Properties

Label 7865.2.a.w.1.4
Level $7865$
Weight $2$
Character 7865.1
Self dual yes
Analytic conductor $62.802$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7865,2,Mod(1,7865)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7865, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7865.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7865 = 5 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7865.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,-1,2,15,9,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.8023411897\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 16x^{7} + 14x^{6} + 86x^{5} - 57x^{4} - 179x^{3} + 64x^{2} + 118x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 715)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.13118\) of defining polynomial
Character \(\chi\) \(=\) 7865.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.13118 q^{2} -3.33877 q^{3} -0.720430 q^{4} +1.00000 q^{5} +3.77675 q^{6} +4.42443 q^{7} +3.07730 q^{8} +8.14739 q^{9} -1.13118 q^{10} +2.40535 q^{12} +1.00000 q^{13} -5.00483 q^{14} -3.33877 q^{15} -2.04012 q^{16} -2.59407 q^{17} -9.21618 q^{18} -5.87796 q^{19} -0.720430 q^{20} -14.7722 q^{21} +2.18940 q^{23} -10.2744 q^{24} +1.00000 q^{25} -1.13118 q^{26} -17.1860 q^{27} -3.18749 q^{28} -3.69729 q^{29} +3.77675 q^{30} +0.431901 q^{31} -3.84685 q^{32} +2.93436 q^{34} +4.42443 q^{35} -5.86962 q^{36} -6.49884 q^{37} +6.64904 q^{38} -3.33877 q^{39} +3.07730 q^{40} +6.74312 q^{41} +16.7100 q^{42} -7.75955 q^{43} +8.14739 q^{45} -2.47661 q^{46} +8.34232 q^{47} +6.81150 q^{48} +12.5756 q^{49} -1.13118 q^{50} +8.66101 q^{51} -0.720430 q^{52} +3.37912 q^{53} +19.4404 q^{54} +13.6153 q^{56} +19.6252 q^{57} +4.18230 q^{58} +6.43744 q^{59} +2.40535 q^{60} -14.9657 q^{61} -0.488559 q^{62} +36.0476 q^{63} +8.43173 q^{64} +1.00000 q^{65} -3.21119 q^{67} +1.86884 q^{68} -7.30990 q^{69} -5.00483 q^{70} -15.1767 q^{71} +25.0720 q^{72} -9.79960 q^{73} +7.35136 q^{74} -3.33877 q^{75} +4.23466 q^{76} +3.77675 q^{78} +12.1235 q^{79} -2.04012 q^{80} +32.9378 q^{81} -7.62768 q^{82} +10.2593 q^{83} +10.6423 q^{84} -2.59407 q^{85} +8.77745 q^{86} +12.3444 q^{87} -3.80313 q^{89} -9.21618 q^{90} +4.42443 q^{91} -1.57731 q^{92} -1.44202 q^{93} -9.43667 q^{94} -5.87796 q^{95} +12.8438 q^{96} +0.336593 q^{97} -14.2253 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - q^{2} + 2 q^{3} + 15 q^{4} + 9 q^{5} + q^{6} + 4 q^{7} - 3 q^{8} + 23 q^{9} - q^{10} + 6 q^{12} + 9 q^{13} + 16 q^{14} + 2 q^{15} + 15 q^{16} - 13 q^{17} - 3 q^{18} + 3 q^{19} + 15 q^{20} - 14 q^{21}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.13118 −0.799866 −0.399933 0.916544i \(-0.630967\pi\)
−0.399933 + 0.916544i \(0.630967\pi\)
\(3\) −3.33877 −1.92764 −0.963820 0.266553i \(-0.914115\pi\)
−0.963820 + 0.266553i \(0.914115\pi\)
\(4\) −0.720430 −0.360215
\(5\) 1.00000 0.447214
\(6\) 3.77675 1.54185
\(7\) 4.42443 1.67228 0.836139 0.548518i \(-0.184808\pi\)
0.836139 + 0.548518i \(0.184808\pi\)
\(8\) 3.07730 1.08799
\(9\) 8.14739 2.71580
\(10\) −1.13118 −0.357711
\(11\) 0 0
\(12\) 2.40535 0.694365
\(13\) 1.00000 0.277350
\(14\) −5.00483 −1.33760
\(15\) −3.33877 −0.862067
\(16\) −2.04012 −0.510030
\(17\) −2.59407 −0.629154 −0.314577 0.949232i \(-0.601863\pi\)
−0.314577 + 0.949232i \(0.601863\pi\)
\(18\) −9.21618 −2.17227
\(19\) −5.87796 −1.34850 −0.674248 0.738505i \(-0.735532\pi\)
−0.674248 + 0.738505i \(0.735532\pi\)
\(20\) −0.720430 −0.161093
\(21\) −14.7722 −3.22355
\(22\) 0 0
\(23\) 2.18940 0.456521 0.228261 0.973600i \(-0.426696\pi\)
0.228261 + 0.973600i \(0.426696\pi\)
\(24\) −10.2744 −2.09725
\(25\) 1.00000 0.200000
\(26\) −1.13118 −0.221843
\(27\) −17.1860 −3.30744
\(28\) −3.18749 −0.602379
\(29\) −3.69729 −0.686569 −0.343284 0.939232i \(-0.611539\pi\)
−0.343284 + 0.939232i \(0.611539\pi\)
\(30\) 3.77675 0.689538
\(31\) 0.431901 0.0775718 0.0387859 0.999248i \(-0.487651\pi\)
0.0387859 + 0.999248i \(0.487651\pi\)
\(32\) −3.84685 −0.680033
\(33\) 0 0
\(34\) 2.93436 0.503239
\(35\) 4.42443 0.747865
\(36\) −5.86962 −0.978271
\(37\) −6.49884 −1.06840 −0.534201 0.845357i \(-0.679387\pi\)
−0.534201 + 0.845357i \(0.679387\pi\)
\(38\) 6.64904 1.07862
\(39\) −3.33877 −0.534631
\(40\) 3.07730 0.486564
\(41\) 6.74312 1.05310 0.526549 0.850145i \(-0.323486\pi\)
0.526549 + 0.850145i \(0.323486\pi\)
\(42\) 16.7100 2.57841
\(43\) −7.75955 −1.18332 −0.591660 0.806188i \(-0.701527\pi\)
−0.591660 + 0.806188i \(0.701527\pi\)
\(44\) 0 0
\(45\) 8.14739 1.21454
\(46\) −2.47661 −0.365156
\(47\) 8.34232 1.21685 0.608426 0.793611i \(-0.291801\pi\)
0.608426 + 0.793611i \(0.291801\pi\)
\(48\) 6.81150 0.983155
\(49\) 12.5756 1.79651
\(50\) −1.13118 −0.159973
\(51\) 8.66101 1.21278
\(52\) −0.720430 −0.0999056
\(53\) 3.37912 0.464158 0.232079 0.972697i \(-0.425447\pi\)
0.232079 + 0.972697i \(0.425447\pi\)
\(54\) 19.4404 2.64551
\(55\) 0 0
\(56\) 13.6153 1.81942
\(57\) 19.6252 2.59942
\(58\) 4.18230 0.549163
\(59\) 6.43744 0.838084 0.419042 0.907967i \(-0.362366\pi\)
0.419042 + 0.907967i \(0.362366\pi\)
\(60\) 2.40535 0.310529
\(61\) −14.9657 −1.91616 −0.958079 0.286505i \(-0.907506\pi\)
−0.958079 + 0.286505i \(0.907506\pi\)
\(62\) −0.488559 −0.0620470
\(63\) 36.0476 4.54157
\(64\) 8.43173 1.05397
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) −3.21119 −0.392309 −0.196155 0.980573i \(-0.562845\pi\)
−0.196155 + 0.980573i \(0.562845\pi\)
\(68\) 1.86884 0.226631
\(69\) −7.30990 −0.880009
\(70\) −5.00483 −0.598192
\(71\) −15.1767 −1.80114 −0.900572 0.434707i \(-0.856852\pi\)
−0.900572 + 0.434707i \(0.856852\pi\)
\(72\) 25.0720 2.95476
\(73\) −9.79960 −1.14696 −0.573478 0.819221i \(-0.694406\pi\)
−0.573478 + 0.819221i \(0.694406\pi\)
\(74\) 7.35136 0.854578
\(75\) −3.33877 −0.385528
\(76\) 4.23466 0.485749
\(77\) 0 0
\(78\) 3.77675 0.427633
\(79\) 12.1235 1.36400 0.681999 0.731354i \(-0.261111\pi\)
0.681999 + 0.731354i \(0.261111\pi\)
\(80\) −2.04012 −0.228093
\(81\) 32.9378 3.65976
\(82\) −7.62768 −0.842337
\(83\) 10.2593 1.12610 0.563050 0.826423i \(-0.309628\pi\)
0.563050 + 0.826423i \(0.309628\pi\)
\(84\) 10.6423 1.16117
\(85\) −2.59407 −0.281366
\(86\) 8.77745 0.946497
\(87\) 12.3444 1.32346
\(88\) 0 0
\(89\) −3.80313 −0.403131 −0.201565 0.979475i \(-0.564603\pi\)
−0.201565 + 0.979475i \(0.564603\pi\)
\(90\) −9.21618 −0.971470
\(91\) 4.42443 0.463806
\(92\) −1.57731 −0.164446
\(93\) −1.44202 −0.149531
\(94\) −9.43667 −0.973318
\(95\) −5.87796 −0.603066
\(96\) 12.8438 1.31086
\(97\) 0.336593 0.0341759 0.0170879 0.999854i \(-0.494560\pi\)
0.0170879 + 0.999854i \(0.494560\pi\)
\(98\) −14.2253 −1.43697
\(99\) 0 0
\(100\) −0.720430 −0.0720430
\(101\) 5.29201 0.526575 0.263288 0.964717i \(-0.415193\pi\)
0.263288 + 0.964717i \(0.415193\pi\)
\(102\) −9.79716 −0.970064
\(103\) 12.3861 1.22044 0.610218 0.792234i \(-0.291082\pi\)
0.610218 + 0.792234i \(0.291082\pi\)
\(104\) 3.07730 0.301754
\(105\) −14.7722 −1.44162
\(106\) −3.82240 −0.371264
\(107\) 3.29272 0.318319 0.159159 0.987253i \(-0.449122\pi\)
0.159159 + 0.987253i \(0.449122\pi\)
\(108\) 12.3813 1.19139
\(109\) 2.22914 0.213513 0.106757 0.994285i \(-0.465953\pi\)
0.106757 + 0.994285i \(0.465953\pi\)
\(110\) 0 0
\(111\) 21.6981 2.05950
\(112\) −9.02637 −0.852912
\(113\) 8.35938 0.786384 0.393192 0.919456i \(-0.371371\pi\)
0.393192 + 0.919456i \(0.371371\pi\)
\(114\) −22.1996 −2.07918
\(115\) 2.18940 0.204163
\(116\) 2.66363 0.247312
\(117\) 8.14739 0.753227
\(118\) −7.28191 −0.670354
\(119\) −11.4773 −1.05212
\(120\) −10.2744 −0.937920
\(121\) 0 0
\(122\) 16.9289 1.53267
\(123\) −22.5137 −2.02999
\(124\) −0.311155 −0.0279425
\(125\) 1.00000 0.0894427
\(126\) −40.7763 −3.63264
\(127\) −6.08018 −0.539529 −0.269764 0.962926i \(-0.586946\pi\)
−0.269764 + 0.962926i \(0.586946\pi\)
\(128\) −1.84411 −0.162998
\(129\) 25.9073 2.28101
\(130\) −1.13118 −0.0992111
\(131\) 6.07608 0.530870 0.265435 0.964129i \(-0.414484\pi\)
0.265435 + 0.964129i \(0.414484\pi\)
\(132\) 0 0
\(133\) −26.0066 −2.25506
\(134\) 3.63244 0.313795
\(135\) −17.1860 −1.47913
\(136\) −7.98273 −0.684513
\(137\) −11.7293 −1.00210 −0.501052 0.865417i \(-0.667053\pi\)
−0.501052 + 0.865417i \(0.667053\pi\)
\(138\) 8.26882 0.703889
\(139\) 1.95677 0.165971 0.0829856 0.996551i \(-0.473554\pi\)
0.0829856 + 0.996551i \(0.473554\pi\)
\(140\) −3.18749 −0.269392
\(141\) −27.8531 −2.34565
\(142\) 17.1676 1.44067
\(143\) 0 0
\(144\) −16.6217 −1.38514
\(145\) −3.69729 −0.307043
\(146\) 11.0851 0.917411
\(147\) −41.9870 −3.46303
\(148\) 4.68196 0.384854
\(149\) −12.7341 −1.04322 −0.521609 0.853185i \(-0.674668\pi\)
−0.521609 + 0.853185i \(0.674668\pi\)
\(150\) 3.77675 0.308371
\(151\) 3.51593 0.286123 0.143061 0.989714i \(-0.454305\pi\)
0.143061 + 0.989714i \(0.454305\pi\)
\(152\) −18.0882 −1.46715
\(153\) −21.1349 −1.70866
\(154\) 0 0
\(155\) 0.431901 0.0346912
\(156\) 2.40535 0.192582
\(157\) 4.43087 0.353622 0.176811 0.984245i \(-0.443422\pi\)
0.176811 + 0.984245i \(0.443422\pi\)
\(158\) −13.7138 −1.09101
\(159\) −11.2821 −0.894731
\(160\) −3.84685 −0.304120
\(161\) 9.68684 0.763430
\(162\) −37.2587 −2.92732
\(163\) 18.7596 1.46936 0.734681 0.678413i \(-0.237332\pi\)
0.734681 + 0.678413i \(0.237332\pi\)
\(164\) −4.85794 −0.379342
\(165\) 0 0
\(166\) −11.6051 −0.900729
\(167\) −21.2041 −1.64082 −0.820409 0.571776i \(-0.806254\pi\)
−0.820409 + 0.571776i \(0.806254\pi\)
\(168\) −45.4583 −3.50719
\(169\) 1.00000 0.0769231
\(170\) 2.93436 0.225055
\(171\) −47.8901 −3.66224
\(172\) 5.59021 0.426249
\(173\) −13.6030 −1.03422 −0.517110 0.855919i \(-0.672992\pi\)
−0.517110 + 0.855919i \(0.672992\pi\)
\(174\) −13.9637 −1.05859
\(175\) 4.42443 0.334455
\(176\) 0 0
\(177\) −21.4932 −1.61552
\(178\) 4.30203 0.322451
\(179\) 12.6133 0.942760 0.471380 0.881930i \(-0.343756\pi\)
0.471380 + 0.881930i \(0.343756\pi\)
\(180\) −5.86962 −0.437496
\(181\) 14.8932 1.10701 0.553503 0.832847i \(-0.313291\pi\)
0.553503 + 0.832847i \(0.313291\pi\)
\(182\) −5.00483 −0.370983
\(183\) 49.9669 3.69366
\(184\) 6.73744 0.496690
\(185\) −6.49884 −0.477804
\(186\) 1.63119 0.119604
\(187\) 0 0
\(188\) −6.01005 −0.438328
\(189\) −76.0381 −5.53096
\(190\) 6.64904 0.482372
\(191\) 19.3365 1.39914 0.699570 0.714564i \(-0.253375\pi\)
0.699570 + 0.714564i \(0.253375\pi\)
\(192\) −28.1516 −2.03167
\(193\) 15.2407 1.09705 0.548523 0.836135i \(-0.315190\pi\)
0.548523 + 0.836135i \(0.315190\pi\)
\(194\) −0.380748 −0.0273361
\(195\) −3.33877 −0.239094
\(196\) −9.05982 −0.647130
\(197\) −17.5628 −1.25130 −0.625648 0.780106i \(-0.715165\pi\)
−0.625648 + 0.780106i \(0.715165\pi\)
\(198\) 0 0
\(199\) 26.1437 1.85328 0.926639 0.375953i \(-0.122685\pi\)
0.926639 + 0.375953i \(0.122685\pi\)
\(200\) 3.07730 0.217598
\(201\) 10.7214 0.756231
\(202\) −5.98623 −0.421189
\(203\) −16.3584 −1.14813
\(204\) −6.23965 −0.436863
\(205\) 6.74312 0.470960
\(206\) −14.0109 −0.976184
\(207\) 17.8379 1.23982
\(208\) −2.04012 −0.141457
\(209\) 0 0
\(210\) 16.7100 1.15310
\(211\) 9.73935 0.670485 0.335242 0.942132i \(-0.391182\pi\)
0.335242 + 0.942132i \(0.391182\pi\)
\(212\) −2.43442 −0.167197
\(213\) 50.6716 3.47196
\(214\) −3.72466 −0.254612
\(215\) −7.75955 −0.529197
\(216\) −52.8864 −3.59846
\(217\) 1.91092 0.129722
\(218\) −2.52157 −0.170782
\(219\) 32.7186 2.21092
\(220\) 0 0
\(221\) −2.59407 −0.174496
\(222\) −24.5445 −1.64732
\(223\) −0.349873 −0.0234292 −0.0117146 0.999931i \(-0.503729\pi\)
−0.0117146 + 0.999931i \(0.503729\pi\)
\(224\) −17.0201 −1.13720
\(225\) 8.14739 0.543160
\(226\) −9.45597 −0.629002
\(227\) −21.5022 −1.42715 −0.713574 0.700580i \(-0.752925\pi\)
−0.713574 + 0.700580i \(0.752925\pi\)
\(228\) −14.1386 −0.936349
\(229\) 25.6393 1.69429 0.847146 0.531360i \(-0.178319\pi\)
0.847146 + 0.531360i \(0.178319\pi\)
\(230\) −2.47661 −0.163303
\(231\) 0 0
\(232\) −11.3776 −0.746979
\(233\) 2.33138 0.152733 0.0763667 0.997080i \(-0.475668\pi\)
0.0763667 + 0.997080i \(0.475668\pi\)
\(234\) −9.21618 −0.602480
\(235\) 8.34232 0.544193
\(236\) −4.63773 −0.301890
\(237\) −40.4775 −2.62930
\(238\) 12.9829 0.841555
\(239\) −10.8582 −0.702359 −0.351179 0.936308i \(-0.614219\pi\)
−0.351179 + 0.936308i \(0.614219\pi\)
\(240\) 6.81150 0.439680
\(241\) 20.2866 1.30678 0.653388 0.757023i \(-0.273347\pi\)
0.653388 + 0.757023i \(0.273347\pi\)
\(242\) 0 0
\(243\) −58.4140 −3.74726
\(244\) 10.7817 0.690228
\(245\) 12.5756 0.803424
\(246\) 25.4671 1.62372
\(247\) −5.87796 −0.374006
\(248\) 1.32909 0.0843973
\(249\) −34.2533 −2.17072
\(250\) −1.13118 −0.0715422
\(251\) 12.2027 0.770229 0.385115 0.922869i \(-0.374162\pi\)
0.385115 + 0.922869i \(0.374162\pi\)
\(252\) −25.9697 −1.63594
\(253\) 0 0
\(254\) 6.87779 0.431551
\(255\) 8.66101 0.542373
\(256\) −14.7774 −0.923590
\(257\) −8.21285 −0.512303 −0.256152 0.966637i \(-0.582455\pi\)
−0.256152 + 0.966637i \(0.582455\pi\)
\(258\) −29.3059 −1.82451
\(259\) −28.7536 −1.78666
\(260\) −0.720430 −0.0446792
\(261\) −30.1232 −1.86458
\(262\) −6.87315 −0.424625
\(263\) 0.260793 0.0160812 0.00804060 0.999968i \(-0.497441\pi\)
0.00804060 + 0.999968i \(0.497441\pi\)
\(264\) 0 0
\(265\) 3.37912 0.207578
\(266\) 29.4182 1.80375
\(267\) 12.6978 0.777091
\(268\) 2.31344 0.141316
\(269\) 10.9411 0.667094 0.333547 0.942734i \(-0.391754\pi\)
0.333547 + 0.942734i \(0.391754\pi\)
\(270\) 19.4404 1.18311
\(271\) 18.6262 1.13146 0.565731 0.824590i \(-0.308594\pi\)
0.565731 + 0.824590i \(0.308594\pi\)
\(272\) 5.29222 0.320888
\(273\) −14.7722 −0.894052
\(274\) 13.2680 0.801548
\(275\) 0 0
\(276\) 5.26627 0.316992
\(277\) 12.9722 0.779426 0.389713 0.920936i \(-0.372574\pi\)
0.389713 + 0.920936i \(0.372574\pi\)
\(278\) −2.21346 −0.132755
\(279\) 3.51887 0.210669
\(280\) 13.6153 0.813669
\(281\) 12.9630 0.773310 0.386655 0.922224i \(-0.373630\pi\)
0.386655 + 0.922224i \(0.373630\pi\)
\(282\) 31.5069 1.87621
\(283\) 13.4951 0.802198 0.401099 0.916035i \(-0.368628\pi\)
0.401099 + 0.916035i \(0.368628\pi\)
\(284\) 10.9338 0.648799
\(285\) 19.6252 1.16249
\(286\) 0 0
\(287\) 29.8344 1.76107
\(288\) −31.3418 −1.84683
\(289\) −10.2708 −0.604165
\(290\) 4.18230 0.245593
\(291\) −1.12381 −0.0658788
\(292\) 7.05992 0.413151
\(293\) 12.0529 0.704139 0.352070 0.935974i \(-0.385478\pi\)
0.352070 + 0.935974i \(0.385478\pi\)
\(294\) 47.4949 2.76996
\(295\) 6.43744 0.374802
\(296\) −19.9989 −1.16241
\(297\) 0 0
\(298\) 14.4046 0.834434
\(299\) 2.18940 0.126616
\(300\) 2.40535 0.138873
\(301\) −34.3316 −1.97884
\(302\) −3.97716 −0.228860
\(303\) −17.6688 −1.01505
\(304\) 11.9918 0.687774
\(305\) −14.9657 −0.856932
\(306\) 23.9074 1.36670
\(307\) −20.2564 −1.15610 −0.578048 0.816003i \(-0.696185\pi\)
−0.578048 + 0.816003i \(0.696185\pi\)
\(308\) 0 0
\(309\) −41.3542 −2.35256
\(310\) −0.488559 −0.0277483
\(311\) 16.7105 0.947566 0.473783 0.880642i \(-0.342888\pi\)
0.473783 + 0.880642i \(0.342888\pi\)
\(312\) −10.2744 −0.581673
\(313\) −15.2117 −0.859818 −0.429909 0.902872i \(-0.641454\pi\)
−0.429909 + 0.902872i \(0.641454\pi\)
\(314\) −5.01211 −0.282850
\(315\) 36.0476 2.03105
\(316\) −8.73411 −0.491332
\(317\) −3.33665 −0.187405 −0.0937025 0.995600i \(-0.529870\pi\)
−0.0937025 + 0.995600i \(0.529870\pi\)
\(318\) 12.7621 0.715664
\(319\) 0 0
\(320\) 8.43173 0.471348
\(321\) −10.9936 −0.613604
\(322\) −10.9576 −0.610642
\(323\) 15.2478 0.848413
\(324\) −23.7294 −1.31830
\(325\) 1.00000 0.0554700
\(326\) −21.2205 −1.17529
\(327\) −7.44260 −0.411577
\(328\) 20.7506 1.14576
\(329\) 36.9100 2.03491
\(330\) 0 0
\(331\) −23.8002 −1.30818 −0.654089 0.756417i \(-0.726948\pi\)
−0.654089 + 0.756417i \(0.726948\pi\)
\(332\) −7.39107 −0.405638
\(333\) −52.9486 −2.90156
\(334\) 23.9856 1.31243
\(335\) −3.21119 −0.175446
\(336\) 30.1370 1.64411
\(337\) −8.96215 −0.488199 −0.244100 0.969750i \(-0.578492\pi\)
−0.244100 + 0.969750i \(0.578492\pi\)
\(338\) −1.13118 −0.0615281
\(339\) −27.9101 −1.51587
\(340\) 1.86884 0.101352
\(341\) 0 0
\(342\) 54.1723 2.92930
\(343\) 24.6688 1.33199
\(344\) −23.8784 −1.28744
\(345\) −7.30990 −0.393552
\(346\) 15.3875 0.827236
\(347\) 9.88257 0.530524 0.265262 0.964176i \(-0.414542\pi\)
0.265262 + 0.964176i \(0.414542\pi\)
\(348\) −8.89327 −0.476729
\(349\) −22.1831 −1.18744 −0.593718 0.804674i \(-0.702340\pi\)
−0.593718 + 0.804674i \(0.702340\pi\)
\(350\) −5.00483 −0.267519
\(351\) −17.1860 −0.917319
\(352\) 0 0
\(353\) −2.47522 −0.131743 −0.0658714 0.997828i \(-0.520983\pi\)
−0.0658714 + 0.997828i \(0.520983\pi\)
\(354\) 24.3126 1.29220
\(355\) −15.1767 −0.805496
\(356\) 2.73989 0.145214
\(357\) 38.3200 2.02811
\(358\) −14.2679 −0.754081
\(359\) 7.35173 0.388009 0.194005 0.981001i \(-0.437852\pi\)
0.194005 + 0.981001i \(0.437852\pi\)
\(360\) 25.0720 1.32141
\(361\) 15.5504 0.818444
\(362\) −16.8469 −0.885455
\(363\) 0 0
\(364\) −3.18749 −0.167070
\(365\) −9.79960 −0.512934
\(366\) −56.5216 −2.95443
\(367\) −18.9963 −0.991600 −0.495800 0.868437i \(-0.665125\pi\)
−0.495800 + 0.868437i \(0.665125\pi\)
\(368\) −4.46664 −0.232840
\(369\) 54.9388 2.86000
\(370\) 7.35136 0.382179
\(371\) 14.9507 0.776202
\(372\) 1.03887 0.0538631
\(373\) 28.3356 1.46716 0.733582 0.679601i \(-0.237847\pi\)
0.733582 + 0.679601i \(0.237847\pi\)
\(374\) 0 0
\(375\) −3.33877 −0.172413
\(376\) 25.6718 1.32392
\(377\) −3.69729 −0.190420
\(378\) 86.0129 4.42402
\(379\) 8.72609 0.448229 0.224114 0.974563i \(-0.428051\pi\)
0.224114 + 0.974563i \(0.428051\pi\)
\(380\) 4.23466 0.217233
\(381\) 20.3003 1.04002
\(382\) −21.8731 −1.11912
\(383\) 19.7049 1.00687 0.503436 0.864032i \(-0.332069\pi\)
0.503436 + 0.864032i \(0.332069\pi\)
\(384\) 6.15705 0.314201
\(385\) 0 0
\(386\) −17.2399 −0.877490
\(387\) −63.2201 −3.21366
\(388\) −0.242492 −0.0123107
\(389\) 15.9784 0.810135 0.405067 0.914287i \(-0.367248\pi\)
0.405067 + 0.914287i \(0.367248\pi\)
\(390\) 3.77675 0.191243
\(391\) −5.67945 −0.287222
\(392\) 38.6988 1.95458
\(393\) −20.2867 −1.02333
\(394\) 19.8667 1.00087
\(395\) 12.1235 0.609998
\(396\) 0 0
\(397\) 12.5518 0.629956 0.314978 0.949099i \(-0.398003\pi\)
0.314978 + 0.949099i \(0.398003\pi\)
\(398\) −29.5732 −1.48237
\(399\) 86.8302 4.34695
\(400\) −2.04012 −0.102006
\(401\) 11.6966 0.584102 0.292051 0.956403i \(-0.405662\pi\)
0.292051 + 0.956403i \(0.405662\pi\)
\(402\) −12.1279 −0.604883
\(403\) 0.431901 0.0215145
\(404\) −3.81252 −0.189680
\(405\) 32.9378 1.63669
\(406\) 18.5043 0.918352
\(407\) 0 0
\(408\) 26.6525 1.31950
\(409\) 6.97614 0.344948 0.172474 0.985014i \(-0.444824\pi\)
0.172474 + 0.985014i \(0.444824\pi\)
\(410\) −7.62768 −0.376704
\(411\) 39.1615 1.93169
\(412\) −8.92329 −0.439619
\(413\) 28.4820 1.40151
\(414\) −20.1779 −0.991689
\(415\) 10.2593 0.503607
\(416\) −3.84685 −0.188607
\(417\) −6.53322 −0.319933
\(418\) 0 0
\(419\) 40.4814 1.97765 0.988824 0.149087i \(-0.0476335\pi\)
0.988824 + 0.149087i \(0.0476335\pi\)
\(420\) 10.6423 0.519291
\(421\) −21.6528 −1.05529 −0.527647 0.849464i \(-0.676926\pi\)
−0.527647 + 0.849464i \(0.676926\pi\)
\(422\) −11.0170 −0.536298
\(423\) 67.9682 3.30472
\(424\) 10.3986 0.504999
\(425\) −2.59407 −0.125831
\(426\) −57.3187 −2.77710
\(427\) −66.2145 −3.20435
\(428\) −2.37217 −0.114663
\(429\) 0 0
\(430\) 8.77745 0.423286
\(431\) 11.0342 0.531499 0.265749 0.964042i \(-0.414381\pi\)
0.265749 + 0.964042i \(0.414381\pi\)
\(432\) 35.0615 1.68690
\(433\) −23.7361 −1.14068 −0.570342 0.821407i \(-0.693189\pi\)
−0.570342 + 0.821407i \(0.693189\pi\)
\(434\) −2.16159 −0.103760
\(435\) 12.3444 0.591868
\(436\) −1.60594 −0.0769107
\(437\) −12.8692 −0.615618
\(438\) −37.0107 −1.76844
\(439\) 11.7722 0.561857 0.280929 0.959729i \(-0.409358\pi\)
0.280929 + 0.959729i \(0.409358\pi\)
\(440\) 0 0
\(441\) 102.458 4.87896
\(442\) 2.93436 0.139573
\(443\) 1.63575 0.0777167 0.0388583 0.999245i \(-0.487628\pi\)
0.0388583 + 0.999245i \(0.487628\pi\)
\(444\) −15.6320 −0.741861
\(445\) −3.80313 −0.180286
\(446\) 0.395770 0.0187402
\(447\) 42.5162 2.01095
\(448\) 37.3056 1.76252
\(449\) −34.4135 −1.62407 −0.812036 0.583608i \(-0.801641\pi\)
−0.812036 + 0.583608i \(0.801641\pi\)
\(450\) −9.21618 −0.434455
\(451\) 0 0
\(452\) −6.02235 −0.283267
\(453\) −11.7389 −0.551541
\(454\) 24.3228 1.14153
\(455\) 4.42443 0.207420
\(456\) 60.3925 2.82814
\(457\) 32.2262 1.50748 0.753739 0.657173i \(-0.228248\pi\)
0.753739 + 0.657173i \(0.228248\pi\)
\(458\) −29.0027 −1.35521
\(459\) 44.5816 2.08089
\(460\) −1.57731 −0.0735424
\(461\) 0.849990 0.0395880 0.0197940 0.999804i \(-0.493699\pi\)
0.0197940 + 0.999804i \(0.493699\pi\)
\(462\) 0 0
\(463\) 18.7174 0.869872 0.434936 0.900461i \(-0.356771\pi\)
0.434936 + 0.900461i \(0.356771\pi\)
\(464\) 7.54291 0.350171
\(465\) −1.44202 −0.0668721
\(466\) −2.63721 −0.122166
\(467\) −28.8534 −1.33518 −0.667589 0.744530i \(-0.732674\pi\)
−0.667589 + 0.744530i \(0.732674\pi\)
\(468\) −5.86962 −0.271324
\(469\) −14.2077 −0.656050
\(470\) −9.43667 −0.435281
\(471\) −14.7937 −0.681656
\(472\) 19.8099 0.911826
\(473\) 0 0
\(474\) 45.7874 2.10308
\(475\) −5.87796 −0.269699
\(476\) 8.26857 0.378989
\(477\) 27.5311 1.26056
\(478\) 12.2826 0.561793
\(479\) 11.3098 0.516760 0.258380 0.966043i \(-0.416811\pi\)
0.258380 + 0.966043i \(0.416811\pi\)
\(480\) 12.8438 0.586234
\(481\) −6.49884 −0.296321
\(482\) −22.9478 −1.04525
\(483\) −32.3422 −1.47162
\(484\) 0 0
\(485\) 0.336593 0.0152839
\(486\) 66.0768 2.99731
\(487\) 27.3173 1.23786 0.618932 0.785444i \(-0.287566\pi\)
0.618932 + 0.785444i \(0.287566\pi\)
\(488\) −46.0538 −2.08476
\(489\) −62.6339 −2.83240
\(490\) −14.2253 −0.642632
\(491\) 1.94926 0.0879689 0.0439845 0.999032i \(-0.485995\pi\)
0.0439845 + 0.999032i \(0.485995\pi\)
\(492\) 16.2196 0.731234
\(493\) 9.59102 0.431958
\(494\) 6.64904 0.299154
\(495\) 0 0
\(496\) −0.881131 −0.0395640
\(497\) −67.1483 −3.01201
\(498\) 38.7467 1.73628
\(499\) 25.9632 1.16227 0.581136 0.813806i \(-0.302608\pi\)
0.581136 + 0.813806i \(0.302608\pi\)
\(500\) −0.720430 −0.0322186
\(501\) 70.7955 3.16291
\(502\) −13.8035 −0.616080
\(503\) −4.78726 −0.213453 −0.106727 0.994288i \(-0.534037\pi\)
−0.106727 + 0.994288i \(0.534037\pi\)
\(504\) 110.929 4.94118
\(505\) 5.29201 0.235492
\(506\) 0 0
\(507\) −3.33877 −0.148280
\(508\) 4.38034 0.194346
\(509\) −0.644478 −0.0285660 −0.0142830 0.999898i \(-0.504547\pi\)
−0.0142830 + 0.999898i \(0.504547\pi\)
\(510\) −9.79716 −0.433826
\(511\) −43.3576 −1.91803
\(512\) 20.4042 0.901745
\(513\) 101.018 4.46007
\(514\) 9.29022 0.409774
\(515\) 12.3861 0.545795
\(516\) −18.6644 −0.821656
\(517\) 0 0
\(518\) 32.5256 1.42909
\(519\) 45.4174 1.99360
\(520\) 3.07730 0.134948
\(521\) −21.5446 −0.943887 −0.471944 0.881629i \(-0.656447\pi\)
−0.471944 + 0.881629i \(0.656447\pi\)
\(522\) 34.0748 1.49141
\(523\) 1.31658 0.0575700 0.0287850 0.999586i \(-0.490836\pi\)
0.0287850 + 0.999586i \(0.490836\pi\)
\(524\) −4.37739 −0.191227
\(525\) −14.7722 −0.644710
\(526\) −0.295004 −0.0128628
\(527\) −1.12038 −0.0488046
\(528\) 0 0
\(529\) −18.2065 −0.791588
\(530\) −3.82240 −0.166034
\(531\) 52.4484 2.27607
\(532\) 18.7359 0.812306
\(533\) 6.74312 0.292077
\(534\) −14.3635 −0.621569
\(535\) 3.29272 0.142357
\(536\) −9.88179 −0.426828
\(537\) −42.1128 −1.81730
\(538\) −12.3764 −0.533585
\(539\) 0 0
\(540\) 12.3813 0.532806
\(541\) 1.14587 0.0492650 0.0246325 0.999697i \(-0.492158\pi\)
0.0246325 + 0.999697i \(0.492158\pi\)
\(542\) −21.0696 −0.905018
\(543\) −49.7251 −2.13391
\(544\) 9.97900 0.427846
\(545\) 2.22914 0.0954860
\(546\) 16.7100 0.715121
\(547\) −10.9095 −0.466455 −0.233228 0.972422i \(-0.574929\pi\)
−0.233228 + 0.972422i \(0.574929\pi\)
\(548\) 8.45015 0.360972
\(549\) −121.931 −5.20390
\(550\) 0 0
\(551\) 21.7325 0.925836
\(552\) −22.4948 −0.957440
\(553\) 53.6394 2.28098
\(554\) −14.6739 −0.623436
\(555\) 21.6981 0.921034
\(556\) −1.40972 −0.0597853
\(557\) −30.7645 −1.30353 −0.651766 0.758420i \(-0.725972\pi\)
−0.651766 + 0.758420i \(0.725972\pi\)
\(558\) −3.98048 −0.168507
\(559\) −7.75955 −0.328194
\(560\) −9.02637 −0.381434
\(561\) 0 0
\(562\) −14.6635 −0.618544
\(563\) −19.1181 −0.805732 −0.402866 0.915259i \(-0.631986\pi\)
−0.402866 + 0.915259i \(0.631986\pi\)
\(564\) 20.0662 0.844939
\(565\) 8.35938 0.351682
\(566\) −15.2653 −0.641650
\(567\) 145.731 6.12013
\(568\) −46.7033 −1.95963
\(569\) 12.5432 0.525839 0.262920 0.964818i \(-0.415315\pi\)
0.262920 + 0.964818i \(0.415315\pi\)
\(570\) −22.1996 −0.929840
\(571\) 34.0574 1.42526 0.712630 0.701540i \(-0.247504\pi\)
0.712630 + 0.701540i \(0.247504\pi\)
\(572\) 0 0
\(573\) −64.5601 −2.69704
\(574\) −33.7482 −1.40862
\(575\) 2.18940 0.0913043
\(576\) 68.6966 2.86236
\(577\) 26.9491 1.12191 0.560954 0.827847i \(-0.310435\pi\)
0.560954 + 0.827847i \(0.310435\pi\)
\(578\) 11.6181 0.483251
\(579\) −50.8851 −2.11471
\(580\) 2.66363 0.110601
\(581\) 45.3914 1.88315
\(582\) 1.27123 0.0526942
\(583\) 0 0
\(584\) −30.1563 −1.24788
\(585\) 8.14739 0.336853
\(586\) −13.6340 −0.563217
\(587\) −39.2837 −1.62141 −0.810706 0.585454i \(-0.800916\pi\)
−0.810706 + 0.585454i \(0.800916\pi\)
\(588\) 30.2487 1.24743
\(589\) −2.53870 −0.104605
\(590\) −7.28191 −0.299792
\(591\) 58.6381 2.41205
\(592\) 13.2584 0.544918
\(593\) −19.5180 −0.801509 −0.400754 0.916185i \(-0.631252\pi\)
−0.400754 + 0.916185i \(0.631252\pi\)
\(594\) 0 0
\(595\) −11.4773 −0.470523
\(596\) 9.17402 0.375783
\(597\) −87.2878 −3.57245
\(598\) −2.47661 −0.101276
\(599\) 10.4430 0.426690 0.213345 0.976977i \(-0.431564\pi\)
0.213345 + 0.976977i \(0.431564\pi\)
\(600\) −10.2744 −0.419450
\(601\) 21.4314 0.874203 0.437102 0.899412i \(-0.356005\pi\)
0.437102 + 0.899412i \(0.356005\pi\)
\(602\) 38.8352 1.58281
\(603\) −26.1628 −1.06543
\(604\) −2.53298 −0.103066
\(605\) 0 0
\(606\) 19.9866 0.811902
\(607\) −23.5700 −0.956675 −0.478338 0.878176i \(-0.658760\pi\)
−0.478338 + 0.878176i \(0.658760\pi\)
\(608\) 22.6116 0.917023
\(609\) 54.6169 2.21319
\(610\) 16.9289 0.685430
\(611\) 8.34232 0.337494
\(612\) 15.2262 0.615483
\(613\) −3.81144 −0.153942 −0.0769712 0.997033i \(-0.524525\pi\)
−0.0769712 + 0.997033i \(0.524525\pi\)
\(614\) 22.9137 0.924721
\(615\) −22.5137 −0.907841
\(616\) 0 0
\(617\) 0.502452 0.0202280 0.0101140 0.999949i \(-0.496781\pi\)
0.0101140 + 0.999949i \(0.496781\pi\)
\(618\) 46.7791 1.88173
\(619\) 45.1440 1.81449 0.907246 0.420601i \(-0.138181\pi\)
0.907246 + 0.420601i \(0.138181\pi\)
\(620\) −0.311155 −0.0124963
\(621\) −37.6270 −1.50992
\(622\) −18.9026 −0.757926
\(623\) −16.8267 −0.674147
\(624\) 6.81150 0.272678
\(625\) 1.00000 0.0400000
\(626\) 17.2072 0.687739
\(627\) 0 0
\(628\) −3.19213 −0.127380
\(629\) 16.8584 0.672190
\(630\) −40.7763 −1.62457
\(631\) −19.6367 −0.781723 −0.390862 0.920449i \(-0.627823\pi\)
−0.390862 + 0.920449i \(0.627823\pi\)
\(632\) 37.3075 1.48401
\(633\) −32.5175 −1.29245
\(634\) 3.77436 0.149899
\(635\) −6.08018 −0.241285
\(636\) 8.12798 0.322295
\(637\) 12.5756 0.498263
\(638\) 0 0
\(639\) −123.651 −4.89154
\(640\) −1.84411 −0.0728948
\(641\) 25.4251 1.00423 0.502115 0.864801i \(-0.332556\pi\)
0.502115 + 0.864801i \(0.332556\pi\)
\(642\) 12.4358 0.490801
\(643\) 8.01245 0.315980 0.157990 0.987441i \(-0.449499\pi\)
0.157990 + 0.987441i \(0.449499\pi\)
\(644\) −6.97869 −0.274999
\(645\) 25.9073 1.02010
\(646\) −17.2481 −0.678616
\(647\) 20.4630 0.804485 0.402242 0.915533i \(-0.368231\pi\)
0.402242 + 0.915533i \(0.368231\pi\)
\(648\) 101.360 3.98178
\(649\) 0 0
\(650\) −1.13118 −0.0443686
\(651\) −6.38012 −0.250056
\(652\) −13.5149 −0.529286
\(653\) −4.67131 −0.182803 −0.0914013 0.995814i \(-0.529135\pi\)
−0.0914013 + 0.995814i \(0.529135\pi\)
\(654\) 8.41893 0.329206
\(655\) 6.07608 0.237412
\(656\) −13.7568 −0.537112
\(657\) −79.8412 −3.11490
\(658\) −41.7519 −1.62766
\(659\) −8.34828 −0.325203 −0.162601 0.986692i \(-0.551988\pi\)
−0.162601 + 0.986692i \(0.551988\pi\)
\(660\) 0 0
\(661\) 33.9259 1.31957 0.659783 0.751457i \(-0.270648\pi\)
0.659783 + 0.751457i \(0.270648\pi\)
\(662\) 26.9224 1.04637
\(663\) 8.66101 0.336366
\(664\) 31.5708 1.22518
\(665\) −26.0066 −1.00849
\(666\) 59.8944 2.32086
\(667\) −8.09483 −0.313433
\(668\) 15.2760 0.591047
\(669\) 1.16815 0.0451632
\(670\) 3.63244 0.140333
\(671\) 0 0
\(672\) 56.8263 2.19212
\(673\) 9.48362 0.365567 0.182783 0.983153i \(-0.441489\pi\)
0.182783 + 0.983153i \(0.441489\pi\)
\(674\) 10.1378 0.390494
\(675\) −17.1860 −0.661488
\(676\) −0.720430 −0.0277088
\(677\) −30.3886 −1.16793 −0.583964 0.811779i \(-0.698499\pi\)
−0.583964 + 0.811779i \(0.698499\pi\)
\(678\) 31.5713 1.21249
\(679\) 1.48923 0.0571515
\(680\) −7.98273 −0.306124
\(681\) 71.7908 2.75103
\(682\) 0 0
\(683\) −33.6635 −1.28810 −0.644049 0.764984i \(-0.722747\pi\)
−0.644049 + 0.764984i \(0.722747\pi\)
\(684\) 34.5014 1.31920
\(685\) −11.7293 −0.448154
\(686\) −27.9048 −1.06541
\(687\) −85.6037 −3.26599
\(688\) 15.8304 0.603529
\(689\) 3.37912 0.128734
\(690\) 8.26882 0.314789
\(691\) 35.5742 1.35331 0.676653 0.736302i \(-0.263430\pi\)
0.676653 + 0.736302i \(0.263430\pi\)
\(692\) 9.80003 0.372541
\(693\) 0 0
\(694\) −11.1790 −0.424348
\(695\) 1.95677 0.0742246
\(696\) 37.9874 1.43991
\(697\) −17.4921 −0.662561
\(698\) 25.0931 0.949789
\(699\) −7.78393 −0.294415
\(700\) −3.18749 −0.120476
\(701\) −13.7246 −0.518370 −0.259185 0.965828i \(-0.583454\pi\)
−0.259185 + 0.965828i \(0.583454\pi\)
\(702\) 19.4404 0.733732
\(703\) 38.1999 1.44074
\(704\) 0 0
\(705\) −27.8531 −1.04901
\(706\) 2.79992 0.105376
\(707\) 23.4141 0.880580
\(708\) 15.4843 0.581936
\(709\) −47.8364 −1.79653 −0.898267 0.439451i \(-0.855173\pi\)
−0.898267 + 0.439451i \(0.855173\pi\)
\(710\) 17.1676 0.644289
\(711\) 98.7747 3.70434
\(712\) −11.7034 −0.438602
\(713\) 0.945605 0.0354132
\(714\) −43.3469 −1.62222
\(715\) 0 0
\(716\) −9.08697 −0.339596
\(717\) 36.2531 1.35390
\(718\) −8.31614 −0.310355
\(719\) 10.6872 0.398566 0.199283 0.979942i \(-0.436139\pi\)
0.199283 + 0.979942i \(0.436139\pi\)
\(720\) −16.6217 −0.619453
\(721\) 54.8013 2.04091
\(722\) −17.5903 −0.654645
\(723\) −67.7324 −2.51899
\(724\) −10.7295 −0.398760
\(725\) −3.69729 −0.137314
\(726\) 0 0
\(727\) −26.2267 −0.972694 −0.486347 0.873766i \(-0.661671\pi\)
−0.486347 + 0.873766i \(0.661671\pi\)
\(728\) 13.6153 0.504616
\(729\) 96.2175 3.56361
\(730\) 11.0851 0.410279
\(731\) 20.1288 0.744491
\(732\) −35.9977 −1.33051
\(733\) 12.4094 0.458351 0.229175 0.973385i \(-0.426397\pi\)
0.229175 + 0.973385i \(0.426397\pi\)
\(734\) 21.4883 0.793147
\(735\) −41.9870 −1.54871
\(736\) −8.42229 −0.310450
\(737\) 0 0
\(738\) −62.1457 −2.28762
\(739\) 14.8018 0.544492 0.272246 0.962228i \(-0.412234\pi\)
0.272246 + 0.962228i \(0.412234\pi\)
\(740\) 4.68196 0.172112
\(741\) 19.6252 0.720949
\(742\) −16.9119 −0.620857
\(743\) −34.4730 −1.26469 −0.632345 0.774687i \(-0.717907\pi\)
−0.632345 + 0.774687i \(0.717907\pi\)
\(744\) −4.43753 −0.162688
\(745\) −12.7341 −0.466541
\(746\) −32.0527 −1.17353
\(747\) 83.5862 3.05826
\(748\) 0 0
\(749\) 14.5684 0.532317
\(750\) 3.77675 0.137908
\(751\) 44.3549 1.61853 0.809266 0.587443i \(-0.199865\pi\)
0.809266 + 0.587443i \(0.199865\pi\)
\(752\) −17.0193 −0.620632
\(753\) −40.7421 −1.48472
\(754\) 4.18230 0.152310
\(755\) 3.51593 0.127958
\(756\) 54.7801 1.99233
\(757\) −0.643538 −0.0233898 −0.0116949 0.999932i \(-0.503723\pi\)
−0.0116949 + 0.999932i \(0.503723\pi\)
\(758\) −9.87078 −0.358523
\(759\) 0 0
\(760\) −18.0882 −0.656129
\(761\) −16.5759 −0.600878 −0.300439 0.953801i \(-0.597133\pi\)
−0.300439 + 0.953801i \(0.597133\pi\)
\(762\) −22.9634 −0.831875
\(763\) 9.86269 0.357053
\(764\) −13.9306 −0.503991
\(765\) −21.1349 −0.764134
\(766\) −22.2898 −0.805363
\(767\) 6.43744 0.232443
\(768\) 49.3385 1.78035
\(769\) 33.4701 1.20696 0.603481 0.797377i \(-0.293780\pi\)
0.603481 + 0.797377i \(0.293780\pi\)
\(770\) 0 0
\(771\) 27.4208 0.987537
\(772\) −10.9798 −0.395172
\(773\) 44.8029 1.61145 0.805725 0.592290i \(-0.201776\pi\)
0.805725 + 0.592290i \(0.201776\pi\)
\(774\) 71.5133 2.57049
\(775\) 0.431901 0.0155144
\(776\) 1.03580 0.0371830
\(777\) 96.0019 3.44405
\(778\) −18.0744 −0.647999
\(779\) −39.6358 −1.42010
\(780\) 2.40535 0.0861254
\(781\) 0 0
\(782\) 6.42449 0.229739
\(783\) 63.5414 2.27079
\(784\) −25.6557 −0.916275
\(785\) 4.43087 0.158144
\(786\) 22.9479 0.818524
\(787\) −11.8111 −0.421020 −0.210510 0.977592i \(-0.567513\pi\)
−0.210510 + 0.977592i \(0.567513\pi\)
\(788\) 12.6527 0.450735
\(789\) −0.870729 −0.0309988
\(790\) −13.7138 −0.487916
\(791\) 36.9855 1.31505
\(792\) 0 0
\(793\) −14.9657 −0.531446
\(794\) −14.1983 −0.503881
\(795\) −11.2821 −0.400136
\(796\) −18.8347 −0.667578
\(797\) 24.2331 0.858380 0.429190 0.903214i \(-0.358799\pi\)
0.429190 + 0.903214i \(0.358799\pi\)
\(798\) −98.2206 −3.47697
\(799\) −21.6406 −0.765588
\(800\) −3.84685 −0.136007
\(801\) −30.9856 −1.09482
\(802\) −13.2310 −0.467203
\(803\) 0 0
\(804\) −7.72404 −0.272406
\(805\) 9.68684 0.341416
\(806\) −0.488559 −0.0172087
\(807\) −36.5300 −1.28592
\(808\) 16.2851 0.572908
\(809\) −31.1027 −1.09351 −0.546757 0.837291i \(-0.684138\pi\)
−0.546757 + 0.837291i \(0.684138\pi\)
\(810\) −37.2587 −1.30914
\(811\) −3.04310 −0.106858 −0.0534289 0.998572i \(-0.517015\pi\)
−0.0534289 + 0.998572i \(0.517015\pi\)
\(812\) 11.7851 0.413575
\(813\) −62.1887 −2.18105
\(814\) 0 0
\(815\) 18.7596 0.657119
\(816\) −17.6695 −0.618556
\(817\) 45.6103 1.59570
\(818\) −7.89127 −0.275912
\(819\) 36.0476 1.25960
\(820\) −4.85794 −0.169647
\(821\) 7.99479 0.279020 0.139510 0.990221i \(-0.455447\pi\)
0.139510 + 0.990221i \(0.455447\pi\)
\(822\) −44.2987 −1.54510
\(823\) −1.13399 −0.0395285 −0.0197642 0.999805i \(-0.506292\pi\)
−0.0197642 + 0.999805i \(0.506292\pi\)
\(824\) 38.1156 1.32782
\(825\) 0 0
\(826\) −32.2183 −1.12102
\(827\) 33.9938 1.18208 0.591040 0.806642i \(-0.298717\pi\)
0.591040 + 0.806642i \(0.298717\pi\)
\(828\) −12.8510 −0.446602
\(829\) −35.3174 −1.22662 −0.613312 0.789841i \(-0.710163\pi\)
−0.613312 + 0.789841i \(0.710163\pi\)
\(830\) −11.6051 −0.402818
\(831\) −43.3113 −1.50245
\(832\) 8.43173 0.292318
\(833\) −32.6219 −1.13028
\(834\) 7.39025 0.255903
\(835\) −21.2041 −0.733797
\(836\) 0 0
\(837\) −7.42264 −0.256564
\(838\) −45.7918 −1.58185
\(839\) −52.6759 −1.81857 −0.909286 0.416171i \(-0.863372\pi\)
−0.909286 + 0.416171i \(0.863372\pi\)
\(840\) −45.4583 −1.56846
\(841\) −15.3301 −0.528623
\(842\) 24.4933 0.844094
\(843\) −43.2806 −1.49066
\(844\) −7.01652 −0.241519
\(845\) 1.00000 0.0344010
\(846\) −76.8843 −2.64334
\(847\) 0 0
\(848\) −6.89382 −0.236735
\(849\) −45.0569 −1.54635
\(850\) 2.93436 0.100648
\(851\) −14.2286 −0.487748
\(852\) −36.5053 −1.25065
\(853\) 29.7612 1.01900 0.509502 0.860470i \(-0.329830\pi\)
0.509502 + 0.860470i \(0.329830\pi\)
\(854\) 74.9006 2.56305
\(855\) −47.8901 −1.63781
\(856\) 10.1327 0.346327
\(857\) 28.1349 0.961070 0.480535 0.876976i \(-0.340443\pi\)
0.480535 + 0.876976i \(0.340443\pi\)
\(858\) 0 0
\(859\) −8.95665 −0.305597 −0.152798 0.988257i \(-0.548829\pi\)
−0.152798 + 0.988257i \(0.548829\pi\)
\(860\) 5.59021 0.190625
\(861\) −99.6104 −3.39471
\(862\) −12.4817 −0.425128
\(863\) 41.4051 1.40945 0.704723 0.709483i \(-0.251071\pi\)
0.704723 + 0.709483i \(0.251071\pi\)
\(864\) 66.1119 2.24917
\(865\) −13.6030 −0.462517
\(866\) 26.8498 0.912394
\(867\) 34.2919 1.16461
\(868\) −1.37668 −0.0467276
\(869\) 0 0
\(870\) −13.9637 −0.473415
\(871\) −3.21119 −0.108807
\(872\) 6.85974 0.232300
\(873\) 2.74236 0.0928147
\(874\) 14.5574 0.492411
\(875\) 4.42443 0.149573
\(876\) −23.5715 −0.796406
\(877\) −21.4266 −0.723524 −0.361762 0.932271i \(-0.617825\pi\)
−0.361762 + 0.932271i \(0.617825\pi\)
\(878\) −13.3165 −0.449410
\(879\) −40.2420 −1.35733
\(880\) 0 0
\(881\) 32.1627 1.08359 0.541795 0.840511i \(-0.317745\pi\)
0.541795 + 0.840511i \(0.317745\pi\)
\(882\) −115.899 −3.90251
\(883\) −3.99847 −0.134559 −0.0672795 0.997734i \(-0.521432\pi\)
−0.0672795 + 0.997734i \(0.521432\pi\)
\(884\) 1.86884 0.0628561
\(885\) −21.4932 −0.722484
\(886\) −1.85033 −0.0621629
\(887\) −14.5709 −0.489244 −0.244622 0.969618i \(-0.578664\pi\)
−0.244622 + 0.969618i \(0.578664\pi\)
\(888\) 66.7716 2.24071
\(889\) −26.9013 −0.902242
\(890\) 4.30203 0.144204
\(891\) 0 0
\(892\) 0.252059 0.00843956
\(893\) −49.0358 −1.64092
\(894\) −48.0936 −1.60849
\(895\) 12.6133 0.421615
\(896\) −8.15913 −0.272577
\(897\) −7.30990 −0.244071
\(898\) 38.9278 1.29904
\(899\) −1.59686 −0.0532584
\(900\) −5.86962 −0.195654
\(901\) −8.76568 −0.292027
\(902\) 0 0
\(903\) 114.625 3.81449
\(904\) 25.7243 0.855578
\(905\) 14.8932 0.495068
\(906\) 13.2788 0.441159
\(907\) 19.5452 0.648987 0.324494 0.945888i \(-0.394806\pi\)
0.324494 + 0.945888i \(0.394806\pi\)
\(908\) 15.4908 0.514080
\(909\) 43.1161 1.43007
\(910\) −5.00483 −0.165909
\(911\) −42.2982 −1.40140 −0.700701 0.713455i \(-0.747129\pi\)
−0.700701 + 0.713455i \(0.747129\pi\)
\(912\) −40.0377 −1.32578
\(913\) 0 0
\(914\) −36.4537 −1.20578
\(915\) 49.9669 1.65186
\(916\) −18.4713 −0.610309
\(917\) 26.8832 0.887762
\(918\) −50.4299 −1.66443
\(919\) 20.4894 0.675884 0.337942 0.941167i \(-0.390269\pi\)
0.337942 + 0.941167i \(0.390269\pi\)
\(920\) 6.73744 0.222127
\(921\) 67.6316 2.22854
\(922\) −0.961492 −0.0316651
\(923\) −15.1767 −0.499548
\(924\) 0 0
\(925\) −6.49884 −0.213680
\(926\) −21.1728 −0.695781
\(927\) 100.914 3.31446
\(928\) 14.2229 0.466890
\(929\) 1.78487 0.0585595 0.0292798 0.999571i \(-0.490679\pi\)
0.0292798 + 0.999571i \(0.490679\pi\)
\(930\) 1.63119 0.0534887
\(931\) −73.9188 −2.42259
\(932\) −1.67959 −0.0550169
\(933\) −55.7926 −1.82657
\(934\) 32.6385 1.06796
\(935\) 0 0
\(936\) 25.0720 0.819503
\(937\) 13.1804 0.430583 0.215292 0.976550i \(-0.430930\pi\)
0.215292 + 0.976550i \(0.430930\pi\)
\(938\) 16.0715 0.524752
\(939\) 50.7885 1.65742
\(940\) −6.01005 −0.196026
\(941\) 22.1738 0.722847 0.361423 0.932402i \(-0.382291\pi\)
0.361423 + 0.932402i \(0.382291\pi\)
\(942\) 16.7343 0.545233
\(943\) 14.7634 0.480762
\(944\) −13.1332 −0.427448
\(945\) −76.0381 −2.47352
\(946\) 0 0
\(947\) 43.5166 1.41410 0.707050 0.707164i \(-0.250026\pi\)
0.707050 + 0.707164i \(0.250026\pi\)
\(948\) 29.1612 0.947111
\(949\) −9.79960 −0.318108
\(950\) 6.64904 0.215723
\(951\) 11.1403 0.361250
\(952\) −35.3190 −1.14470
\(953\) −46.4467 −1.50456 −0.752278 0.658846i \(-0.771045\pi\)
−0.752278 + 0.658846i \(0.771045\pi\)
\(954\) −31.1426 −1.00828
\(955\) 19.3365 0.625714
\(956\) 7.82257 0.253000
\(957\) 0 0
\(958\) −12.7935 −0.413338
\(959\) −51.8955 −1.67579
\(960\) −28.1516 −0.908589
\(961\) −30.8135 −0.993983
\(962\) 7.35136 0.237017
\(963\) 26.8270 0.864490
\(964\) −14.6151 −0.470720
\(965\) 15.2407 0.490614
\(966\) 36.5848 1.17710
\(967\) 42.3549 1.36204 0.681021 0.732264i \(-0.261536\pi\)
0.681021 + 0.732264i \(0.261536\pi\)
\(968\) 0 0
\(969\) −50.9091 −1.63543
\(970\) −0.380748 −0.0122251
\(971\) −31.9327 −1.02477 −0.512385 0.858756i \(-0.671238\pi\)
−0.512385 + 0.858756i \(0.671238\pi\)
\(972\) 42.0832 1.34982
\(973\) 8.65760 0.277550
\(974\) −30.9008 −0.990125
\(975\) −3.33877 −0.106926
\(976\) 30.5318 0.977298
\(977\) 19.1141 0.611514 0.305757 0.952110i \(-0.401090\pi\)
0.305757 + 0.952110i \(0.401090\pi\)
\(978\) 70.8503 2.26554
\(979\) 0 0
\(980\) −9.05982 −0.289405
\(981\) 18.1617 0.579859
\(982\) −2.20497 −0.0703633
\(983\) −8.03743 −0.256354 −0.128177 0.991751i \(-0.540913\pi\)
−0.128177 + 0.991751i \(0.540913\pi\)
\(984\) −69.2814 −2.20861
\(985\) −17.5628 −0.559596
\(986\) −10.8492 −0.345508
\(987\) −123.234 −3.92258
\(988\) 4.23466 0.134722
\(989\) −16.9887 −0.540211
\(990\) 0 0
\(991\) −22.6134 −0.718338 −0.359169 0.933273i \(-0.616940\pi\)
−0.359169 + 0.933273i \(0.616940\pi\)
\(992\) −1.66146 −0.0527514
\(993\) 79.4635 2.52170
\(994\) 75.9569 2.40921
\(995\) 26.1437 0.828811
\(996\) 24.6771 0.781924
\(997\) 7.68488 0.243383 0.121691 0.992568i \(-0.461168\pi\)
0.121691 + 0.992568i \(0.461168\pi\)
\(998\) −29.3691 −0.929662
\(999\) 111.689 3.53368
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7865.2.a.w.1.4 9
11.10 odd 2 715.2.a.i.1.6 9
33.32 even 2 6435.2.a.bq.1.4 9
55.54 odd 2 3575.2.a.t.1.4 9
143.142 odd 2 9295.2.a.t.1.4 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
715.2.a.i.1.6 9 11.10 odd 2
3575.2.a.t.1.4 9 55.54 odd 2
6435.2.a.bq.1.4 9 33.32 even 2
7865.2.a.w.1.4 9 1.1 even 1 trivial
9295.2.a.t.1.4 9 143.142 odd 2