Defining parameters
Level: | \( N \) | \(=\) | \( 7865 = 5 \cdot 11^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7865.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 42 \) | ||
Sturm bound: | \(1848\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7865))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 948 | 436 | 512 |
Cusp forms | 901 | 436 | 465 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(11\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(111\) | \(55\) | \(56\) | \(106\) | \(55\) | \(51\) | \(5\) | \(0\) | \(5\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(123\) | \(59\) | \(64\) | \(117\) | \(59\) | \(58\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(124\) | \(55\) | \(69\) | \(118\) | \(55\) | \(63\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(116\) | \(50\) | \(66\) | \(110\) | \(50\) | \(60\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(123\) | \(57\) | \(66\) | \(117\) | \(57\) | \(60\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(111\) | \(45\) | \(66\) | \(105\) | \(45\) | \(60\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(116\) | \(50\) | \(66\) | \(110\) | \(50\) | \(60\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(124\) | \(65\) | \(59\) | \(118\) | \(65\) | \(53\) | \(6\) | \(0\) | \(6\) | |||
Plus space | \(+\) | \(454\) | \(200\) | \(254\) | \(431\) | \(200\) | \(231\) | \(23\) | \(0\) | \(23\) | |||||
Minus space | \(-\) | \(494\) | \(236\) | \(258\) | \(470\) | \(236\) | \(234\) | \(24\) | \(0\) | \(24\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7865))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7865))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(7865)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(143))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(605))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(715))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1573))\)\(^{\oplus 2}\)