| L(s) = 1 | + (0.278 − 0.278i)2-s + (−1.22 − 1.22i)3-s + 1.84i·4-s + (0.962 − 2.01i)5-s − 0.682·6-s + (3.42 − 3.42i)7-s + (1.07 + 1.07i)8-s + 2.99i·9-s + (−0.294 − 0.830i)10-s + (2.25 − 2.25i)12-s + (5.09 + 5.09i)13-s − 1.91i·14-s + (−3.65 + 1.29i)15-s − 3.09·16-s + (0.836 + 0.836i)18-s + ⋯ |
| L(s) = 1 | + (0.197 − 0.197i)2-s + (−0.707 − 0.707i)3-s + 0.922i·4-s + (0.430 − 0.902i)5-s − 0.278·6-s + (1.29 − 1.29i)7-s + (0.378 + 0.378i)8-s + 0.999i·9-s + (−0.0930 − 0.262i)10-s + (0.652 − 0.652i)12-s + (1.41 + 1.41i)13-s − 0.510i·14-s + (−0.942 + 0.333i)15-s − 0.773·16-s + (0.197 + 0.197i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 795 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.541 + 0.840i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 795 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.541 + 0.840i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.55474 - 0.848044i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.55474 - 0.848044i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (1.22 + 1.22i)T \) |
| 5 | \( 1 + (-0.962 + 2.01i)T \) |
| 53 | \( 1 + (-5.14 - 5.14i)T \) |
| good | 2 | \( 1 + (-0.278 + 0.278i)T - 2iT^{2} \) |
| 7 | \( 1 + (-3.42 + 3.42i)T - 7iT^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 + (-5.09 - 5.09i)T + 13iT^{2} \) |
| 17 | \( 1 + 17iT^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + (1.59 + 1.59i)T + 23iT^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + (-4.03 + 4.03i)T - 37iT^{2} \) |
| 41 | \( 1 - 12.7T + 41T^{2} \) |
| 43 | \( 1 + (4.95 + 4.95i)T + 43iT^{2} \) |
| 47 | \( 1 + 47iT^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + 67iT^{2} \) |
| 71 | \( 1 + 16.1T + 71T^{2} \) |
| 73 | \( 1 - 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + (4.14 + 4.14i)T + 83iT^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + (9.88 - 9.88i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.51960903864973578543250958014, −9.040591958970477094483114893260, −8.287468934843908867672092906529, −7.60518687478280533014443848160, −6.76336366186661090055508844895, −5.66983749896435204459539421684, −4.41966258732443911361026614110, −4.16866939542314113374388084292, −2.03725923370348122363733585486, −1.14022190531104015703679339958,
1.39493583370103720050711766792, 2.86374176722974038845086040889, 4.29694674155297186996627798942, 5.50331399140002626046639755411, 5.68965304965263240965760277573, 6.46966030550633823425008660275, 7.87621756584892870310976736361, 8.863137923237888132288112609169, 9.771478781157237817788353030156, 10.53510929955284734416391843458