Newspace parameters
| Level: | \( N \) | \(=\) | \( 795 = 3 \cdot 5 \cdot 53 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 795.m (of order \(4\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(6.34810696069\) |
| Analytic rank: | \(0\) |
| Dimension: | \(40\) |
| Relative dimension: | \(20\) over \(\Q(i)\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{U}(1)[D_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 158.1 | −1.96968 | + | 1.96968i | −1.22474 | − | 1.22474i | − | 5.75926i | 2.19865 | + | 0.407360i | 4.82471 | 2.79770 | − | 2.79770i | 7.40454 | + | 7.40454i | 3.00000i | −5.13300 | + | 3.52826i | |||||
| 158.2 | −1.96968 | + | 1.96968i | 1.22474 | + | 1.22474i | − | 5.75926i | −0.407360 | − | 2.19865i | −4.82471 | 2.48452 | − | 2.48452i | 7.40454 | + | 7.40454i | 3.00000i | 5.13300 | + | 3.52826i | |||||
| 158.3 | −1.79743 | + | 1.79743i | −1.22474 | − | 1.22474i | − | 4.46151i | −1.96516 | + | 1.06684i | 4.40279 | −0.365573 | + | 0.365573i | 4.42439 | + | 4.42439i | 3.00000i | 1.61466 | − | 5.44981i | |||||
| 158.4 | −1.79743 | + | 1.79743i | 1.22474 | + | 1.22474i | − | 4.46151i | −1.06684 | + | 1.96516i | −4.40279 | −3.72376 | + | 3.72376i | 4.42439 | + | 4.42439i | 3.00000i | −1.61466 | − | 5.44981i | |||||
| 158.5 | −1.38958 | + | 1.38958i | −1.22474 | − | 1.22474i | − | 1.86184i | 2.21692 | + | 0.291998i | 3.40375 | −3.65447 | + | 3.65447i | −0.191982 | − | 0.191982i | 3.00000i | −3.48633 | + | 2.67483i | |||||
| 158.6 | −1.38958 | + | 1.38958i | 1.22474 | + | 1.22474i | − | 1.86184i | −0.291998 | − | 2.21692i | −3.40375 | −0.803024 | + | 0.803024i | −0.191982 | − | 0.191982i | 3.00000i | 3.48633 | + | 2.67483i | |||||
| 158.7 | −0.938625 | + | 0.938625i | −1.22474 | − | 1.22474i | 0.237965i | −1.53930 | − | 1.62189i | 2.29915 | 3.22746 | − | 3.22746i | −2.10061 | − | 2.10061i | 3.00000i | 2.96718 | + | 0.0775213i | ||||||
| 158.8 | −0.938625 | + | 0.938625i | 1.22474 | + | 1.22474i | 0.237965i | 1.62189 | + | 1.53930i | −2.29915 | −1.89301 | + | 1.89301i | −2.10061 | − | 2.10061i | 3.00000i | −2.96718 | + | 0.0775213i | ||||||
| 158.9 | −0.278703 | + | 0.278703i | −1.22474 | − | 1.22474i | 1.84465i | −2.01818 | + | 0.962772i | 0.682680 | −1.49838 | + | 1.49838i | −1.07151 | − | 1.07151i | 3.00000i | 0.294146 | − | 0.830801i | ||||||
| 158.10 | −0.278703 | + | 0.278703i | 1.22474 | + | 1.22474i | 1.84465i | −0.962772 | + | 2.01818i | −0.682680 | 3.42853 | − | 3.42853i | −1.07151 | − | 1.07151i | 3.00000i | −0.294146 | − | 0.830801i | ||||||
| 158.11 | 0.278703 | − | 0.278703i | −1.22474 | − | 1.22474i | 1.84465i | 0.962772 | − | 2.01818i | −0.682680 | 3.42853 | − | 3.42853i | 1.07151 | + | 1.07151i | 3.00000i | −0.294146 | − | 0.830801i | ||||||
| 158.12 | 0.278703 | − | 0.278703i | 1.22474 | + | 1.22474i | 1.84465i | 2.01818 | − | 0.962772i | 0.682680 | −1.49838 | + | 1.49838i | 1.07151 | + | 1.07151i | 3.00000i | 0.294146 | − | 0.830801i | ||||||
| 158.13 | 0.938625 | − | 0.938625i | −1.22474 | − | 1.22474i | 0.237965i | −1.62189 | − | 1.53930i | −2.29915 | −1.89301 | + | 1.89301i | 2.10061 | + | 2.10061i | 3.00000i | −2.96718 | + | 0.0775213i | ||||||
| 158.14 | 0.938625 | − | 0.938625i | 1.22474 | + | 1.22474i | 0.237965i | 1.53930 | + | 1.62189i | 2.29915 | 3.22746 | − | 3.22746i | 2.10061 | + | 2.10061i | 3.00000i | 2.96718 | + | 0.0775213i | ||||||
| 158.15 | 1.38958 | − | 1.38958i | −1.22474 | − | 1.22474i | − | 1.86184i | 0.291998 | + | 2.21692i | −3.40375 | −0.803024 | + | 0.803024i | 0.191982 | + | 0.191982i | 3.00000i | 3.48633 | + | 2.67483i | |||||
| 158.16 | 1.38958 | − | 1.38958i | 1.22474 | + | 1.22474i | − | 1.86184i | −2.21692 | − | 0.291998i | 3.40375 | −3.65447 | + | 3.65447i | 0.191982 | + | 0.191982i | 3.00000i | −3.48633 | + | 2.67483i | |||||
| 158.17 | 1.79743 | − | 1.79743i | −1.22474 | − | 1.22474i | − | 4.46151i | 1.06684 | − | 1.96516i | −4.40279 | −3.72376 | + | 3.72376i | −4.42439 | − | 4.42439i | 3.00000i | −1.61466 | − | 5.44981i | |||||
| 158.18 | 1.79743 | − | 1.79743i | 1.22474 | + | 1.22474i | − | 4.46151i | 1.96516 | − | 1.06684i | 4.40279 | −0.365573 | + | 0.365573i | −4.42439 | − | 4.42439i | 3.00000i | 1.61466 | − | 5.44981i | |||||
| 158.19 | 1.96968 | − | 1.96968i | −1.22474 | − | 1.22474i | − | 5.75926i | 0.407360 | + | 2.19865i | −4.82471 | 2.48452 | − | 2.48452i | −7.40454 | − | 7.40454i | 3.00000i | 5.13300 | + | 3.52826i | |||||
| 158.20 | 1.96968 | − | 1.96968i | 1.22474 | + | 1.22474i | − | 5.75926i | −2.19865 | − | 0.407360i | 4.82471 | 2.79770 | − | 2.79770i | −7.40454 | − | 7.40454i | 3.00000i | −5.13300 | + | 3.52826i | |||||
| See all 40 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 159.d | odd | 2 | 1 | CM by \(\Q(\sqrt{-159}) \) |
| 3.b | odd | 2 | 1 | inner |
| 5.c | odd | 4 | 1 | inner |
| 15.e | even | 4 | 1 | inner |
| 53.b | even | 2 | 1 | inner |
| 265.i | odd | 4 | 1 | inner |
| 795.m | even | 4 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 795.2.m.a | ✓ | 40 |
| 3.b | odd | 2 | 1 | inner | 795.2.m.a | ✓ | 40 |
| 5.c | odd | 4 | 1 | inner | 795.2.m.a | ✓ | 40 |
| 15.e | even | 4 | 1 | inner | 795.2.m.a | ✓ | 40 |
| 53.b | even | 2 | 1 | inner | 795.2.m.a | ✓ | 40 |
| 159.d | odd | 2 | 1 | CM | 795.2.m.a | ✓ | 40 |
| 265.i | odd | 4 | 1 | inner | 795.2.m.a | ✓ | 40 |
| 795.m | even | 4 | 1 | inner | 795.2.m.a | ✓ | 40 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 795.2.m.a | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
| 795.2.m.a | ✓ | 40 | 3.b | odd | 2 | 1 | inner |
| 795.2.m.a | ✓ | 40 | 5.c | odd | 4 | 1 | inner |
| 795.2.m.a | ✓ | 40 | 15.e | even | 4 | 1 | inner |
| 795.2.m.a | ✓ | 40 | 53.b | even | 2 | 1 | inner |
| 795.2.m.a | ✓ | 40 | 159.d | odd | 2 | 1 | CM |
| 795.2.m.a | ✓ | 40 | 265.i | odd | 4 | 1 | inner |
| 795.2.m.a | ✓ | 40 | 795.m | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{20} + 120T_{2}^{16} + 4400T_{2}^{12} + 50120T_{2}^{8} + 117600T_{2}^{4} + 2809 \)
acting on \(S_{2}^{\mathrm{new}}(795, [\chi])\).