Properties

Label 7865.2
Level 7865
Weight 2
Dimension 2163816
Nonzero newspaces 80
Sturm bound 9757440

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 7865 = 5 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 80 \)
Sturm bound: \(9757440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(7865))\).

Total New Old
Modular forms 2454720 2182364 272356
Cusp forms 2424001 2163816 260185
Eisenstein series 30719 18548 12171

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(7865))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
7865.2.a \(\chi_{7865}(1, \cdot)\) 7865.2.a.a 1 1
7865.2.a.b 1
7865.2.a.c 1
7865.2.a.d 1
7865.2.a.e 1
7865.2.a.f 2
7865.2.a.g 2
7865.2.a.h 2
7865.2.a.i 2
7865.2.a.j 2
7865.2.a.k 3
7865.2.a.l 3
7865.2.a.m 4
7865.2.a.n 4
7865.2.a.o 6
7865.2.a.p 6
7865.2.a.q 7
7865.2.a.r 7
7865.2.a.s 8
7865.2.a.t 8
7865.2.a.u 8
7865.2.a.v 9
7865.2.a.w 9
7865.2.a.x 9
7865.2.a.y 9
7865.2.a.z 9
7865.2.a.ba 11
7865.2.a.bb 11
7865.2.a.bc 11
7865.2.a.bd 11
7865.2.a.be 16
7865.2.a.bf 16
7865.2.a.bg 18
7865.2.a.bh 18
7865.2.a.bi 22
7865.2.a.bj 22
7865.2.a.bk 22
7865.2.a.bl 22
7865.2.a.bm 26
7865.2.a.bn 26
7865.2.a.bo 30
7865.2.a.bp 30
7865.2.b \(\chi_{7865}(1574, \cdot)\) n/a 654 1
7865.2.e \(\chi_{7865}(5446, \cdot)\) n/a 510 1
7865.2.f \(\chi_{7865}(7019, \cdot)\) n/a 744 1
7865.2.i \(\chi_{7865}(1816, \cdot)\) n/a 1016 2
7865.2.j \(\chi_{7865}(3268, \cdot)\) n/a 1490 2
7865.2.l \(\chi_{7865}(3024, \cdot)\) n/a 1480 2
7865.2.o \(\chi_{7865}(3992, \cdot)\) n/a 1296 2
7865.2.q \(\chi_{7865}(1572, \cdot)\) n/a 1480 2
7865.2.s \(\chi_{7865}(1451, \cdot)\) n/a 1008 2
7865.2.t \(\chi_{7865}(122, \cdot)\) n/a 1490 2
7865.2.v \(\chi_{7865}(4486, \cdot)\) n/a 1728 4
7865.2.y \(\chi_{7865}(4599, \cdot)\) n/a 1488 2
7865.2.z \(\chi_{7865}(3026, \cdot)\) n/a 1016 2
7865.2.bc \(\chi_{7865}(3389, \cdot)\) n/a 1492 2
7865.2.bf \(\chi_{7865}(3639, \cdot)\) n/a 2960 4
7865.2.bg \(\chi_{7865}(2066, \cdot)\) n/a 2016 4
7865.2.bj \(\chi_{7865}(729, \cdot)\) n/a 2592 4
7865.2.bk \(\chi_{7865}(716, \cdot)\) n/a 5280 10
7865.2.bm \(\chi_{7865}(1332, \cdot)\) n/a 2980 4
7865.2.bn \(\chi_{7865}(241, \cdot)\) n/a 2016 4
7865.2.bp \(\chi_{7865}(2298, \cdot)\) n/a 2960 4
7865.2.br \(\chi_{7865}(1088, \cdot)\) n/a 2960 4
7865.2.bu \(\chi_{7865}(604, \cdot)\) n/a 2960 4
7865.2.bw \(\chi_{7865}(2542, \cdot)\) n/a 2980 4
7865.2.bx \(\chi_{7865}(81, \cdot)\) n/a 4032 8
7865.2.bz \(\chi_{7865}(3518, \cdot)\) n/a 5920 8
7865.2.ca \(\chi_{7865}(161, \cdot)\) n/a 4032 8
7865.2.cc \(\chi_{7865}(233, \cdot)\) n/a 5920 8
7865.2.ce \(\chi_{7865}(118, \cdot)\) n/a 5184 8
7865.2.ch \(\chi_{7865}(239, \cdot)\) n/a 5920 8
7865.2.cj \(\chi_{7865}(148, \cdot)\) n/a 5920 8
7865.2.cl \(\chi_{7865}(584, \cdot)\) n/a 9200 10
7865.2.co \(\chi_{7865}(144, \cdot)\) n/a 7920 10
7865.2.cp \(\chi_{7865}(441, \cdot)\) n/a 6160 10
7865.2.cr \(\chi_{7865}(9, \cdot)\) n/a 5920 8
7865.2.cu \(\chi_{7865}(251, \cdot)\) n/a 4032 8
7865.2.cv \(\chi_{7865}(1219, \cdot)\) n/a 5920 8
7865.2.cy \(\chi_{7865}(276, \cdot)\) n/a 12320 20
7865.2.da \(\chi_{7865}(463, \cdot)\) n/a 18400 20
7865.2.dc \(\chi_{7865}(109, \cdot)\) n/a 18400 20
7865.2.dd \(\chi_{7865}(142, \cdot)\) n/a 18400 20
7865.2.df \(\chi_{7865}(417, \cdot)\) n/a 15840 20
7865.2.dh \(\chi_{7865}(21, \cdot)\) n/a 12320 20
7865.2.dk \(\chi_{7865}(177, \cdot)\) n/a 18400 20
7865.2.dl \(\chi_{7865}(196, \cdot)\) n/a 21120 40
7865.2.dm \(\chi_{7865}(202, \cdot)\) n/a 11840 16
7865.2.do \(\chi_{7865}(1129, \cdot)\) n/a 11840 16
7865.2.dr \(\chi_{7865}(282, \cdot)\) n/a 11840 16
7865.2.dt \(\chi_{7865}(602, \cdot)\) n/a 11840 16
7865.2.dv \(\chi_{7865}(336, \cdot)\) n/a 8064 16
7865.2.dw \(\chi_{7865}(323, \cdot)\) n/a 11840 16
7865.2.dz \(\chi_{7865}(56, \cdot)\) n/a 12320 20
7865.2.ea \(\chi_{7865}(419, \cdot)\) n/a 18400 20
7865.2.ed \(\chi_{7865}(199, \cdot)\) n/a 18400 20
7865.2.eg \(\chi_{7865}(181, \cdot)\) n/a 24640 40
7865.2.eh \(\chi_{7865}(14, \cdot)\) n/a 31680 40
7865.2.ek \(\chi_{7865}(64, \cdot)\) n/a 36800 40
7865.2.em \(\chi_{7865}(188, \cdot)\) n/a 36800 40
7865.2.ep \(\chi_{7865}(76, \cdot)\) n/a 24640 40
7865.2.er \(\chi_{7865}(87, \cdot)\) n/a 36800 40
7865.2.et \(\chi_{7865}(43, \cdot)\) n/a 36800 40
7865.2.eu \(\chi_{7865}(54, \cdot)\) n/a 36800 40
7865.2.ew \(\chi_{7865}(67, \cdot)\) n/a 36800 40
7865.2.ey \(\chi_{7865}(16, \cdot)\) n/a 49280 80
7865.2.ez \(\chi_{7865}(47, \cdot)\) n/a 73600 80
7865.2.fc \(\chi_{7865}(96, \cdot)\) n/a 49280 80
7865.2.fe \(\chi_{7865}(183, \cdot)\) n/a 63360 80
7865.2.fg \(\chi_{7865}(272, \cdot)\) n/a 73600 80
7865.2.fh \(\chi_{7865}(294, \cdot)\) n/a 73600 80
7865.2.fj \(\chi_{7865}(203, \cdot)\) n/a 73600 80
7865.2.fm \(\chi_{7865}(4, \cdot)\) n/a 73600 80
7865.2.fp \(\chi_{7865}(159, \cdot)\) n/a 73600 80
7865.2.fq \(\chi_{7865}(36, \cdot)\) n/a 49280 80
7865.2.ft \(\chi_{7865}(97, \cdot)\) n/a 147200 160
7865.2.fv \(\chi_{7865}(19, \cdot)\) n/a 147200 160
7865.2.fw \(\chi_{7865}(17, \cdot)\) n/a 147200 160
7865.2.fy \(\chi_{7865}(68, \cdot)\) n/a 147200 160
7865.2.ga \(\chi_{7865}(6, \cdot)\) n/a 98560 160
7865.2.gd \(\chi_{7865}(37, \cdot)\) n/a 147200 160

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(7865))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(7865)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(65))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(143))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(605))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(715))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1573))\)\(^{\oplus 2}\)