Defining parameters
| Level: | \( N \) | = | \( 795 = 3 \cdot 5 \cdot 53 \) |
| Weight: | \( k \) | = | \( 2 \) |
| Nonzero newspaces: | \( 20 \) | ||
| Newform subspaces: | \( 54 \) | ||
| Sturm bound: | \(89856\) | ||
| Trace bound: | \(10\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(795))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 23296 | 15739 | 7557 |
| Cusp forms | 21633 | 15131 | 6502 |
| Eisenstein series | 1663 | 608 | 1055 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(795))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(795))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(795)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(53))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(159))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(265))\)\(^{\oplus 2}\)