Properties

Label 795.2.m.a
Level $795$
Weight $2$
Character orbit 795.m
Analytic conductor $6.348$
Analytic rank $0$
Dimension $40$
CM discriminant -159
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [795,2,Mod(158,795)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("795.158"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(795, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 795 = 3 \cdot 5 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 795.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.34810696069\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 40 q - 160 q^{16} + 240 q^{36} + 20 q^{40} + 60 q^{42} - 140 q^{52} - 180 q^{60} + 220 q^{70} - 360 q^{81} + 260 q^{82}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
158.1 −1.96968 + 1.96968i −1.22474 1.22474i 5.75926i 2.19865 + 0.407360i 4.82471 2.79770 2.79770i 7.40454 + 7.40454i 3.00000i −5.13300 + 3.52826i
158.2 −1.96968 + 1.96968i 1.22474 + 1.22474i 5.75926i −0.407360 2.19865i −4.82471 2.48452 2.48452i 7.40454 + 7.40454i 3.00000i 5.13300 + 3.52826i
158.3 −1.79743 + 1.79743i −1.22474 1.22474i 4.46151i −1.96516 + 1.06684i 4.40279 −0.365573 + 0.365573i 4.42439 + 4.42439i 3.00000i 1.61466 5.44981i
158.4 −1.79743 + 1.79743i 1.22474 + 1.22474i 4.46151i −1.06684 + 1.96516i −4.40279 −3.72376 + 3.72376i 4.42439 + 4.42439i 3.00000i −1.61466 5.44981i
158.5 −1.38958 + 1.38958i −1.22474 1.22474i 1.86184i 2.21692 + 0.291998i 3.40375 −3.65447 + 3.65447i −0.191982 0.191982i 3.00000i −3.48633 + 2.67483i
158.6 −1.38958 + 1.38958i 1.22474 + 1.22474i 1.86184i −0.291998 2.21692i −3.40375 −0.803024 + 0.803024i −0.191982 0.191982i 3.00000i 3.48633 + 2.67483i
158.7 −0.938625 + 0.938625i −1.22474 1.22474i 0.237965i −1.53930 1.62189i 2.29915 3.22746 3.22746i −2.10061 2.10061i 3.00000i 2.96718 + 0.0775213i
158.8 −0.938625 + 0.938625i 1.22474 + 1.22474i 0.237965i 1.62189 + 1.53930i −2.29915 −1.89301 + 1.89301i −2.10061 2.10061i 3.00000i −2.96718 + 0.0775213i
158.9 −0.278703 + 0.278703i −1.22474 1.22474i 1.84465i −2.01818 + 0.962772i 0.682680 −1.49838 + 1.49838i −1.07151 1.07151i 3.00000i 0.294146 0.830801i
158.10 −0.278703 + 0.278703i 1.22474 + 1.22474i 1.84465i −0.962772 + 2.01818i −0.682680 3.42853 3.42853i −1.07151 1.07151i 3.00000i −0.294146 0.830801i
158.11 0.278703 0.278703i −1.22474 1.22474i 1.84465i 0.962772 2.01818i −0.682680 3.42853 3.42853i 1.07151 + 1.07151i 3.00000i −0.294146 0.830801i
158.12 0.278703 0.278703i 1.22474 + 1.22474i 1.84465i 2.01818 0.962772i 0.682680 −1.49838 + 1.49838i 1.07151 + 1.07151i 3.00000i 0.294146 0.830801i
158.13 0.938625 0.938625i −1.22474 1.22474i 0.237965i −1.62189 1.53930i −2.29915 −1.89301 + 1.89301i 2.10061 + 2.10061i 3.00000i −2.96718 + 0.0775213i
158.14 0.938625 0.938625i 1.22474 + 1.22474i 0.237965i 1.53930 + 1.62189i 2.29915 3.22746 3.22746i 2.10061 + 2.10061i 3.00000i 2.96718 + 0.0775213i
158.15 1.38958 1.38958i −1.22474 1.22474i 1.86184i 0.291998 + 2.21692i −3.40375 −0.803024 + 0.803024i 0.191982 + 0.191982i 3.00000i 3.48633 + 2.67483i
158.16 1.38958 1.38958i 1.22474 + 1.22474i 1.86184i −2.21692 0.291998i 3.40375 −3.65447 + 3.65447i 0.191982 + 0.191982i 3.00000i −3.48633 + 2.67483i
158.17 1.79743 1.79743i −1.22474 1.22474i 4.46151i 1.06684 1.96516i −4.40279 −3.72376 + 3.72376i −4.42439 4.42439i 3.00000i −1.61466 5.44981i
158.18 1.79743 1.79743i 1.22474 + 1.22474i 4.46151i 1.96516 1.06684i 4.40279 −0.365573 + 0.365573i −4.42439 4.42439i 3.00000i 1.61466 5.44981i
158.19 1.96968 1.96968i −1.22474 1.22474i 5.75926i 0.407360 + 2.19865i −4.82471 2.48452 2.48452i −7.40454 7.40454i 3.00000i 5.13300 + 3.52826i
158.20 1.96968 1.96968i 1.22474 + 1.22474i 5.75926i −2.19865 0.407360i 4.82471 2.79770 2.79770i −7.40454 7.40454i 3.00000i −5.13300 + 3.52826i
See all 40 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 158.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
159.d odd 2 1 CM by \(\Q(\sqrt{-159}) \)
3.b odd 2 1 inner
5.c odd 4 1 inner
15.e even 4 1 inner
53.b even 2 1 inner
265.i odd 4 1 inner
795.m even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 795.2.m.a 40
3.b odd 2 1 inner 795.2.m.a 40
5.c odd 4 1 inner 795.2.m.a 40
15.e even 4 1 inner 795.2.m.a 40
53.b even 2 1 inner 795.2.m.a 40
159.d odd 2 1 CM 795.2.m.a 40
265.i odd 4 1 inner 795.2.m.a 40
795.m even 4 1 inner 795.2.m.a 40
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
795.2.m.a 40 1.a even 1 1 trivial
795.2.m.a 40 3.b odd 2 1 inner
795.2.m.a 40 5.c odd 4 1 inner
795.2.m.a 40 15.e even 4 1 inner
795.2.m.a 40 53.b even 2 1 inner
795.2.m.a 40 159.d odd 2 1 CM
795.2.m.a 40 265.i odd 4 1 inner
795.2.m.a 40 795.m even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{20} + 120T_{2}^{16} + 4400T_{2}^{12} + 50120T_{2}^{8} + 117600T_{2}^{4} + 2809 \) acting on \(S_{2}^{\mathrm{new}}(795, [\chi])\). Copy content Toggle raw display