Properties

Label 795.2
Level 795
Weight 2
Dimension 15131
Nonzero newspaces 20
Newform subspaces 54
Sturm bound 89856
Trace bound 10

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 795 = 3 \cdot 5 \cdot 53 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 20 \)
Newform subspaces: \( 54 \)
Sturm bound: \(89856\)
Trace bound: \(10\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(795))\).

Total New Old
Modular forms 23296 15739 7557
Cusp forms 21633 15131 6502
Eisenstein series 1663 608 1055

Trace form

\( 15131 q + 5 q^{2} - 49 q^{3} - 95 q^{4} - q^{5} - 155 q^{6} - 96 q^{7} + 9 q^{8} - 53 q^{9} - 151 q^{10} + 20 q^{11} - 47 q^{12} - 86 q^{13} + 24 q^{14} - 75 q^{15} - 279 q^{16} + 14 q^{17} - 47 q^{18}+ \cdots - 240 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(795))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
795.2.a \(\chi_{795}(1, \cdot)\) 795.2.a.a 1 1
795.2.a.b 1
795.2.a.c 1
795.2.a.d 1
795.2.a.e 3
795.2.a.f 3
795.2.a.g 3
795.2.a.h 3
795.2.a.i 4
795.2.a.j 4
795.2.a.k 5
795.2.a.l 6
795.2.c \(\chi_{795}(319, \cdot)\) 795.2.c.a 2 1
795.2.c.b 2
795.2.c.c 4
795.2.c.d 14
795.2.c.e 30
795.2.e \(\chi_{795}(211, \cdot)\) 795.2.e.a 16 1
795.2.e.b 20
795.2.g \(\chi_{795}(529, \cdot)\) 795.2.g.a 2 1
795.2.g.b 2
795.2.g.c 2
795.2.g.d 2
795.2.g.e 24
795.2.g.f 24
795.2.i \(\chi_{795}(553, \cdot)\) 795.2.i.a 54 2
795.2.i.b 54
795.2.l \(\chi_{795}(341, \cdot)\) 795.2.l.a 144 2
795.2.m \(\chi_{795}(158, \cdot)\) 795.2.m.a 40 2
795.2.m.b 168
795.2.n \(\chi_{795}(107, \cdot)\) 795.2.n.a 4 2
795.2.n.b 204
795.2.r \(\chi_{795}(659, \cdot)\) 795.2.r.a 8 2
795.2.r.b 200
795.2.s \(\chi_{795}(613, \cdot)\) 795.2.s.a 54 2
795.2.s.b 54
795.2.u \(\chi_{795}(16, \cdot)\) 795.2.u.a 96 12
795.2.u.b 96
795.2.u.c 120
795.2.u.d 120
795.2.w \(\chi_{795}(4, \cdot)\) 795.2.w.a 336 12
795.2.w.b 336
795.2.y \(\chi_{795}(91, \cdot)\) 795.2.y.a 192 12
795.2.y.b 240
795.2.ba \(\chi_{795}(49, \cdot)\) 795.2.ba.a 624 12
795.2.bd \(\chi_{795}(22, \cdot)\) 795.2.bd.a 648 24
795.2.bd.b 648
795.2.be \(\chi_{795}(14, \cdot)\) 795.2.be.a 96 24
795.2.be.b 2400
795.2.bi \(\chi_{795}(47, \cdot)\) 795.2.bi.a 2496 24
795.2.bj \(\chi_{795}(17, \cdot)\) 795.2.bj.a 2496 24
795.2.bk \(\chi_{795}(26, \cdot)\) 795.2.bk.a 1728 24
795.2.bn \(\chi_{795}(58, \cdot)\) 795.2.bn.a 648 24
795.2.bn.b 648

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(795))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(795)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(53))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(159))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(265))\)\(^{\oplus 2}\)