| L(s) = 1 | + (−0.278 − 0.278i)2-s + (1.22 − 1.22i)3-s − 1.84i·4-s + (−0.962 − 2.01i)5-s − 0.682·6-s + (3.42 + 3.42i)7-s + (−1.07 + 1.07i)8-s − 2.99i·9-s + (−0.294 + 0.830i)10-s + (−2.25 − 2.25i)12-s + (5.09 − 5.09i)13-s − 1.91i·14-s + (−3.65 − 1.29i)15-s − 3.09·16-s + (−0.836 + 0.836i)18-s + ⋯ |
| L(s) = 1 | + (−0.197 − 0.197i)2-s + (0.707 − 0.707i)3-s − 0.922i·4-s + (−0.430 − 0.902i)5-s − 0.278·6-s + (1.29 + 1.29i)7-s + (−0.378 + 0.378i)8-s − 0.999i·9-s + (−0.0930 + 0.262i)10-s + (−0.652 − 0.652i)12-s + (1.41 − 1.41i)13-s − 0.510i·14-s + (−0.942 − 0.333i)15-s − 0.773·16-s + (−0.197 + 0.197i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 795 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.541 + 0.840i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 795 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.541 + 0.840i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.893746 - 1.63853i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.893746 - 1.63853i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-1.22 + 1.22i)T \) |
| 5 | \( 1 + (0.962 + 2.01i)T \) |
| 53 | \( 1 + (5.14 - 5.14i)T \) |
| good | 2 | \( 1 + (0.278 + 0.278i)T + 2iT^{2} \) |
| 7 | \( 1 + (-3.42 - 3.42i)T + 7iT^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 + (-5.09 + 5.09i)T - 13iT^{2} \) |
| 17 | \( 1 - 17iT^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + (-1.59 + 1.59i)T - 23iT^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + (-4.03 - 4.03i)T + 37iT^{2} \) |
| 41 | \( 1 + 12.7T + 41T^{2} \) |
| 43 | \( 1 + (4.95 - 4.95i)T - 43iT^{2} \) |
| 47 | \( 1 - 47iT^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 - 67iT^{2} \) |
| 71 | \( 1 - 16.1T + 71T^{2} \) |
| 73 | \( 1 + 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + (-4.14 + 4.14i)T - 83iT^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + (9.88 + 9.88i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.797150385955404470635388852959, −8.782678340323995625388442043169, −8.459548553303518704707594713479, −7.86798144359255679511050570855, −6.32557756956705457067034123816, −5.53655793131697389173154540259, −4.75593946197302173934046000694, −3.16823176255189050241278365402, −1.85813549134398871283535280316, −1.02503322901790325358678093700,
1.93086234382965387346065830155, 3.52558539886320846882491210248, 3.88854316435496612843582320795, 4.79086196074200983629524676971, 6.64567236778367154085617925844, 7.28715484413848987699934803104, 8.122272889604856198759094305558, 8.575829074039863523412493635430, 9.654128647286726200130187603318, 10.72319887700231676495212612375