.326965i \(0.106026\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −2.00000 −0.125491
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −7.50000 + 12.9904i −0.467837 + 0.810318i −0.999325 0.0367485i \(-0.988300\pi\)
0.531487 + 0.847066i \(0.321633\pi\)
\(258\) 0 0
\(259\) 5.00000 0.310685
\(260\) 3.00000 5.19615i 0.186052 0.322252i
\(261\) 0 0
\(262\) 0 0
\(263\) −10.5000 18.1865i −0.647458 1.12143i −0.983728 0.179664i \(-0.942499\pi\)
0.336270 0.941766i \(-0.390834\pi\)
\(264\) 0 0
\(265\) 36.0000 2.21146
\(266\) −4.00000 1.73205i −0.245256 0.106199i
\(267\) 0 0
\(268\) −4.00000 6.92820i −0.244339 0.423207i
\(269\) 7.50000 + 12.9904i 0.457283 + 0.792038i 0.998816 0.0486418i \(-0.0154893\pi\)
−0.541533 + 0.840679i \(0.682156\pi\)
\(270\) 0 0
\(271\) 12.5000 + 21.6506i 0.759321 + 1.31518i 0.943197 + 0.332233i \(0.107802\pi\)
−0.183876 + 0.982949i \(0.558865\pi\)
\(272\) 1.50000 2.59808i 0.0909509 0.157532i
\(273\) 0 0
\(274\) 6.00000 0.362473
\(275\) −6.00000 + 10.3923i −0.361814 + 0.626680i
\(276\) 0 0
\(277\) −19.0000 −1.14160 −0.570800 0.821089i \(-0.693367\pi\)
−0.570800 + 0.821089i \(0.693367\pi\)
\(278\) −5.00000 −0.299880
\(279\) 0 0
\(280\) −1.50000 2.59808i −0.0896421 0.155265i
\(281\) 12.0000 20.7846i 0.715860 1.23991i −0.246767 0.969075i \(-0.579368\pi\)
0.962627 0.270831i \(-0.0872985\pi\)
\(282\) 0 0
\(283\) 15.5000 + 26.8468i 0.921379 + 1.59588i 0.797283 + 0.603606i \(0.206270\pi\)
0.124096 + 0.992270i \(0.460397\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −6.00000 −0.354787
\(287\) −1.50000 2.59808i −0.0885422 0.153360i
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 0 0
\(291\) 0 0
\(292\) 14.0000 0.819288
\(293\) 27.0000 1.57736 0.788678 0.614806i \(-0.210766\pi\)
0.788678 + 0.614806i \(0.210766\pi\)
\(294\) 0 0
\(295\) −9.00000 + 15.5885i −0.524000 + 0.907595i
\(296\) −5.00000 −0.290619
\(297\) 0 0
\(298\) −9.00000 + 15.5885i −0.521356 + 0.903015i
\(299\) 0 0
\(300\) 0 0
\(301\) 5.00000 + 8.66025i 0.288195 + 0.499169i
\(302\) 4.00000 + 6.92820i 0.230174 + 0.398673i
\(303\) 0 0
\(304\) 4.00000 + 1.73205i 0.229416 + 0.0993399i
\(305\) −24.0000 −1.37424
\(306\) 0 0
\(307\) 8.00000 + 13.8564i 0.456584 + 0.790827i 0.998778 0.0494267i \(-0.0157394\pi\)
−0.542194 + 0.840254i \(0.682406\pi\)
\(308\) −1.50000 + 2.59808i −0.0854704 + 0.148039i
\(309\) 0 0
\(310\) 6.00000 10.3923i 0.340777 0.590243i
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 0 0
\(313\) −4.00000 + 6.92820i −0.226093 + 0.391605i −0.956647 0.291250i \(-0.905929\pi\)
0.730554 + 0.682855i \(0.239262\pi\)
\(314\) 7.00000 12.1244i 0.395033 0.684217i
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) 12.0000 20.7846i 0.673987 1.16738i −0.302777 0.953062i \(-0.597914\pi\)
0.976764 0.214318i \(-0.0687530\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.50000 + 2.59808i 0.0838525 + 0.145237i
\(321\) 0 0
\(322\) 0 0
\(323\) −12.0000 5.19615i −0.667698 0.289122i
\(324\) 0 0
\(325\) −4.00000 6.92820i −0.221880 0.384308i
\(326\) −11.0000 19.0526i −0.609234 1.05522i
\(327\) 0 0
\(328\) 1.50000 + 2.59808i 0.0828236 + 0.143455i
\(329\) 0 0
\(330\) 0 0
\(331\) 32.0000 1.75888 0.879440 0.476011i \(-0.157918\pi\)
0.879440 + 0.476011i \(0.157918\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 6.00000 0.328305
\(335\) −24.0000 −1.31126
\(336\) 0 0
\(337\) −7.00000 12.1244i −0.381314 0.660456i 0.609936 0.792451i \(-0.291195\pi\)
−0.991250 + 0.131995i \(0.957862\pi\)
\(338\) −4.50000 + 7.79423i −0.244768 + 0.423950i
\(339\) 0 0
\(340\) −4.50000 7.79423i −0.244047 0.422701i
\(341\) −12.0000 −0.649836
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) −5.00000 8.66025i −0.269582 0.466930i
\(345\) 0 0
\(346\) −3.00000 + 5.19615i −0.161281 + 0.279347i
\(347\) −6.00000 10.3923i −0.322097 0.557888i 0.658824 0.752297i \(-0.271054\pi\)
−0.980921 + 0.194409i \(0.937721\pi\)
\(348\) 0 0
\(349\) 20.0000 1.07058 0.535288 0.844670i \(-0.320203\pi\)
0.535288 + 0.844670i \(0.320203\pi\)
\(350\) −4.00000 −0.213809
\(351\) 0 0
\(352\) 1.50000 2.59808i 0.0799503 0.138478i
\(353\) 33.0000 1.75641 0.878206 0.478282i \(-0.158740\pi\)
0.878206 + 0.478282i \(0.158740\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −1.50000 2.59808i −0.0794998 0.137698i
\(357\) 0 0
\(358\) 1.50000 + 2.59808i 0.0792775 + 0.137313i
\(359\) 12.0000 + 20.7846i 0.633336 + 1.09697i 0.986865 + 0.161546i \(0.0516481\pi\)
−0.353529 + 0.935423i \(0.615019\pi\)
\(360\) 0 0
\(361\) 5.50000 18.1865i 0.289474 0.957186i
\(362\) 16.0000 0.840941
\(363\) 0 0
\(364\) −1.00000 1.73205i −0.0524142 0.0907841i
\(365\) 21.0000 36.3731i 1.09919 1.90385i
\(366\) 0 0
\(367\) 0.500000 0.866025i 0.0260998 0.0452062i −0.852680 0.522433i \(-0.825025\pi\)
0.878780 + 0.477227i \(0.158358\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −7.50000 + 12.9904i −0.389906 + 0.675338i
\(371\) 6.00000 10.3923i 0.311504 0.539542i
\(372\) 0 0
\(373\) 23.0000 1.19089 0.595447 0.803394i \(-0.296975\pi\)
0.595447 + 0.803394i \(0.296975\pi\)
\(374\) −4.50000 + 7.79423i −0.232689 + 0.403030i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 10.5000 7.79423i 0.538639 0.399835i
\(381\) 0 0
\(382\) 6.00000 + 10.3923i 0.306987 + 0.531717i
\(383\) −6.00000 10.3923i −0.306586 0.531022i 0.671027 0.741433i \(-0.265853\pi\)
−0.977613 + 0.210411i \(0.932520\pi\)
\(384\) 0 0
\(385\) 4.50000 + 7.79423i 0.229341 + 0.397231i
\(386\) −0.500000 + 0.866025i −0.0254493 + 0.0440795i
\(387\) 0 0
\(388\) 8.00000 0.406138
\(389\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) 6.00000 + 10.3923i 0.302276 + 0.523557i
\(395\) −6.00000 + 10.3923i −0.301893 + 0.522894i
\(396\) 0 0
\(397\) −1.00000 1.73205i −0.0501886 0.0869291i 0.839840 0.542834i \(-0.182649\pi\)
−0.890028 + 0.455905i \(0.849316\pi\)
\(398\) −8.00000 −0.401004
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) −18.0000 31.1769i −0.898877 1.55690i −0.828932 0.559350i \(-0.811051\pi\)
−0.0699455 0.997551i \(-0.522283\pi\)
\(402\) 0 0
\(403\) 4.00000 6.92820i 0.199254 0.345118i
\(404\) −1.50000 2.59808i −0.0746278 0.129259i
\(405\) 0 0
\(406\) 0 0
\(407\) 15.0000 0.743522
\(408\) 0 0
\(409\) 20.0000 34.6410i 0.988936 1.71289i 0.366002 0.930614i \(-0.380726\pi\)
0.622935 0.782274i \(-0.285940\pi\)
\(410\) 9.00000 0.444478
\(411\) 0 0
\(412\) 0.500000 0.866025i 0.0246332 0.0426660i
\(413\) 3.00000 + 5.19615i 0.147620 + 0.255686i
\(414\) 0 0
\(415\) 0 0
\(416\) 1.00000 + 1.73205i 0.0490290 + 0.0849208i
\(417\) 0 0
\(418\) −12.0000 5.19615i −0.586939 0.254152i
\(419\) 6.00000 0.293119 0.146560 0.989202i \(-0.453180\pi\)
0.146560 + 0.989202i \(0.453180\pi\)
\(420\) 0 0
\(421\) 9.50000 + 16.4545i 0.463002 + 0.801942i 0.999109 0.0422075i \(-0.0134391\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) 10.0000 17.3205i 0.486792 0.843149i
\(423\) 0 0
\(424\) −6.00000 + 10.3923i −0.291386 + 0.504695i
\(425\) −12.0000 −0.582086
\(426\) 0 0
\(427\) −4.00000 + 6.92820i −0.193574 + 0.335279i
\(428\) −6.00000 + 10.3923i −0.290021 + 0.502331i
\(429\) 0 0
\(430\) −30.0000 −1.44673
\(431\) −16.5000 + 28.5788i −0.794777 + 1.37659i 0.128204 + 0.991748i \(0.459079\pi\)
−0.922981 + 0.384846i \(0.874254\pi\)
\(432\) 0 0
\(433\) 8.00000 13.8564i 0.384455 0.665896i −0.607238 0.794520i \(-0.707723\pi\)
0.991693 + 0.128624i \(0.0410559\pi\)
\(434\) −2.00000 3.46410i −0.0960031 0.166282i
\(435\) 0 0
\(436\) 11.0000 0.526804
\(437\) 0 0
\(438\) 0 0
\(439\) −11.5000 19.9186i −0.548865 0.950662i −0.998353 0.0573756i \(-0.981727\pi\)
0.449488 0.893287i \(-0.351607\pi\)
\(440\) −4.50000 7.79423i −0.214529 0.371575i
\(441\) 0 0
\(442\) −3.00000 5.19615i −0.142695 0.247156i
\(443\) 18.0000 31.1769i 0.855206 1.48126i −0.0212481 0.999774i \(-0.506764\pi\)
0.876454 0.481486i \(-0.159903\pi\)
\(444\) 0 0
\(445\) −9.00000 −0.426641
\(446\) −0.500000 + 0.866025i −0.0236757 + 0.0410075i
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) −4.50000 7.79423i −0.211897 0.367016i
\(452\) 6.00000 10.3923i 0.282216 0.488813i
\(453\) 0 0
\(454\) −6.00000 10.3923i −0.281594 0.487735i
\(455\) −6.00000 −0.281284
\(456\) 0 0
\(457\) 29.0000 1.35656 0.678281 0.734802i \(-0.262725\pi\)
0.678281 + 0.734802i \(0.262725\pi\)
\(458\) −14.0000 24.2487i −0.654177 1.13307i
\(459\) 0 0
\(460\) 0 0
\(461\) −7.50000 12.9904i −0.349310 0.605022i 0.636817 0.771015i \(-0.280251\pi\)
−0.986127 + 0.165992i \(0.946917\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −12.0000 + 20.7846i −0.555889 + 0.962828i
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 0 0
\(469\) −4.00000 + 6.92820i −0.184703 + 0.319915i
\(470\) 0 0
\(471\) 0 0
\(472\) −3.00000 5.19615i −0.138086 0.239172i
\(473\) 15.0000 + 25.9808i 0.689701 + 1.19460i
\(474\) 0 0
\(475\) −2.00000 17.3205i −0.0917663 0.794719i
\(476\) −3.00000 −0.137505
\(477\) 0 0
\(478\) 7.50000 + 12.9904i 0.343042 + 0.594166i
\(479\) 15.0000 25.9808i 0.685367 1.18709i −0.287954 0.957644i \(-0.592975\pi\)
0.973321 0.229447i \(-0.0736918\pi\)
\(480\) 0 0
\(481\) −5.00000 + 8.66025i −0.227980 + 0.394874i
\(482\) 28.0000 1.27537
\(483\) 0 0
\(484\) 1.00000 1.73205i 0.0454545 0.0787296i
\(485\) 12.0000 20.7846i 0.544892 0.943781i
\(486\) 0 0
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) 4.00000 6.92820i 0.181071 0.313625i
\(489\) 0 0
\(490\) −1.50000 + 2.59808i −0.0677631 + 0.117369i
\(491\) −16.5000 28.5788i −0.744635 1.28974i −0.950365 0.311136i \(-0.899290\pi\)
0.205731 0.978609i \(-0.434043\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 7.00000 5.19615i 0.314945 0.233786i
\(495\) 0 0
\(496\) 2.00000 + 3.46410i 0.0898027 + 0.155543i
\(497\) 0 0
\(498\) 0 0
\(499\) −10.0000 17.3205i −0.447661 0.775372i 0.550572 0.834788i \(-0.314410\pi\)
−0.998233 + 0.0594153i \(0.981076\pi\)
\(500\) −1.50000 + 2.59808i −0.0670820 + 0.116190i
\(501\) 0 0
\(502\) 6.00000 0.267793
\(503\) −21.0000 + 36.3731i −0.936344 + 1.62179i −0.164124 + 0.986440i \(0.552480\pi\)
−0.772220 + 0.635355i \(0.780854\pi\)
\(504\) 0 0
\(505\) −9.00000 −0.400495
\(506\) 0 0
\(507\) 0 0
\(508\) −1.00000 1.73205i −0.0443678 0.0768473i
\(509\) −4.50000 + 7.79423i −0.199459 + 0.345473i −0.948353 0.317217i \(-0.897252\pi\)
0.748894 + 0.662690i \(0.230585\pi\)
\(510\) 0 0
\(511\) −7.00000 12.1244i −0.309662 0.536350i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −15.0000 −0.661622
\(515\) −1.50000 2.59808i −0.0660979 0.114485i
\(516\) 0 0
\(517\) 0 0
\(518\) 2.50000 + 4.33013i 0.109844 + 0.190255i
\(519\) 0 0
\(520\) 6.00000 0.263117
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 0 0
\(523\) −14.5000 + 25.1147i −0.634041 + 1.09819i 0.352677 + 0.935745i \(0.385272\pi\)
−0.986718 + 0.162446i \(0.948062\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 10.5000 18.1865i 0.457822 0.792971i
\(527\) −6.00000 10.3923i −0.261364 0.452696i
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 18.0000 + 31.1769i 0.781870 + 1.35424i
\(531\) 0 0
\(532\) −0.500000 4.33013i −0.0216777 0.187735i
\(533\) 6.00000 0.259889
\(534\) 0 0
\(535\) 18.0000 + 31.1769i 0.778208 + 1.34790i
\(536\) 4.00000 6.92820i 0.172774 0.299253i
\(537\) 0 0
\(538\) −7.50000 + 12.9904i −0.323348 + 0.560055i
\(539\) 3.00000 0.129219
\(540\) 0 0
\(541\) 15.5000 26.8468i 0.666397 1.15423i −0.312507 0.949915i \(-0.601169\pi\)
0.978905 0.204318i \(-0.0654977\pi\)
\(542\) −12.5000 + 21.6506i −0.536921 + 0.929974i
\(543\) 0 0
\(544\) 3.00000 0.128624
\(545\) 16.5000 28.5788i 0.706782 1.22418i
\(546\) 0 0
\(547\) 5.00000 8.66025i 0.213785 0.370286i −0.739111 0.673583i \(-0.764754\pi\)
0.952896 + 0.303298i \(0.0980876\pi\)
\(548\) 3.00000 + 5.19615i 0.128154 + 0.221969i
\(549\) 0 0
\(550\) −12.0000 −0.511682
\(551\) 0 0
\(552\) 0 0
\(553\) 2.00000 + 3.46410i 0.0850487 + 0.147309i
\(554\) −9.50000 16.4545i −0.403616 0.699084i
\(555\) 0 0
\(556\) −2.50000 4.33013i −0.106024 0.183638i
\(557\) −6.00000 + 10.3923i −0.254228 + 0.440336i −0.964686 0.263404i \(-0.915155\pi\)
0.710457 + 0.703740i \(0.248488\pi\)
\(558\) 0 0
\(559\) −20.0000 −0.845910
\(560\) 1.50000 2.59808i 0.0633866 0.109789i
\(561\) 0 0
\(562\) 24.0000 1.01238
\(563\) −12.0000 −0.505740 −0.252870 0.967500i \(-0.581374\pi\)
−0.252870 + 0.967500i \(0.581374\pi\)
\(564\) 0 0
\(565\) −18.0000 31.1769i −0.757266 1.31162i
\(566\) −15.5000 + 26.8468i −0.651514 + 1.12845i
\(567\) 0 0
\(568\) 0 0
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) 44.0000 1.84134 0.920671 0.390339i \(-0.127642\pi\)
0.920671 + 0.390339i \(0.127642\pi\)
\(572\) −3.00000 5.19615i −0.125436 0.217262i
\(573\) 0 0
\(574\) 1.50000 2.59808i 0.0626088 0.108442i
\(575\) 0 0
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 8.00000 0.332756
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 18.0000 31.1769i 0.745484 1.29122i
\(584\) 7.00000 + 12.1244i 0.289662 + 0.501709i
\(585\) 0 0
\(586\) 13.5000 + 23.3827i 0.557680 + 0.965930i
\(587\) 21.0000 + 36.3731i 0.866763 + 1.50128i 0.865286 + 0.501278i \(0.167137\pi\)
0.00147660 + 0.999999i \(0.499530\pi\)
\(588\) 0 0
\(589\) 14.0000 10.3923i 0.576860 0.428207i
\(590\) −18.0000 −0.741048
\(591\) 0 0
\(592\) −2.50000 4.33013i −0.102749 0.177967i
\(593\) 7.50000 12.9904i 0.307988 0.533451i −0.669934 0.742421i \(-0.733678\pi\)
0.977922 + 0.208970i \(0.0670110\pi\)
\(594\) 0 0
\(595\) −4.50000 + 7.79423i −0.184482 + 0.319532i
\(596\) −18.0000 −0.737309
\(597\) 0 0
\(598\) 0 0
\(599\) −1.50000 + 2.59808i −0.0612883 + 0.106155i −0.895042 0.445983i \(-0.852854\pi\)
0.833753 + 0.552137i \(0.186188\pi\)
\(600\) 0 0
\(601\) 44.0000 1.79480 0.897399 0.441221i \(-0.145454\pi\)
0.897399 + 0.441221i \(0.145454\pi\)
\(602\) −5.00000 + 8.66025i −0.203785 + 0.352966i
\(603\) 0 0
\(604\) −4.00000 + 6.92820i −0.162758 + 0.281905i
\(605\) −3.00000 5.19615i −0.121967 0.211254i
\(606\) 0 0
\(607\) −40.0000 −1.62355 −0.811775 0.583970i \(-0.801498\pi\)
−0.811775 + 0.583970i \(0.801498\pi\)
\(608\) 0.500000 + 4.33013i 0.0202777 + 0.175610i
\(609\) 0 0
\(610\) −12.0000 20.7846i −0.485866 0.841544i
\(611\) 0 0
\(612\) 0 0
\(613\) 3.50000 + 6.06218i 0.141364 + 0.244849i 0.928010 0.372554i \(-0.121518\pi\)
−0.786647 + 0.617403i \(0.788185\pi\)
\(614\) −8.00000 + 13.8564i −0.322854 + 0.559199i
\(615\) 0 0
\(616\) −3.00000 −0.120873
\(617\) −15.0000 + 25.9808i −0.603877 + 1.04595i 0.388351 + 0.921512i \(0.373045\pi\)
−0.992228 + 0.124434i \(0.960288\pi\)
\(618\) 0 0
\(619\) −28.0000 −1.12542 −0.562708 0.826656i \(-0.690240\pi\)
−0.562708 + 0.826656i \(0.690240\pi\)
\(620\) 12.0000 0.481932
\(621\) 0 0
\(622\) −9.00000 15.5885i −0.360867 0.625040i
\(623\) −1.50000 + 2.59808i −0.0600962 + 0.104090i
\(624\) 0 0
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) −8.00000 −0.319744
\(627\) 0 0
\(628\) 14.0000 0.558661
\(629\) 7.50000 + 12.9904i 0.299045 + 0.517960i
\(630\) 0 0
\(631\) 11.0000 19.0526i 0.437903 0.758470i −0.559625 0.828746i \(-0.689055\pi\)
0.997528 + 0.0702759i \(0.0223880\pi\)
\(632\) −2.00000 3.46410i −0.0795557 0.137795i
\(633\) 0 0
\(634\) 24.0000 0.953162
\(635\) −6.00000 −0.238103
\(636\) 0 0
\(637\) −1.00000 + 1.73205i −0.0396214 + 0.0686264i
\(638\) 0 0
\(639\) 0 0
\(640\) −1.50000 + 2.59808i −0.0592927 + 0.102698i
\(641\) −12.0000 20.7846i −0.473972 0.820943i 0.525584 0.850741i \(-0.323847\pi\)
−0.999556 + 0.0297987i \(0.990513\pi\)
\(642\) 0 0
\(643\) 12.5000 + 21.6506i 0.492952 + 0.853818i 0.999967 0.00811944i \(-0.00258453\pi\)
−0.507015 + 0.861937i \(0.669251\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.50000 12.9904i −0.0590167 0.511100i
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 0 0
\(649\) 9.00000 + 15.5885i 0.353281 + 0.611900i
\(650\) 4.00000 6.92820i 0.156893 0.271746i
\(651\) 0 0
\(652\) 11.0000 19.0526i 0.430793 0.746156i
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −1.50000 + 2.59808i −0.0585652 + 0.101438i
\(657\) 0 0
\(658\) 0 0
\(659\) −4.50000 + 7.79423i −0.175295 + 0.303620i −0.940263 0.340448i \(-0.889421\pi\)
0.764968 + 0.644068i \(0.222755\pi\)
\(660\) 0 0
\(661\) −7.00000 + 12.1244i −0.272268 + 0.471583i −0.969442 0.245319i \(-0.921107\pi\)
0.697174 + 0.716902i \(0.254441\pi\)
\(662\) 16.0000 + 27.7128i 0.621858 + 1.07709i
\(663\) 0 0
\(664\) 0 0
\(665\) −12.0000 5.19615i −0.465340 0.201498i
\(666\) 0 0
\(667\) 0 0
\(668\) 3.00000 + 5.19615i 0.116073 + 0.201045i
\(669\) 0 0
\(670\) −12.0000 20.7846i −0.463600 0.802980i
\(671\) −12.0000 + 20.7846i −0.463255 + 0.802381i
\(672\) 0 0
\(673\) 5.00000 0.192736 0.0963679 0.995346i \(-0.469277\pi\)
0.0963679 + 0.995346i \(0.469277\pi\)
\(674\) 7.00000 12.1244i 0.269630 0.467013i
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 3.00000 0.115299 0.0576497 0.998337i \(-0.481639\pi\)
0.0576497 + 0.998337i \(0.481639\pi\)
\(678\) 0 0
\(679\) −4.00000 6.92820i −0.153506 0.265880i
\(680\) 4.50000 7.79423i 0.172567 0.298895i
\(681\) 0 0
\(682\) −6.00000 10.3923i −0.229752 0.397942i
\(683\) 15.0000 0.573959 0.286980 0.957937i \(-0.407349\pi\)
0.286980 + 0.957937i \(0.407349\pi\)
\(684\) 0 0
\(685\) 18.0000 0.687745
\(686\) 0.500000 + 0.866025i 0.0190901 + 0.0330650i
\(687\) 0 0
\(688\) 5.00000 8.66025i 0.190623 0.330169i
\(689\) 12.0000 + 20.7846i 0.457164 + 0.791831i
\(690\) 0 0
\(691\) −19.0000 −0.722794 −0.361397 0.932412i \(-0.617700\pi\)
−0.361397 + 0.932412i \(0.617700\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) 6.00000 10.3923i 0.227757 0.394486i
\(695\) −15.0000 −0.568982
\(696\) 0 0
\(697\) 4.50000 7.79423i 0.170450 0.295227i
\(698\) 10.0000 + 17.3205i 0.378506 + 0.655591i
\(699\) 0 0
\(700\) −2.00000 3.46410i −0.0755929 0.130931i
\(701\) 15.0000 + 25.9808i 0.566542 + 0.981280i 0.996904 + 0.0786236i \(0.0250525\pi\)
−0.430362 + 0.902656i \(0.641614\pi\)
\(702\) 0 0
\(703\) −17.5000 + 12.9904i −0.660025 + 0.489942i
\(704\) 3.00000 0.113067
\(705\) 0 0
\(706\) 16.5000 + 28.5788i 0.620986 + 1.07558i
\(707\) −1.50000 + 2.59808i −0.0564133 + 0.0977107i
\(708\) 0 0
\(709\) 6.50000 11.2583i 0.244113 0.422815i −0.717769 0.696281i \(-0.754837\pi\)
0.961882 + 0.273466i \(0.0881700\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.50000 2.59808i 0.0562149 0.0973670i
\(713\) 0 0
\(714\) 0 0
\(715\) −18.0000 −0.673162
\(716\) −1.50000 + 2.59808i −0.0560576 + 0.0970947i
\(717\) 0 0
\(718\) −12.0000 + 20.7846i −0.447836 + 0.775675i
\(719\) 9.00000 + 15.5885i 0.335643 + 0.581351i 0.983608 0.180319i \(-0.0577130\pi\)
−0.647965 + 0.761670i \(0.724380\pi\)
\(720\) 0 0
\(721\) −1.00000 −0.0372419
\(722\) 18.5000 4.33013i 0.688499 0.161151i
\(723\) 0 0
\(724\) 8.00000 + 13.8564i 0.297318 + 0.514969i
\(725\) 0 0
\(726\) 0 0
\(727\) −11.5000 19.9186i −0.426511 0.738739i 0.570049 0.821611i \(-0.306924\pi\)
−0.996560 + 0.0828714i \(0.973591\pi\)
\(728\) 1.00000 1.73205i 0.0370625 0.0641941i
\(729\) 0 0
\(730\) 42.0000 1.55449
\(731\) −15.0000 + 25.9808i −0.554795 + 0.960933i
\(732\) 0 0
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) 1.00000 0.0369107
\(735\) 0 0
\(736\) 0 0
\(737\) −12.0000 + 20.7846i −0.442026 + 0.765611i
\(738\) 0 0
\(739\) −7.00000 12.1244i −0.257499 0.446002i 0.708072 0.706140i \(-0.249565\pi\)
−0.965571 + 0.260138i \(0.916232\pi\)
\(740\) −15.0000 −0.551411
\(741\) 0 0
\(742\) 12.0000 0.440534
\(743\) 16.5000 + 28.5788i 0.605326 + 1.04846i 0.992000 + 0.126239i \(0.0402907\pi\)
−0.386674 + 0.922217i \(0.626376\pi\)
\(744\) 0 0
\(745\) −27.0000 + 46.7654i −0.989203 + 1.71335i
\(746\) 11.5000 + 19.9186i 0.421045 + 0.729271i
\(747\) 0 0
\(748\) −9.00000 −0.329073
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) 5.00000 8.66025i 0.182453 0.316017i −0.760263 0.649616i \(-0.774930\pi\)
0.942715 + 0.333599i \(0.108263\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12.0000 + 20.7846i 0.436725 + 0.756429i
\(756\) 0 0
\(757\) −5.50000 9.52628i −0.199901 0.346239i 0.748595 0.663027i \(-0.230729\pi\)
−0.948496 + 0.316789i \(0.897395\pi\)
\(758\) 10.0000 + 17.3205i 0.363216 + 0.629109i
\(759\) 0 0
\(760\) 12.0000 + 5.19615i 0.435286 + 0.188484i
\(761\) 30.0000 1.08750 0.543750 0.839248i \(-0.317004\pi\)
0.543750 + 0.839248i \(0.317004\pi\)
\(762\) 0 0
\(763\) −5.50000 9.52628i −0.199113 0.344874i
\(764\) −6.00000 + 10.3923i −0.217072 + 0.375980i
\(765\) 0 0
\(766\) 6.00000 10.3923i 0.216789 0.375489i
\(767\) −12.0000 −0.433295
\(768\) 0 0
\(769\) −10.0000 + 17.3205i −0.360609 + 0.624593i −0.988061 0.154062i \(-0.950765\pi\)
0.627452 + 0.778655i \(0.284098\pi\)
\(770\) −4.50000 + 7.79423i −0.162169 + 0.280885i
\(771\) 0 0
\(772\) −1.00000 −0.0359908
\(773\) −19.5000 + 33.7750i −0.701366 + 1.21480i 0.266621 + 0.963802i \(0.414093\pi\)
−0.967987 + 0.251000i \(0.919240\pi\)
\(774\) 0 0
\(775\) 8.00000 13.8564i 0.287368 0.497737i
\(776\) 4.00000 + 6.92820i 0.143592 + 0.248708i
\(777\) 0 0
\(778\) 0 0
\(779\) 12.0000 + 5.19615i 0.429945 + 0.186171i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.500000 0.866025i −0.0178571 0.0309295i
\(785\) 21.0000 36.3731i 0.749522 1.29821i
\(786\) 0 0
\(787\) 23.0000 0.819861 0.409931 0.912117i \(-0.365553\pi\)
0.409931 + 0.912117i \(0.365553\pi\)
\(788\) −6.00000 + 10.3923i −0.213741 + 0.370211i
\(789\) 0 0
\(790\) −12.0000 −0.426941
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) −8.00000 13.8564i −0.284088 0.492055i
\(794\) 1.00000 1.73205i 0.0354887 0.0614682i
\(795\) 0 0
\(796\) −4.00000 6.92820i −0.141776 0.245564i
\(797\) 15.0000 0.531327 0.265664 0.964066i \(-0.414409\pi\)
0.265664 + 0.964066i \(0.414409\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 2.00000 + 3.46410i 0.0707107 + 0.122474i
\(801\) 0 0
\(802\) 18.0000 31.1769i 0.635602 1.10090i
\(803\) −21.0000 36.3731i −0.741074 1.28358i
\(804\) 0 0
\(805\) 0 0
\(806\) 8.00000 0.281788
\(807\) 0 0
\(808\) 1.50000 2.59808i 0.0527698 0.0914000i
\(809\) 12.0000 0.421898 0.210949 0.977497i \(-0.432345\pi\)
0.210949 + 0.977497i \(0.432345\pi\)
\(810\) 0 0
\(811\) 3.50000 6.06218i 0.122902 0.212872i −0.798009 0.602645i \(-0.794113\pi\)
0.920911 + 0.389774i \(0.127447\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 7.50000 + 12.9904i 0.262875 + 0.455313i
\(815\) −33.0000 57.1577i −1.15594 2.00215i
\(816\) 0 0
\(817\) −40.0000 17.3205i −1.39942 0.605968i
\(818\) 40.0000 1.39857
\(819\) 0 0
\(820\) 4.50000 + 7.79423i 0.157147 + 0.272186i
\(821\) 24.0000 41.5692i 0.837606 1.45078i −0.0542853 0.998525i \(-0.517288\pi\)
0.891891 0.452250i \(-0.149379\pi\)
\(822\) 0 0
\(823\) −7.00000 + 12.1244i −0.244005 + 0.422628i −0.961851 0.273573i \(-0.911795\pi\)
0.717847 + 0.696201i \(0.245128\pi\)
\(824\) 1.00000 0.0348367
\(825\) 0 0
\(826\) −3.00000 + 5.19615i −0.104383 + 0.180797i
\(827\) 10.5000 18.1865i 0.365121 0.632408i −0.623675 0.781684i \(-0.714361\pi\)
0.988796 + 0.149276i \(0.0476944\pi\)
\(828\) 0 0
\(829\) −46.0000 −1.59765 −0.798823 0.601566i \(-0.794544\pi\)
−0.798823 + 0.601566i \(0.794544\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.00000 + 1.73205i −0.0346688 + 0.0600481i
\(833\) 1.50000 + 2.59808i 0.0519719 + 0.0900180i
\(834\) 0 0
\(835\) 18.0000 0.622916
\(836\) −1.50000 12.9904i −0.0518786 0.449282i
\(837\) 0 0
\(838\) 3.00000 + 5.19615i 0.103633 + 0.179498i
\(839\) 21.0000 + 36.3731i 0.725001 + 1.25574i 0.958974 + 0.283495i \(0.0914938\pi\)
−0.233973 + 0.972243i \(0.575173\pi\)
\(840\) 0 0
\(841\) 14.5000 + 25.1147i 0.500000 + 0.866025i
\(842\) −9.50000 + 16.4545i −0.327392 + 0.567059i
\(843\) 0 0
\(844\) 20.0000 0.688428
\(845\) −13.5000 + 23.3827i −0.464414 + 0.804389i
\(846\) 0 0
\(847\) −2.00000 −0.0687208
\(848\) −12.0000 −0.412082
\(849\) 0 0
\(850\) −6.00000 10.3923i −0.205798 0.356453i
\(851\) 0 0
\(852\) 0 0
\(853\) −10.0000 17.3205i −0.342393 0.593043i 0.642483 0.766300i \(-0.277904\pi\)
−0.984877 + 0.173257i \(0.944571\pi\)
\(854\) −8.00000 −0.273754
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) −19.5000 33.7750i −0.666107 1.15373i −0.978984 0.203938i \(-0.934626\pi\)
0.312877 0.949794i \(-0.398707\pi\)
\(858\) 0 0
\(859\) 9.50000 16.4545i 0.324136 0.561420i −0.657201 0.753715i \(-0.728260\pi\)
0.981337 + 0.192295i \(0.0615932\pi\)
\(860\) −15.0000 25.9808i −0.511496 0.885937i
\(861\) 0 0
\(862\) −33.0000 −1.12398
\(863\) −15.0000 −0.510606 −0.255303 0.966861i \(-0.582175\pi\)
−0.255303 + 0.966861i \(0.582175\pi\)
\(864\) 0 0
\(865\) −9.00000 + 15.5885i −0.306009 + 0.530023i
\(866\) 16.0000 0.543702
\(867\) 0 0
\(868\) 2.00000 3.46410i 0.0678844 0.117579i
\(869\) 6.00000 + 10.3923i 0.203536 + 0.352535i
\(870\) 0 0
\(871\) −8.00000 13.8564i −0.271070 0.469506i
\(872\) 5.50000 + 9.52628i 0.186254 + 0.322601i
\(873\) 0 0
\(874\) 0 0
\(875\) 3.00000 0.101419
\(876\) 0 0
\(877\) 5.00000 + 8.66025i 0.168838 + 0.292436i 0.938012 0.346604i \(-0.112665\pi\)
−0.769174 + 0.639040i \(0.779332\pi\)
\(878\) 11.5000 19.9186i 0.388106 0.672220i
\(879\) 0 0
\(880\) 4.50000 7.79423i 0.151695 0.262743i
\(881\) −39.0000 −1.31394 −0.656972 0.753915i \(-0.728163\pi\)
−0.656972 + 0.753915i \(0.728163\pi\)
\(882\) 0 0
\(883\) 23.0000 39.8372i 0.774012 1.34063i −0.161337 0.986899i \(-0.551581\pi\)
0.935348 0.353728i \(-0.115086\pi\)
\(884\) 3.00000 5.19615i 0.100901 0.174766i
\(885\) 0 0
\(886\) 36.0000 1.20944
\(887\) −9.00000 + 15.5885i −0.302190 + 0.523409i −0.976632 0.214919i \(-0.931051\pi\)
0.674441 + 0.738328i \(0.264385\pi\)
\(888\) 0 0
\(889\) −1.00000 + 1.73205i −0.0335389 + 0.0580911i
\(890\) −4.50000 7.79423i −0.150840 0.261263i
\(891\) 0 0
\(892\) −1.00000 −0.0334825
\(893\) 0 0
\(894\) 0 0
\(895\) 4.50000 + 7.79423i 0.150418 + 0.260532i
\(896\) 0.500000 + 0.866025i 0.0167038 + 0.0289319i
\(897\) 0 0
\(898\) 3.00000 + 5.19615i 0.100111 + 0.173398i
\(899\) 0 0
\(900\) 0 0
\(901\) 36.0000 1.19933
\(902\) 4.50000 7.79423i 0.149834 0.259519i
\(903\) 0 0
\(904\) 12.0000 0.399114
\(905\) 48.0000 1.59557
\(906\) 0 0
\(907\) 5.00000 + 8.66025i 0.166022 + 0.287559i 0.937018 0.349281i \(-0.113574\pi\)
−0.770996 + 0.636841i \(0.780241\pi\)
\(908\) 6.00000 10.3923i 0.199117 0.344881i
\(909\) 0 0
\(910\) −3.00000 5.19615i −0.0994490 0.172251i
\(911\) 15.0000 0.496972 0.248486 0.968635i \(-0.420067\pi\)
0.248486 + 0.968635i \(0.420067\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 14.5000 + 25.1147i 0.479617 + 0.830722i
\(915\) 0 0
\(916\) 14.0000 24.2487i 0.462573 0.801200i
\(917\) 0 0
\(918\) 0 0
\(919\) −46.0000 −1.51740 −0.758700 0.651440i \(-0.774165\pi\)
−0.758700 + 0.651440i \(0.774165\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 7.50000 12.9904i 0.246999 0.427815i
\(923\) 0 0
\(924\) 0 0
\(925\) −10.0000 + 17.3205i −0.328798 + 0.569495i
\(926\) −8.00000 13.8564i −0.262896 0.455350i
\(927\) 0 0
\(928\) 0 0
\(929\) −13.5000 23.3827i −0.442921 0.767161i 0.554984 0.831861i \(-0.312724\pi\)
−0.997905 + 0.0646999i \(0.979391\pi\)
\(930\) 0 0
\(931\) −3.50000 + 2.59808i −0.114708 + 0.0851485i
\(932\) −24.0000 −0.786146
\(933\) 0 0
\(934\) 18.0000 + 31.1769i 0.588978 + 1.02014i
\(935\) −13.5000 + 23.3827i −0.441497 + 0.764696i
\(936\) 0 0
\(937\) −7.00000 + 12.1244i −0.228680 + 0.396085i −0.957417 0.288708i \(-0.906774\pi\)
0.728737 + 0.684794i \(0.240108\pi\)
\(938\) −8.00000 −0.261209
\(939\) 0 0
\(940\) 0 0
\(941\) −16.5000 + 28.5788i −0.537885 + 0.931644i 0.461133 + 0.887331i \(0.347443\pi\)
−0.999018 + 0.0443125i \(0.985890\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 3.00000 5.19615i 0.0976417 0.169120i
\(945\) 0 0
\(946\) −15.0000 + 25.9808i −0.487692 + 0.844707i
\(947\) −13.5000 23.3827i −0.438691 0.759835i 0.558898 0.829237i \(-0.311224\pi\)
−0.997589 + 0.0694014i \(0.977891\pi\)
\(948\) 0 0
\(949\) 28.0000 0.908918
\(950\) 14.0000 10.3923i 0.454220 0.337171i
\(951\) 0 0
\(952\) −1.50000 2.59808i −0.0486153 0.0842041i
\(953\) −18.0000 31.1769i −0.583077 1.00992i −0.995112 0.0987513i \(-0.968515\pi\)
0.412035 0.911168i \(-0.364818\pi\)
\(954\) 0 0
\(955\) 18.0000 + 31.1769i 0.582466 + 1.00886i
\(956\) −7.50000 + 12.9904i −0.242567 + 0.420139i
\(957\) 0 0
\(958\) 30.0000 0.969256
\(959\) 3.00000 5.19615i 0.0968751 0.167793i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) −10.0000 −0.322413
\(963\) 0 0
\(964\) 14.0000 + 24.2487i 0.450910 + 0.780998i
\(965\) −1.50000 + 2.59808i −0.0482867 + 0.0836350i
\(966\) 0 0
\(967\) 5.00000 + 8.66025i 0.160789 + 0.278495i 0.935152 0.354247i \(-0.115263\pi\)
−0.774363 + 0.632742i \(0.781929\pi\)
\(968\) 2.00000 0.0642824
\(969\) 0 0
\(970\) 24.0000 0.770594
\(971\) −12.0000 20.7846i −0.385098 0.667010i 0.606685 0.794943i \(-0.292499\pi\)
−0.991783 + 0.127933i \(0.959166\pi\)
\(972\) 0 0
\(973\) −2.50000 + 4.33013i −0.0801463 + 0.138817i
\(974\) −8.00000 13.8564i −0.256337 0.443988i
\(975\) 0 0
\(976\) 8.00000 0.256074
\(977\) −12.0000 −0.383914 −0.191957 0.981403i \(-0.561483\pi\)
−0.191957 + 0.981403i \(0.561483\pi\)
\(978\) 0 0
\(979\) −4.50000 + 7.79423i −0.143821 + 0.249105i
\(980\) −3.00000 −0.0958315
\(981\) 0 0
\(982\) 16.5000 28.5788i 0.526536 0.911987i
\(983\) −18.0000 31.1769i −0.574111 0.994389i −0.996138 0.0878058i \(-0.972015\pi\)
0.422027 0.906583i \(-0.361319\pi\)
\(984\) 0 0
\(985\) 18.0000 + 31.1769i 0.573528 + 0.993379i
\(986\) 0 0
\(987\) 0 0
\(988\) 8.00000 + 3.46410i 0.254514 + 0.110208i
\(989\) 0 0
\(990\) 0 0
\(991\) −10.0000 17.3205i −0.317660 0.550204i 0.662339 0.749204i \(-0.269564\pi\)
−0.979999 + 0.199000i \(0.936231\pi\)
\(992\) −2.00000 + 3.46410i −0.0635001 + 0.109985i
\(993\) 0 0
\(994\) 0 0
\(995\) −24.0000 −0.760851
\(996\) 0 0
\(997\) 2.00000 3.46410i 0.0633406 0.109709i −0.832616 0.553851i \(-0.813158\pi\)
0.895957 + 0.444141i \(0.146491\pi\)
\(998\) 10.0000 17.3205i 0.316544 0.548271i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2394.2.o.j.1261.1 2
3.2 odd 2 798.2.k.a.463.1 2
19.11 even 3 inner 2394.2.o.j.505.1 2
57.11 odd 6 798.2.k.a.505.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
798.2.k.a.463.1 2 3.2 odd 2
798.2.k.a.505.1 yes 2 57.11 odd 6
2394.2.o.j.505.1 2 19.11 even 3 inner
2394.2.o.j.1261.1 2 1.1 even 1 trivial