Properties

Label 795.2.m.a.158.11
Level $795$
Weight $2$
Character 795.158
Analytic conductor $6.348$
Analytic rank $0$
Dimension $40$
CM discriminant -159
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [795,2,Mod(158,795)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("795.158"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(795, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 795 = 3 \cdot 5 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 795.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.34810696069\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 158.11
Character \(\chi\) \(=\) 795.158
Dual form 795.2.m.a.317.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.278703 - 0.278703i) q^{2} +(-1.22474 - 1.22474i) q^{3} +1.84465i q^{4} +(0.962772 - 2.01818i) q^{5} -0.682680 q^{6} +(3.42853 - 3.42853i) q^{7} +(1.07151 + 1.07151i) q^{8} +3.00000i q^{9} +(-0.294146 - 0.830801i) q^{10} +(2.25923 - 2.25923i) q^{12} +(5.09902 + 5.09902i) q^{13} -1.91108i q^{14} +(-3.65091 + 1.29261i) q^{15} -3.09203 q^{16} +(0.836108 + 0.836108i) q^{18} +(3.72284 + 1.77598i) q^{20} -8.39816 q^{21} +(-1.59703 - 1.59703i) q^{23} -2.62466i q^{24} +(-3.14614 - 3.88611i) q^{25} +2.84222 q^{26} +(3.67423 - 3.67423i) q^{27} +(6.32444 + 6.32444i) q^{28} +(-0.657265 + 1.37777i) q^{30} +(-3.00479 + 3.00479i) q^{32} +(-3.61852 - 10.2203i) q^{35} -5.53395 q^{36} +(4.03548 - 4.03548i) q^{37} -12.4900i q^{39} +(3.19414 - 1.13089i) q^{40} +12.7070 q^{41} +(-2.34059 + 2.34059i) q^{42} +(-4.95364 - 4.95364i) q^{43} +(6.05455 + 2.88832i) q^{45} -0.890194 q^{46} +(3.78695 + 3.78695i) q^{48} -16.5097i q^{49} +(-1.95991 - 0.206231i) q^{50} +(-9.40590 + 9.40590i) q^{52} +(5.14782 + 5.14782i) q^{53} -2.04804i q^{54} +7.34745 q^{56} +(-2.38441 - 6.73465i) q^{60} +(10.2856 + 10.2856i) q^{63} -4.50918i q^{64} +(15.2000 - 5.38156i) q^{65} +3.91191i q^{69} +(-3.85692 - 1.83994i) q^{70} -16.1579 q^{71} +(-3.21454 + 3.21454i) q^{72} -2.24940i q^{74} +(-0.906270 + 8.61270i) q^{75} +(-3.48099 - 3.48099i) q^{78} +(-2.97692 + 6.24029i) q^{80} -9.00000 q^{81} +(3.54148 - 3.54148i) q^{82} +(-4.14037 - 4.14037i) q^{83} -15.4917i q^{84} -2.76119 q^{86} +(2.49240 - 0.882439i) q^{90} +34.9643 q^{91} +(2.94596 - 2.94596i) q^{92} +7.36019 q^{96} +(-9.88198 + 9.88198i) q^{97} +(-4.60130 - 4.60130i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 160 q^{16} + 240 q^{36} + 20 q^{40} + 60 q^{42} - 140 q^{52} - 180 q^{60} + 220 q^{70} - 360 q^{81} + 260 q^{82}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/795\mathbb{Z}\right)^\times\).

\(n\) \(266\) \(637\) \(691\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.278703 0.278703i 0.197073 0.197073i −0.601671 0.798744i \(-0.705498\pi\)
0.798744 + 0.601671i \(0.205498\pi\)
\(3\) −1.22474 1.22474i −0.707107 0.707107i
\(4\) 1.84465i 0.922325i
\(5\) 0.962772 2.01818i 0.430565 0.902560i
\(6\) −0.682680 −0.278703
\(7\) 3.42853 3.42853i 1.29586 1.29586i 0.364764 0.931100i \(-0.381150\pi\)
0.931100 0.364764i \(-0.118850\pi\)
\(8\) 1.07151 + 1.07151i 0.378838 + 0.378838i
\(9\) 3.00000i 1.00000i
\(10\) −0.294146 0.830801i −0.0930172 0.262722i
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 2.25923 2.25923i 0.652182 0.652182i
\(13\) 5.09902 + 5.09902i 1.41421 + 1.41421i 0.707808 + 0.706405i \(0.249684\pi\)
0.706405 + 0.707808i \(0.250316\pi\)
\(14\) 1.91108i 0.510759i
\(15\) −3.65091 + 1.29261i −0.942661 + 0.333751i
\(16\) −3.09203 −0.773008
\(17\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(18\) 0.836108 + 0.836108i 0.197073 + 0.197073i
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 3.72284 + 1.77598i 0.832453 + 0.397121i
\(21\) −8.39816 −1.83263
\(22\) 0 0
\(23\) −1.59703 1.59703i −0.333004 0.333004i 0.520722 0.853726i \(-0.325663\pi\)
−0.853726 + 0.520722i \(0.825663\pi\)
\(24\) 2.62466i 0.535757i
\(25\) −3.14614 3.88611i −0.629228 0.777221i
\(26\) 2.84222 0.557405
\(27\) 3.67423 3.67423i 0.707107 0.707107i
\(28\) 6.32444 + 6.32444i 1.19521 + 1.19521i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) −0.657265 + 1.37777i −0.120000 + 0.251546i
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −3.00479 + 3.00479i −0.531176 + 0.531176i
\(33\) 0 0
\(34\) 0 0
\(35\) −3.61852 10.2203i −0.611641 1.72755i
\(36\) −5.53395 −0.922325
\(37\) 4.03548 4.03548i 0.663428 0.663428i −0.292758 0.956186i \(-0.594573\pi\)
0.956186 + 0.292758i \(0.0945731\pi\)
\(38\) 0 0
\(39\) 12.4900i 2.00000i
\(40\) 3.19414 1.13089i 0.505038 0.178809i
\(41\) 12.7070 1.98450 0.992252 0.124238i \(-0.0396487\pi\)
0.992252 + 0.124238i \(0.0396487\pi\)
\(42\) −2.34059 + 2.34059i −0.361161 + 0.361161i
\(43\) −4.95364 4.95364i −0.755424 0.755424i 0.220062 0.975486i \(-0.429374\pi\)
−0.975486 + 0.220062i \(0.929374\pi\)
\(44\) 0 0
\(45\) 6.05455 + 2.88832i 0.902560 + 0.430565i
\(46\) −0.890194 −0.131252
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 3.78695 + 3.78695i 0.546599 + 0.546599i
\(49\) 16.5097i 2.35853i
\(50\) −1.95991 0.206231i −0.277173 0.0291654i
\(51\) 0 0
\(52\) −9.40590 + 9.40590i −1.30436 + 1.30436i
\(53\) 5.14782 + 5.14782i 0.707107 + 0.707107i
\(54\) 2.04804i 0.278703i
\(55\) 0 0
\(56\) 7.34745 0.981844
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) −2.38441 6.73465i −0.307826 0.869440i
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 10.2856 + 10.2856i 1.29586 + 1.29586i
\(64\) 4.50918i 0.563647i
\(65\) 15.2000 5.38156i 1.88532 0.667501i
\(66\) 0 0
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) 3.91191i 0.470939i
\(70\) −3.85692 1.83994i −0.460990 0.219915i
\(71\) −16.1579 −1.91759 −0.958793 0.284104i \(-0.908304\pi\)
−0.958793 + 0.284104i \(0.908304\pi\)
\(72\) −3.21454 + 3.21454i −0.378838 + 0.378838i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 2.24940i 0.261487i
\(75\) −0.906270 + 8.61270i −0.104647 + 0.994509i
\(76\) 0 0
\(77\) 0 0
\(78\) −3.48099 3.48099i −0.394145 0.394145i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −2.97692 + 6.24029i −0.332830 + 0.697686i
\(81\) −9.00000 −1.00000
\(82\) 3.54148 3.54148i 0.391092 0.391092i
\(83\) −4.14037 4.14037i −0.454464 0.454464i 0.442369 0.896833i \(-0.354138\pi\)
−0.896833 + 0.442369i \(0.854138\pi\)
\(84\) 15.4917i 1.69028i
\(85\) 0 0
\(86\) −2.76119 −0.297747
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 2.49240 0.882439i 0.262722 0.0930172i
\(91\) 34.9643 3.66526
\(92\) 2.94596 2.94596i 0.307138 0.307138i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 7.36019 0.751197
\(97\) −9.88198 + 9.88198i −1.00336 + 1.00336i −0.00336917 + 0.999994i \(0.501072\pi\)
−0.999994 + 0.00336917i \(0.998928\pi\)
\(98\) −4.60130 4.60130i −0.464801 0.464801i
\(99\) 0 0
\(100\) 7.16850 5.80352i 0.716850 0.580352i
\(101\) −20.0936 −1.99939 −0.999693 0.0247601i \(-0.992118\pi\)
−0.999693 + 0.0247601i \(0.992118\pi\)
\(102\) 0 0
\(103\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(104\) 10.9273i 1.07151i
\(105\) −8.08552 + 16.9490i −0.789066 + 1.65406i
\(106\) 2.86942 0.278703
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 6.77768 + 6.77768i 0.652182 + 0.652182i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) −9.88486 −0.938229
\(112\) −10.6011 + 10.6011i −1.00171 + 1.00171i
\(113\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(114\) 0 0
\(115\) −4.76068 + 1.68553i −0.443936 + 0.157176i
\(116\) 0 0
\(117\) −15.2971 + 15.2971i −1.41421 + 1.41421i
\(118\) 0 0
\(119\) 0 0
\(120\) −5.29706 2.52695i −0.483553 0.230678i
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) −15.5629 15.5629i −1.40326 1.40326i
\(124\) 0 0
\(125\) −10.8719 + 2.60805i −0.972412 + 0.233271i
\(126\) 5.73325 0.510759
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) −7.26629 7.26629i −0.642256 0.642256i
\(129\) 12.1339i 1.06833i
\(130\) 2.73641 5.73612i 0.239999 0.503091i
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −3.87783 10.9527i −0.333751 0.942661i
\(136\) 0 0
\(137\) −13.5578 + 13.5578i −1.15832 + 1.15832i −0.173484 + 0.984837i \(0.555503\pi\)
−0.984837 + 0.173484i \(0.944497\pi\)
\(138\) 1.09026 + 1.09026i 0.0928091 + 0.0928091i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 18.8529 6.67490i 1.59336 0.564132i
\(141\) 0 0
\(142\) −4.50324 + 4.50324i −0.377904 + 0.377904i
\(143\) 0 0
\(144\) 9.27609i 0.773008i
\(145\) 0 0
\(146\) 0 0
\(147\) −20.2202 + 20.2202i −1.66773 + 1.66773i
\(148\) 7.44404 + 7.44404i 0.611896 + 0.611896i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 2.14780 + 2.65296i 0.175367 + 0.216614i
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 23.0397 1.84465
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 0 0
\(159\) 12.6095i 1.00000i
\(160\) 3.17129 + 8.95714i 0.250712 + 0.708124i
\(161\) −10.9509 −0.863056
\(162\) −2.50832 + 2.50832i −0.197073 + 0.197073i
\(163\) 14.6095 + 14.6095i 1.14431 + 1.14431i 0.987654 + 0.156652i \(0.0500701\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 23.4400i 1.83036i
\(165\) 0 0
\(166\) −2.30786 −0.179125
\(167\) 18.1626 18.1626i 1.40547 1.40547i 0.624208 0.781258i \(-0.285422\pi\)
0.781258 0.624208i \(-0.214578\pi\)
\(168\) −8.99875 8.99875i −0.694268 0.694268i
\(169\) 38.9999i 3.00000i
\(170\) 0 0
\(171\) 0 0
\(172\) 9.13774 9.13774i 0.696746 0.696746i
\(173\) 18.2078 + 18.2078i 1.38432 + 1.38432i 0.836787 + 0.547529i \(0.184431\pi\)
0.547529 + 0.836787i \(0.315569\pi\)
\(174\) 0 0
\(175\) −24.1103 2.53700i −1.82257 0.191779i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 15.5292i 1.16071i 0.814365 + 0.580354i \(0.197086\pi\)
−0.814365 + 0.580354i \(0.802914\pi\)
\(180\) −5.32793 + 11.1685i −0.397121 + 0.832453i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 9.74465 9.74465i 0.722321 0.722321i
\(183\) 0 0
\(184\) 3.42248i 0.252309i
\(185\) −4.25909 12.0296i −0.313135 0.884432i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 25.1945i 1.83263i
\(190\) 0 0
\(191\) 8.61967 0.623698 0.311849 0.950132i \(-0.399052\pi\)
0.311849 + 0.950132i \(0.399052\pi\)
\(192\) −5.52259 + 5.52259i −0.398559 + 0.398559i
\(193\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(194\) 5.50827i 0.395471i
\(195\) −25.2071 12.0250i −1.80512 0.861129i
\(196\) 30.4546 2.17533
\(197\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) 0 0
\(199\) 1.52965i 0.108434i 0.998529 + 0.0542169i \(0.0172662\pi\)
−0.998529 + 0.0542169i \(0.982734\pi\)
\(200\) 0.792885 7.53515i 0.0560654 0.532816i
\(201\) 0 0
\(202\) −5.60014 + 5.60014i −0.394024 + 0.394024i
\(203\) 0 0
\(204\) 0 0
\(205\) 12.2340 25.6451i 0.854458 1.79113i
\(206\) 0 0
\(207\) 4.79109 4.79109i 0.333004 0.333004i
\(208\) −15.7663 15.7663i −1.09320 1.09320i
\(209\) 0 0
\(210\) 2.47029 + 6.97720i 0.170466 + 0.481472i
\(211\) 27.3653 1.88391 0.941953 0.335745i \(-0.108988\pi\)
0.941953 + 0.335745i \(0.108988\pi\)
\(212\) −9.49591 + 9.49591i −0.652182 + 0.652182i
\(213\) 19.7893 + 19.7893i 1.35594 + 1.35594i
\(214\) 0 0
\(215\) −14.7666 + 5.22814i −1.00707 + 0.356556i
\(216\) 7.87399 0.535757
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) −2.75494 + 2.75494i −0.184899 + 0.184899i
\(223\) 4.60952 + 4.60952i 0.308676 + 0.308676i 0.844396 0.535720i \(-0.179960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) 20.6040i 1.37666i
\(225\) 11.6583 9.43842i 0.777221 0.629228i
\(226\) 0 0
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 23.2692i 1.53767i −0.639445 0.768837i \(-0.720836\pi\)
0.639445 0.768837i \(-0.279164\pi\)
\(230\) −0.857054 + 1.79658i −0.0565125 + 0.118463i
\(231\) 0 0
\(232\) 0 0
\(233\) 8.38911 + 8.38911i 0.549589 + 0.549589i 0.926322 0.376733i \(-0.122953\pi\)
−0.376733 + 0.926322i \(0.622953\pi\)
\(234\) 8.52666i 0.557405i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 27.9397i 1.80727i 0.428302 + 0.903635i \(0.359112\pi\)
−0.428302 + 0.903635i \(0.640888\pi\)
\(240\) 11.2887 3.99679i 0.728685 0.257992i
\(241\) −31.0372 −1.99928 −0.999642 0.0267596i \(-0.991481\pi\)
−0.999642 + 0.0267596i \(0.991481\pi\)
\(242\) 3.06573 3.06573i 0.197073 0.197073i
\(243\) 11.0227 + 11.0227i 0.707107 + 0.707107i
\(244\) 0 0
\(245\) −33.3196 15.8951i −2.12871 1.01550i
\(246\) −8.67483 −0.553087
\(247\) 0 0
\(248\) 0 0
\(249\) 10.1418i 0.642710i
\(250\) −2.30315 + 3.75690i −0.145664 + 0.237607i
\(251\) −25.4160 −1.60424 −0.802122 0.597161i \(-0.796295\pi\)
−0.802122 + 0.597161i \(0.796295\pi\)
\(252\) −18.9733 + 18.9733i −1.19521 + 1.19521i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 4.96808 0.310505
\(257\) −15.0138 + 15.0138i −0.936533 + 0.936533i −0.998103 0.0615696i \(-0.980389\pi\)
0.0615696 + 0.998103i \(0.480389\pi\)
\(258\) 3.38175 + 3.38175i 0.210539 + 0.210539i
\(259\) 27.6715i 1.71943i
\(260\) 9.92710 + 28.0386i 0.615653 + 1.73888i
\(261\) 0 0
\(262\) 0 0
\(263\) −14.6945 14.6945i −0.906101 0.906101i 0.0898538 0.995955i \(-0.471360\pi\)
−0.995955 + 0.0898538i \(0.971360\pi\)
\(264\) 0 0
\(265\) 15.3454 5.43307i 0.942661 0.333751i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) −4.13332 1.97180i −0.251546 0.120000i
\(271\) −17.8311 −1.08316 −0.541581 0.840649i \(-0.682174\pi\)
−0.541581 + 0.840649i \(0.682174\pi\)
\(272\) 0 0
\(273\) −42.8224 42.8224i −2.59173 2.59173i
\(274\) 7.55719i 0.456547i
\(275\) 0 0
\(276\) −7.21610 −0.434358
\(277\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 7.07392 14.8285i 0.422748 0.886173i
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 29.8056i 1.76864i
\(285\) 0 0
\(286\) 0 0
\(287\) 43.5665 43.5665i 2.57165 2.57165i
\(288\) −9.01436 9.01436i −0.531176 0.531176i
\(289\) 17.0000i 1.00000i
\(290\) 0 0
\(291\) 24.2058 1.41897
\(292\) 0 0
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) 11.2708i 0.657328i
\(295\) 0 0
\(296\) 8.64814 0.502663
\(297\) 0 0
\(298\) 0 0
\(299\) 16.2866i 0.941877i
\(300\) −15.8874 1.67175i −0.917261 0.0965186i
\(301\) −33.9675 −1.95785
\(302\) 0 0
\(303\) 24.6095 + 24.6095i 1.41378 + 1.41378i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1.59347 + 1.59347i −0.0909442 + 0.0909442i −0.751115 0.660171i \(-0.770484\pi\)
0.660171 + 0.751115i \(0.270484\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 13.3832 13.3832i 0.757675 0.757675i
\(313\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(314\) 0 0
\(315\) 30.6609 10.8556i 1.72755 0.611641i
\(316\) 0 0
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) −3.51431 3.51431i −0.197073 0.197073i
\(319\) 0 0
\(320\) −9.10035 4.34131i −0.508725 0.242687i
\(321\) 0 0
\(322\) −3.05206 + 3.05206i −0.170085 + 0.170085i
\(323\) 0 0
\(324\) 16.6018i 0.922325i
\(325\) 3.77310 35.8575i 0.209294 1.98902i
\(326\) 8.14343 0.451023
\(327\) 0 0
\(328\) 13.6158 + 13.6158i 0.751805 + 0.751805i
\(329\) 0 0
\(330\) 0 0
\(331\) −21.9039 −1.20395 −0.601973 0.798517i \(-0.705618\pi\)
−0.601973 + 0.798517i \(0.705618\pi\)
\(332\) 7.63753 7.63753i 0.419164 0.419164i
\(333\) 12.1064 + 12.1064i 0.663428 + 0.663428i
\(334\) 10.1239i 0.553958i
\(335\) 0 0
\(336\) 25.9674 1.41664
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) 10.8694 + 10.8694i 0.591217 + 0.591217i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −32.6043 32.6043i −1.76047 1.76047i
\(344\) 10.6158i 0.572366i
\(345\) 7.89496 + 3.76628i 0.425050 + 0.202770i
\(346\) 10.1491 0.545621
\(347\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) −7.42667 + 6.01253i −0.396972 + 0.321383i
\(351\) 37.4700 2.00000
\(352\) 0 0
\(353\) 10.2956 + 10.2956i 0.547981 + 0.547981i 0.925856 0.377875i \(-0.123345\pi\)
−0.377875 + 0.925856i \(0.623345\pi\)
\(354\) 0 0
\(355\) −15.5564 + 32.6096i −0.825646 + 1.73074i
\(356\) 0 0
\(357\) 0 0
\(358\) 4.32803 + 4.32803i 0.228744 + 0.228744i
\(359\) 3.44483i 0.181811i 0.995860 + 0.0909056i \(0.0289762\pi\)
−0.995860 + 0.0909056i \(0.971024\pi\)
\(360\) 3.39267 + 9.58242i 0.178809 + 0.505038i
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) −13.4722 13.4722i −0.707107 0.707107i
\(364\) 64.4969i 3.38056i
\(365\) 0 0
\(366\) 0 0
\(367\) −23.6338 + 23.6338i −1.23368 + 1.23368i −0.271134 + 0.962542i \(0.587399\pi\)
−0.962542 + 0.271134i \(0.912601\pi\)
\(368\) 4.93807 + 4.93807i 0.257415 + 0.257415i
\(369\) 38.1211i 1.98450i
\(370\) −4.53970 2.16566i −0.236008 0.112587i
\(371\) 35.2989 1.83263
\(372\) 0 0
\(373\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(374\) 0 0
\(375\) 16.5095 + 10.1211i 0.852547 + 0.522651i
\(376\) 0 0
\(377\) 0 0
\(378\) −7.02177 7.02177i −0.361161 0.361161i
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 2.40233 2.40233i 0.122914 0.122914i
\(383\) −5.13127 5.13127i −0.262195 0.262195i 0.563750 0.825945i \(-0.309358\pi\)
−0.825945 + 0.563750i \(0.809358\pi\)
\(384\) 17.7987i 0.908287i
\(385\) 0 0
\(386\) 0 0
\(387\) 14.8609 14.8609i 0.755424 0.755424i
\(388\) −18.2288 18.2288i −0.925427 0.925427i
\(389\) 7.06268i 0.358092i −0.983841 0.179046i \(-0.942699\pi\)
0.983841 0.179046i \(-0.0573011\pi\)
\(390\) −10.3767 + 3.67388i −0.525444 + 0.186034i
\(391\) 0 0
\(392\) 17.6904 17.6904i 0.893499 0.893499i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(398\) 0.426317 + 0.426317i 0.0213693 + 0.0213693i
\(399\) 0 0
\(400\) 9.72796 + 12.0160i 0.486398 + 0.600798i
\(401\) −34.6077 −1.72823 −0.864113 0.503298i \(-0.832120\pi\)
−0.864113 + 0.503298i \(0.832120\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 37.0656i 1.84408i
\(405\) −8.66495 + 18.1637i −0.430565 + 0.902560i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 23.2134i 1.14783i 0.818915 + 0.573915i \(0.194576\pi\)
−0.818915 + 0.573915i \(0.805424\pi\)
\(410\) −3.73773 10.5570i −0.184593 0.521374i
\(411\) 33.2097 1.63811
\(412\) 0 0
\(413\) 0 0
\(414\) 2.67058i 0.131252i
\(415\) −12.3423 + 4.36980i −0.605858 + 0.214505i
\(416\) −30.6429 −1.50239
\(417\) 0 0
\(418\) 0 0
\(419\) 6.76546i 0.330514i 0.986251 + 0.165257i \(0.0528454\pi\)
−0.986251 + 0.165257i \(0.947155\pi\)
\(420\) −31.2650 14.9149i −1.52558 0.727775i
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 7.62679 7.62679i 0.371266 0.371266i
\(423\) 0 0
\(424\) 11.0319i 0.535757i
\(425\) 0 0
\(426\) 11.0306 0.534437
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) −2.65840 + 5.57259i −0.128199 + 0.268734i
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −11.3608 + 11.3608i −0.546599 + 0.546599i
\(433\) 27.0903 + 27.0903i 1.30188 + 1.30188i 0.927126 + 0.374749i \(0.122271\pi\)
0.374749 + 0.927126i \(0.377729\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 30.0960i 1.43640i −0.695834 0.718202i \(-0.744965\pi\)
0.695834 0.718202i \(-0.255035\pi\)
\(440\) 0 0
\(441\) 49.5291 2.35853
\(442\) 0 0
\(443\) 24.6783 + 24.6783i 1.17250 + 1.17250i 0.981611 + 0.190890i \(0.0611375\pi\)
0.190890 + 0.981611i \(0.438863\pi\)
\(444\) 18.2341i 0.865352i
\(445\) 0 0
\(446\) 2.56937 0.121663
\(447\) 0 0
\(448\) −15.4599 15.4599i −0.730410 0.730410i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0.618692 5.87972i 0.0291654 0.277173i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 33.6627 70.5644i 1.57813 3.30811i
\(456\) 0 0
\(457\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(458\) −6.48520 6.48520i −0.303033 0.303033i
\(459\) 0 0
\(460\) −3.10920 8.78179i −0.144967 0.409453i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 4.67613 0.216618
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) −28.2177 28.2177i −1.30436 1.30436i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −15.4434 + 15.4434i −0.707107 + 0.707107i
\(478\) 7.78688 + 7.78688i 0.356164 + 0.356164i
\(479\) 42.2123i 1.92873i −0.264576 0.964365i \(-0.585232\pi\)
0.264576 0.964365i \(-0.414768\pi\)
\(480\) 7.08619 14.8542i 0.323439 0.678000i
\(481\) 41.1539 1.87646
\(482\) −8.65016 + 8.65016i −0.394004 + 0.394004i
\(483\) 13.4121 + 13.4121i 0.610272 + 0.610272i
\(484\) 20.2911i 0.922325i
\(485\) 10.4296 + 29.4578i 0.473582 + 1.33761i
\(486\) 6.14412 0.278703
\(487\) 14.8103 14.8103i 0.671120 0.671120i −0.286854 0.957974i \(-0.592610\pi\)
0.957974 + 0.286854i \(0.0926096\pi\)
\(488\) 0 0
\(489\) 35.7859i 1.61829i
\(490\) −13.7163 + 4.85626i −0.619638 + 0.219384i
\(491\) 18.2145 0.822010 0.411005 0.911633i \(-0.365178\pi\)
0.411005 + 0.911633i \(0.365178\pi\)
\(492\) 28.7080 28.7080i 1.29426 1.29426i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −55.3978 + 55.3978i −2.48493 + 2.48493i
\(498\) 2.82654 + 2.82654i 0.126661 + 0.126661i
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) −4.81094 20.0548i −0.215152 0.896879i
\(501\) −44.4892 −1.98763
\(502\) −7.08351 + 7.08351i −0.316152 + 0.316152i
\(503\) −30.7285 30.7285i −1.37012 1.37012i −0.860260 0.509856i \(-0.829699\pi\)
−0.509856 0.860260i \(-0.670301\pi\)
\(504\) 22.0423i 0.981844i
\(505\) −19.3456 + 40.5526i −0.860866 + 1.80457i
\(506\) 0 0
\(507\) 47.7650 47.7650i 2.12132 2.12132i
\(508\) 0 0
\(509\) 40.3322i 1.78769i 0.448371 + 0.893847i \(0.352004\pi\)
−0.448371 + 0.893847i \(0.647996\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 15.9172 15.9172i 0.703448 0.703448i
\(513\) 0 0
\(514\) 8.36876i 0.369130i
\(515\) 0 0
\(516\) −22.3828 −0.985348
\(517\) 0 0
\(518\) −7.71213 7.71213i −0.338852 0.338852i
\(519\) 44.5999i 1.95772i
\(520\) 22.0534 + 10.5205i 0.967105 + 0.461356i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −0.579032 0.579032i −0.0253193 0.0253193i 0.694334 0.719653i \(-0.255699\pi\)
−0.719653 + 0.694334i \(0.755699\pi\)
\(524\) 0 0
\(525\) 26.4218 + 32.6361i 1.15314 + 1.42436i
\(526\) −8.19079 −0.357135
\(527\) 0 0
\(528\) 0 0
\(529\) 17.8990i 0.778217i
\(530\) 2.76260 5.79102i 0.120000 0.251546i
\(531\) 0 0
\(532\) 0 0
\(533\) 64.7934 + 64.7934i 2.80651 + 2.80651i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 19.0193 19.0193i 0.820744 0.820744i
\(538\) 0 0
\(539\) 0 0
\(540\) 20.2040 7.15324i 0.869440 0.307826i
\(541\) 6.45040 0.277324 0.138662 0.990340i \(-0.455720\pi\)
0.138662 + 0.990340i \(0.455720\pi\)
\(542\) −4.96957 + 4.96957i −0.213461 + 0.213461i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) −23.8694 −1.02152
\(547\) 21.9895 21.9895i 0.940205 0.940205i −0.0581056 0.998310i \(-0.518506\pi\)
0.998310 + 0.0581056i \(0.0185060\pi\)
\(548\) −25.0094 25.0094i −1.06835 1.06835i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) −4.19167 + 4.19167i −0.178409 + 0.178409i
\(553\) 0 0
\(554\) 0 0
\(555\) −9.51687 + 19.9495i −0.403969 + 0.846808i
\(556\) 0 0
\(557\) 24.5960 24.5960i 1.04216 1.04216i 0.0430928 0.999071i \(-0.486279\pi\)
0.999071 0.0430928i \(-0.0137211\pi\)
\(558\) 0 0
\(559\) 50.5174i 2.13666i
\(560\) 11.1886 + 31.6015i 0.472803 + 1.33541i
\(561\) 0 0
\(562\) 0 0
\(563\) 29.6137 + 29.6137i 1.24807 + 1.24807i 0.956572 + 0.291496i \(0.0941529\pi\)
0.291496 + 0.956572i \(0.405847\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −30.8568 + 30.8568i −1.29586 + 1.29586i
\(568\) −17.3134 17.3134i −0.726454 0.726454i
\(569\) 28.2298i 1.18345i −0.806138 0.591727i \(-0.798446\pi\)
0.806138 0.591727i \(-0.201554\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) −10.5569 10.5569i −0.441021 0.441021i
\(574\) 24.2842i 1.01360i
\(575\) −1.18175 + 11.2307i −0.0492823 + 0.468353i
\(576\) 13.5275 0.563647
\(577\) −17.4140 + 17.4140i −0.724953 + 0.724953i −0.969610 0.244657i \(-0.921325\pi\)
0.244657 + 0.969610i \(0.421325\pi\)
\(578\) −4.73795 4.73795i −0.197073 0.197073i
\(579\) 0 0
\(580\) 0 0
\(581\) −28.3908 −1.17785
\(582\) 6.74623 6.74623i 0.279640 0.279640i
\(583\) 0 0
\(584\) 0 0
\(585\) 16.1447 + 45.5999i 0.667501 + 1.88532i
\(586\) 0 0
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) −37.2991 37.2991i −1.53819 1.53819i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −12.4778 + 12.4778i −0.512835 + 0.512835i
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.87343 1.87343i 0.0766742 0.0766742i
\(598\) −4.53911 4.53911i −0.185618 0.185618i
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) −10.1997 + 8.25755i −0.416402 + 0.337113i
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) −9.46683 + 9.46683i −0.385839 + 0.385839i
\(603\) 0 0
\(604\) 0 0
\(605\) 10.5905 22.2000i 0.430565 0.902560i
\(606\) 13.7175 0.557235
\(607\) −34.6249 + 34.6249i −1.40538 + 1.40538i −0.623787 + 0.781594i \(0.714407\pi\)
−0.781594 + 0.623787i \(0.785593\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(614\) 0.888210i 0.0358452i
\(615\) −46.3923 + 16.4252i −1.87072 + 0.662330i
\(616\) 0 0
\(617\) 29.0563 29.0563i 1.16976 1.16976i 0.187496 0.982265i \(-0.439963\pi\)
0.982265 0.187496i \(-0.0600373\pi\)
\(618\) 0 0
\(619\) 28.3047i 1.13766i −0.822454 0.568831i \(-0.807396\pi\)
0.822454 0.568831i \(-0.192604\pi\)
\(620\) 0 0
\(621\) −11.7357 −0.470939
\(622\) 0 0
\(623\) 0 0
\(624\) 38.6194i 1.54601i
\(625\) −5.20363 + 24.4524i −0.208145 + 0.978098i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 5.51982 11.5708i 0.219915 0.460990i
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) −33.5155 33.5155i −1.33212 1.33212i
\(634\) 0 0
\(635\) 0 0
\(636\) 23.2601 0.922325
\(637\) 84.1832 84.1832i 3.33546 3.33546i
\(638\) 0 0
\(639\) 48.4736i 1.91759i
\(640\) −21.6605 + 7.66893i −0.856207 + 0.303141i
\(641\) −44.5885 −1.76114 −0.880570 0.473917i \(-0.842840\pi\)
−0.880570 + 0.473917i \(0.842840\pi\)
\(642\) 0 0
\(643\) 34.6095 + 34.6095i 1.36487 + 1.36487i 0.867595 + 0.497271i \(0.165665\pi\)
0.497271 + 0.867595i \(0.334335\pi\)
\(644\) 20.2007i 0.796018i
\(645\) 24.4885 + 11.6822i 0.964232 + 0.459986i
\(646\) 0 0
\(647\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(648\) −9.64363 9.64363i −0.378838 0.378838i
\(649\) 0 0
\(650\) −8.94202 11.0452i −0.350735 0.433227i
\(651\) 0 0
\(652\) −26.9494 + 26.9494i −1.05542 + 1.05542i
\(653\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −39.2905 −1.53404
\(657\) 0 0
\(658\) 0 0
\(659\) 31.7454i 1.23663i −0.785932 0.618313i \(-0.787816\pi\)
0.785932 0.618313i \(-0.212184\pi\)
\(660\) 0 0
\(661\) −50.4381 −1.96181 −0.980907 0.194477i \(-0.937699\pi\)
−0.980907 + 0.194477i \(0.937699\pi\)
\(662\) −6.10467 + 6.10467i −0.237265 + 0.237265i
\(663\) 0 0
\(664\) 8.87293i 0.344336i
\(665\) 0 0
\(666\) 6.74819 0.261487
\(667\) 0 0
\(668\) 33.5037 + 33.5037i 1.29630 + 1.29630i
\(669\) 11.2910i 0.436534i
\(670\) 0 0
\(671\) 0 0
\(672\) 25.2347 25.2347i 0.973449 0.973449i
\(673\) −29.6966 29.6966i −1.14472 1.14472i −0.987576 0.157142i \(-0.949772\pi\)
−0.157142 0.987576i \(-0.550228\pi\)
\(674\) 0 0
\(675\) −25.8381 2.71881i −0.994509 0.104647i
\(676\) −71.9412 −2.76697
\(677\) −27.9361 + 27.9361i −1.07367 + 1.07367i −0.0766123 + 0.997061i \(0.524410\pi\)
−0.997061 + 0.0766123i \(0.975590\pi\)
\(678\) 0 0
\(679\) 67.7614i 2.60045i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(684\) 0 0
\(685\) 14.3091 + 40.4152i 0.546721 + 1.54419i
\(686\) −18.1738 −0.693880
\(687\) −28.4989 + 28.4989i −1.08730 + 1.08730i
\(688\) 15.3168 + 15.3168i 0.583948 + 0.583948i
\(689\) 52.4976i 2.00000i
\(690\) 3.25002 1.15067i 0.123726 0.0438054i
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) −33.5871 + 33.5871i −1.27679 + 1.27679i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 20.5490i 0.777236i
\(700\) 4.67988 44.4750i 0.176883 1.68100i
\(701\) 44.4496 1.67884 0.839420 0.543483i \(-0.182895\pi\)
0.839420 + 0.543483i \(0.182895\pi\)
\(702\) 10.4430 10.4430i 0.394145 0.394145i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 5.73884 0.215984
\(707\) −68.8916 + 68.8916i −2.59093 + 2.59093i
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 4.75278 + 13.4240i 0.178369 + 0.503793i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −28.6459 −1.07055
\(717\) 34.2190 34.2190i 1.27793 1.27793i
\(718\) 0.960084 + 0.960084i 0.0358300 + 0.0358300i
\(719\) 52.4346i 1.95548i 0.209816 + 0.977741i \(0.432713\pi\)
−0.209816 + 0.977741i \(0.567287\pi\)
\(720\) −18.7209 8.93077i −0.697686 0.332830i
\(721\) 0 0
\(722\) −5.29535 + 5.29535i −0.197073 + 0.197073i
\(723\) 38.0127 + 38.0127i 1.41371 + 1.41371i
\(724\) 0 0
\(725\) 0 0
\(726\) −7.50947 −0.278703
\(727\) −29.0006 + 29.0006i −1.07557 + 1.07557i −0.0786734 + 0.996900i \(0.525068\pi\)
−0.996900 + 0.0786734i \(0.974932\pi\)
\(728\) 37.4648 + 37.4648i 1.38854 + 1.38854i
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −3.15724 3.15724i −0.116615 0.116615i 0.646391 0.763006i \(-0.276277\pi\)
−0.763006 + 0.646391i \(0.776277\pi\)
\(734\) 13.1736i 0.486247i
\(735\) 21.3406 + 60.2754i 0.787160 + 2.22329i
\(736\) 9.59747 0.353767
\(737\) 0 0
\(738\) 10.6245 + 10.6245i 0.391092 + 0.391092i
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 22.1904 7.85653i 0.815734 0.288812i
\(741\) 0 0
\(742\) 9.83791 9.83791i 0.361161 0.361161i
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 12.4211 12.4211i 0.454464 0.454464i
\(748\) 0 0
\(749\) 0 0
\(750\) 7.42202 1.78046i 0.271014 0.0650134i
\(751\) −33.4498 −1.22060 −0.610301 0.792170i \(-0.708951\pi\)
−0.610301 + 0.792170i \(0.708951\pi\)
\(752\) 0 0
\(753\) 31.1281 + 31.1281i 1.13437 + 1.13437i
\(754\) 0 0
\(755\) 0 0
\(756\) 46.4750 1.69028
\(757\) 14.2190 14.2190i 0.516800 0.516800i −0.399802 0.916602i \(-0.630921\pi\)
0.916602 + 0.399802i \(0.130921\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 25.6375 0.929359 0.464679 0.885479i \(-0.346170\pi\)
0.464679 + 0.885479i \(0.346170\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 15.9003i 0.575252i
\(765\) 0 0
\(766\) −2.86020 −0.103343
\(767\) 0 0
\(768\) −6.08464 6.08464i −0.219560 0.219560i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 36.7761 1.32446
\(772\) 0 0
\(773\) −27.9415 27.9415i −1.00498 1.00498i −0.999988 0.00499715i \(-0.998409\pi\)
−0.00499715 0.999988i \(-0.501591\pi\)
\(774\) 8.28357i 0.297747i
\(775\) 0 0
\(776\) −21.1774 −0.760224
\(777\) −33.8906 + 33.8906i −1.21582 + 1.21582i
\(778\) −1.96839 1.96839i −0.0705702 0.0705702i
\(779\) 0 0
\(780\) 22.1819 46.4983i 0.794241 1.66491i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 51.0485i 1.82316i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) 0 0
\(789\) 35.9940i 1.28142i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −25.4483 12.1401i −0.902560 0.430565i
\(796\) −2.82166 −0.100011
\(797\) 34.6303 34.6303i 1.22667 1.22667i 0.261453 0.965216i \(-0.415798\pi\)
0.965216 0.261453i \(-0.0842017\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 21.1304 + 2.22344i 0.747072 + 0.0786105i
\(801\) 0 0
\(802\) −9.64526 + 9.64526i −0.340586 + 0.340586i
\(803\) 0 0
\(804\) 0 0
\(805\) −10.5433 + 22.1010i −0.371601 + 0.778959i
\(806\) 0 0
\(807\) 0 0
\(808\) −21.5306 21.5306i −0.757443 0.757443i
\(809\) 8.84119i 0.310840i 0.987849 + 0.155420i \(0.0496730\pi\)
−0.987849 + 0.155420i \(0.950327\pi\)
\(810\) 2.64732 + 7.47721i 0.0930172 + 0.262722i
\(811\) −1.82693 −0.0641522 −0.0320761 0.999485i \(-0.510212\pi\)
−0.0320761 + 0.999485i \(0.510212\pi\)
\(812\) 0 0
\(813\) 21.8385 + 21.8385i 0.765911 + 0.765911i
\(814\) 0 0
\(815\) 43.5504 15.4191i 1.52550 0.540106i
\(816\) 0 0
\(817\) 0 0
\(818\) 6.46964 + 6.46964i 0.226206 + 0.226206i
\(819\) 104.893i 3.66526i
\(820\) 47.3063 + 22.5674i 1.65201 + 0.788088i
\(821\) 28.8962 1.00848 0.504242 0.863562i \(-0.331772\pi\)
0.504242 + 0.863562i \(0.331772\pi\)
\(822\) 9.25563 9.25563i 0.322827 0.322827i
\(823\) −32.1876 32.1876i −1.12199 1.12199i −0.991442 0.130546i \(-0.958327\pi\)
−0.130546 0.991442i \(-0.541673\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33.5294 33.5294i 1.16593 1.16593i 0.182775 0.983155i \(-0.441492\pi\)
0.983155 0.182775i \(-0.0585080\pi\)
\(828\) 8.83788 + 8.83788i 0.307138 + 0.307138i
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) −2.22195 + 4.65770i −0.0771249 + 0.161671i
\(831\) 0 0
\(832\) 22.9924 22.9924i 0.797117 0.797117i
\(833\) 0 0
\(834\) 0 0
\(835\) −19.1691 54.1420i −0.663373 1.87366i
\(836\) 0 0
\(837\) 0 0
\(838\) 1.88555 + 1.88555i 0.0651353 + 0.0651353i
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) −26.8249 + 9.49739i −0.925546 + 0.327691i
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 50.4794i 1.73757i
\(845\) 78.7091 + 37.5481i 2.70768 + 1.29169i
\(846\) 0 0
\(847\) 37.7139 37.7139i 1.29586 1.29586i
\(848\) −15.9172 15.9172i −0.546599 0.546599i
\(849\) 0 0
\(850\) 0 0
\(851\) −12.8896 −0.441848
\(852\) −36.5043 + 36.5043i −1.25062 + 1.25062i
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(858\) 0 0
\(859\) 32.8267i 1.12003i 0.828481 + 0.560017i \(0.189205\pi\)
−0.828481 + 0.560017i \(0.810795\pi\)
\(860\) −9.64408 27.2392i −0.328860 0.928849i
\(861\) −106.716 −3.63686
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 22.0806i 0.751197i
\(865\) 54.2768 19.2168i 1.84547 0.653390i
\(866\) 15.1003 0.513128
\(867\) −20.8207 + 20.8207i −0.707107 + 0.707107i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −29.6460 29.6460i −1.00336 1.00336i
\(874\) 0 0
\(875\) −28.3329 + 46.2165i −0.957825 + 1.56240i
\(876\) 0 0
\(877\) 39.5532 39.5532i 1.33562 1.33562i 0.435363 0.900255i \(-0.356620\pi\)
0.900255 0.435363i \(-0.143380\pi\)
\(878\) −8.38784 8.38784i −0.283076 0.283076i
\(879\) 0 0
\(880\) 0 0
\(881\) −42.4338 −1.42963 −0.714816 0.699313i \(-0.753490\pi\)
−0.714816 + 0.699313i \(0.753490\pi\)
\(882\) 13.8039 13.8039i 0.464801 0.464801i
\(883\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 13.7558 0.462136
\(887\) 20.5913 20.5913i 0.691387 0.691387i −0.271150 0.962537i \(-0.587404\pi\)
0.962537 + 0.271150i \(0.0874040\pi\)
\(888\) −10.5918 10.5918i −0.355436 0.355436i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −8.50295 + 8.50295i −0.284700 + 0.284700i
\(893\) 0 0
\(894\) 0 0
\(895\) 31.3408 + 14.9511i 1.04761 + 0.499760i
\(896\) −49.8255 −1.66455
\(897\) −19.9469 + 19.9469i −0.666007 + 0.666007i
\(898\) 0 0
\(899\) 0 0
\(900\) 17.4106 + 21.5055i 0.580352 + 0.716850i
\(901\) 0 0
\(902\) 0 0
\(903\) 41.6015 + 41.6015i 1.38441 + 1.38441i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 31.7048 31.7048i 1.05274 1.05274i 0.0542102 0.998530i \(-0.482736\pi\)
0.998530 0.0542102i \(-0.0172641\pi\)
\(908\) 0 0
\(909\) 60.2808i 1.99939i
\(910\) −10.2846 29.0484i −0.340932 0.962944i
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 42.9236 1.41823
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) −6.90720 3.29507i −0.227724 0.108635i
\(921\) 3.90319 0.128615
\(922\) 0 0
\(923\) −82.3893 82.3893i −2.71188 2.71188i
\(924\) 0 0
\(925\) −28.3784 2.98612i −0.933078 0.0981829i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −15.4750 + 15.4750i −0.506899 + 0.506899i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −32.7820 −1.07151
\(937\) −10.9484 + 10.9484i −0.357667 + 0.357667i −0.862952 0.505285i \(-0.831387\pi\)
0.505285 + 0.862952i \(0.331387\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) −20.2935 20.2935i −0.660848 0.660848i
\(944\) 0 0
\(945\) −50.8471 24.2565i −1.65406 0.789066i
\(946\) 0 0
\(947\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(954\) 8.60826i 0.278703i
\(955\) 8.29878 17.3961i 0.268542 0.562924i
\(956\) −51.5390 −1.66689
\(957\) 0 0
\(958\) −11.7647 11.7647i −0.380100 0.380100i
\(959\) 92.9667i 3.00205i
\(960\) 5.82861 + 16.4626i 0.188118 + 0.531328i
\(961\) 31.0000 1.00000
\(962\) 11.4697 11.4697i 0.369798 0.369798i
\(963\) 0 0
\(964\) 57.2528i 1.84399i
\(965\) 0 0
\(966\) 7.47599 0.240536
\(967\) −38.6177 + 38.6177i −1.24186 + 1.24186i −0.282632 + 0.959228i \(0.591207\pi\)
−0.959228 + 0.282632i \(0.908793\pi\)
\(968\) 11.7867 + 11.7867i 0.378838 + 0.378838i
\(969\) 0 0
\(970\) 11.1167 + 5.30321i 0.356936 + 0.170276i
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) −20.3330 + 20.3330i −0.652182 + 0.652182i
\(973\) 0 0
\(974\) 8.25536i 0.264519i
\(975\) −48.5374 + 39.2952i −1.55444 + 1.25845i
\(976\) 0 0
\(977\) 8.62565 8.62565i 0.275959 0.275959i −0.555535 0.831493i \(-0.687486\pi\)
0.831493 + 0.555535i \(0.187486\pi\)
\(978\) −9.97362 9.97362i −0.318921 0.318921i
\(979\) 0 0
\(980\) 29.3208 61.4630i 0.936620 1.96336i
\(981\) 0 0
\(982\) 5.07644 5.07644i 0.161996 0.161996i
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 33.3517i 1.06321i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 15.8222i 0.503118i
\(990\) 0 0
\(991\) −43.6833 −1.38765 −0.693823 0.720146i \(-0.744075\pi\)
−0.693823 + 0.720146i \(0.744075\pi\)
\(992\) 0 0
\(993\) 26.8267 + 26.8267i 0.851318 + 0.851318i
\(994\) 30.8790i 0.979424i
\(995\) 3.08711 + 1.47270i 0.0978679 + 0.0466878i
\(996\) −18.7080 −0.592787
\(997\) 44.2190 44.2190i 1.40043 1.40043i 0.601736 0.798695i \(-0.294476\pi\)
0.798695 0.601736i \(-0.205524\pi\)
\(998\) 0 0
\(999\) 29.6546i 0.938229i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 795.2.m.a.158.11 yes 40
3.2 odd 2 inner 795.2.m.a.158.10 40
5.2 odd 4 inner 795.2.m.a.317.11 yes 40
15.2 even 4 inner 795.2.m.a.317.10 yes 40
53.52 even 2 inner 795.2.m.a.158.10 40
159.158 odd 2 CM 795.2.m.a.158.11 yes 40
265.52 odd 4 inner 795.2.m.a.317.10 yes 40
795.317 even 4 inner 795.2.m.a.317.11 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
795.2.m.a.158.10 40 3.2 odd 2 inner
795.2.m.a.158.10 40 53.52 even 2 inner
795.2.m.a.158.11 yes 40 1.1 even 1 trivial
795.2.m.a.158.11 yes 40 159.158 odd 2 CM
795.2.m.a.317.10 yes 40 15.2 even 4 inner
795.2.m.a.317.10 yes 40 265.52 odd 4 inner
795.2.m.a.317.11 yes 40 5.2 odd 4 inner
795.2.m.a.317.11 yes 40 795.317 even 4 inner