Properties

Label 715.2.a.i.1.6
Level $715$
Weight $2$
Character 715.1
Self dual yes
Analytic conductor $5.709$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [715,2,Mod(1,715)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(715, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("715.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 715 = 5 \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 715.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.70930374452\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 16x^{7} + 14x^{6} + 86x^{5} - 57x^{4} - 179x^{3} + 64x^{2} + 118x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.13118\) of defining polynomial
Character \(\chi\) \(=\) 715.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.13118 q^{2} -3.33877 q^{3} -0.720430 q^{4} +1.00000 q^{5} -3.77675 q^{6} -4.42443 q^{7} -3.07730 q^{8} +8.14739 q^{9} +1.13118 q^{10} -1.00000 q^{11} +2.40535 q^{12} -1.00000 q^{13} -5.00483 q^{14} -3.33877 q^{15} -2.04012 q^{16} +2.59407 q^{17} +9.21618 q^{18} +5.87796 q^{19} -0.720430 q^{20} +14.7722 q^{21} -1.13118 q^{22} +2.18940 q^{23} +10.2744 q^{24} +1.00000 q^{25} -1.13118 q^{26} -17.1860 q^{27} +3.18749 q^{28} +3.69729 q^{29} -3.77675 q^{30} +0.431901 q^{31} +3.84685 q^{32} +3.33877 q^{33} +2.93436 q^{34} -4.42443 q^{35} -5.86962 q^{36} -6.49884 q^{37} +6.64904 q^{38} +3.33877 q^{39} -3.07730 q^{40} -6.74312 q^{41} +16.7100 q^{42} +7.75955 q^{43} +0.720430 q^{44} +8.14739 q^{45} +2.47661 q^{46} +8.34232 q^{47} +6.81150 q^{48} +12.5756 q^{49} +1.13118 q^{50} -8.66101 q^{51} +0.720430 q^{52} +3.37912 q^{53} -19.4404 q^{54} -1.00000 q^{55} +13.6153 q^{56} -19.6252 q^{57} +4.18230 q^{58} +6.43744 q^{59} +2.40535 q^{60} +14.9657 q^{61} +0.488559 q^{62} -36.0476 q^{63} +8.43173 q^{64} -1.00000 q^{65} +3.77675 q^{66} -3.21119 q^{67} -1.86884 q^{68} -7.30990 q^{69} -5.00483 q^{70} -15.1767 q^{71} -25.0720 q^{72} +9.79960 q^{73} -7.35136 q^{74} -3.33877 q^{75} -4.23466 q^{76} +4.42443 q^{77} +3.77675 q^{78} -12.1235 q^{79} -2.04012 q^{80} +32.9378 q^{81} -7.62768 q^{82} -10.2593 q^{83} -10.6423 q^{84} +2.59407 q^{85} +8.77745 q^{86} -12.3444 q^{87} +3.07730 q^{88} -3.80313 q^{89} +9.21618 q^{90} +4.42443 q^{91} -1.57731 q^{92} -1.44202 q^{93} +9.43667 q^{94} +5.87796 q^{95} -12.8438 q^{96} +0.336593 q^{97} +14.2253 q^{98} -8.14739 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + q^{2} + 2 q^{3} + 15 q^{4} + 9 q^{5} - q^{6} - 4 q^{7} + 3 q^{8} + 23 q^{9} + q^{10} - 9 q^{11} + 6 q^{12} - 9 q^{13} + 16 q^{14} + 2 q^{15} + 15 q^{16} + 13 q^{17} + 3 q^{18} - 3 q^{19} + 15 q^{20}+ \cdots - 23 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.13118 0.799866 0.399933 0.916544i \(-0.369033\pi\)
0.399933 + 0.916544i \(0.369033\pi\)
\(3\) −3.33877 −1.92764 −0.963820 0.266553i \(-0.914115\pi\)
−0.963820 + 0.266553i \(0.914115\pi\)
\(4\) −0.720430 −0.360215
\(5\) 1.00000 0.447214
\(6\) −3.77675 −1.54185
\(7\) −4.42443 −1.67228 −0.836139 0.548518i \(-0.815192\pi\)
−0.836139 + 0.548518i \(0.815192\pi\)
\(8\) −3.07730 −1.08799
\(9\) 8.14739 2.71580
\(10\) 1.13118 0.357711
\(11\) −1.00000 −0.301511
\(12\) 2.40535 0.694365
\(13\) −1.00000 −0.277350
\(14\) −5.00483 −1.33760
\(15\) −3.33877 −0.862067
\(16\) −2.04012 −0.510030
\(17\) 2.59407 0.629154 0.314577 0.949232i \(-0.398137\pi\)
0.314577 + 0.949232i \(0.398137\pi\)
\(18\) 9.21618 2.17227
\(19\) 5.87796 1.34850 0.674248 0.738505i \(-0.264468\pi\)
0.674248 + 0.738505i \(0.264468\pi\)
\(20\) −0.720430 −0.161093
\(21\) 14.7722 3.22355
\(22\) −1.13118 −0.241169
\(23\) 2.18940 0.456521 0.228261 0.973600i \(-0.426696\pi\)
0.228261 + 0.973600i \(0.426696\pi\)
\(24\) 10.2744 2.09725
\(25\) 1.00000 0.200000
\(26\) −1.13118 −0.221843
\(27\) −17.1860 −3.30744
\(28\) 3.18749 0.602379
\(29\) 3.69729 0.686569 0.343284 0.939232i \(-0.388461\pi\)
0.343284 + 0.939232i \(0.388461\pi\)
\(30\) −3.77675 −0.689538
\(31\) 0.431901 0.0775718 0.0387859 0.999248i \(-0.487651\pi\)
0.0387859 + 0.999248i \(0.487651\pi\)
\(32\) 3.84685 0.680033
\(33\) 3.33877 0.581205
\(34\) 2.93436 0.503239
\(35\) −4.42443 −0.747865
\(36\) −5.86962 −0.978271
\(37\) −6.49884 −1.06840 −0.534201 0.845357i \(-0.679387\pi\)
−0.534201 + 0.845357i \(0.679387\pi\)
\(38\) 6.64904 1.07862
\(39\) 3.33877 0.534631
\(40\) −3.07730 −0.486564
\(41\) −6.74312 −1.05310 −0.526549 0.850145i \(-0.676514\pi\)
−0.526549 + 0.850145i \(0.676514\pi\)
\(42\) 16.7100 2.57841
\(43\) 7.75955 1.18332 0.591660 0.806188i \(-0.298473\pi\)
0.591660 + 0.806188i \(0.298473\pi\)
\(44\) 0.720430 0.108609
\(45\) 8.14739 1.21454
\(46\) 2.47661 0.365156
\(47\) 8.34232 1.21685 0.608426 0.793611i \(-0.291801\pi\)
0.608426 + 0.793611i \(0.291801\pi\)
\(48\) 6.81150 0.983155
\(49\) 12.5756 1.79651
\(50\) 1.13118 0.159973
\(51\) −8.66101 −1.21278
\(52\) 0.720430 0.0999056
\(53\) 3.37912 0.464158 0.232079 0.972697i \(-0.425447\pi\)
0.232079 + 0.972697i \(0.425447\pi\)
\(54\) −19.4404 −2.64551
\(55\) −1.00000 −0.134840
\(56\) 13.6153 1.81942
\(57\) −19.6252 −2.59942
\(58\) 4.18230 0.549163
\(59\) 6.43744 0.838084 0.419042 0.907967i \(-0.362366\pi\)
0.419042 + 0.907967i \(0.362366\pi\)
\(60\) 2.40535 0.310529
\(61\) 14.9657 1.91616 0.958079 0.286505i \(-0.0924936\pi\)
0.958079 + 0.286505i \(0.0924936\pi\)
\(62\) 0.488559 0.0620470
\(63\) −36.0476 −4.54157
\(64\) 8.43173 1.05397
\(65\) −1.00000 −0.124035
\(66\) 3.77675 0.464886
\(67\) −3.21119 −0.392309 −0.196155 0.980573i \(-0.562845\pi\)
−0.196155 + 0.980573i \(0.562845\pi\)
\(68\) −1.86884 −0.226631
\(69\) −7.30990 −0.880009
\(70\) −5.00483 −0.598192
\(71\) −15.1767 −1.80114 −0.900572 0.434707i \(-0.856852\pi\)
−0.900572 + 0.434707i \(0.856852\pi\)
\(72\) −25.0720 −2.95476
\(73\) 9.79960 1.14696 0.573478 0.819221i \(-0.305594\pi\)
0.573478 + 0.819221i \(0.305594\pi\)
\(74\) −7.35136 −0.854578
\(75\) −3.33877 −0.385528
\(76\) −4.23466 −0.485749
\(77\) 4.42443 0.504211
\(78\) 3.77675 0.427633
\(79\) −12.1235 −1.36400 −0.681999 0.731354i \(-0.738889\pi\)
−0.681999 + 0.731354i \(0.738889\pi\)
\(80\) −2.04012 −0.228093
\(81\) 32.9378 3.65976
\(82\) −7.62768 −0.842337
\(83\) −10.2593 −1.12610 −0.563050 0.826423i \(-0.690372\pi\)
−0.563050 + 0.826423i \(0.690372\pi\)
\(84\) −10.6423 −1.16117
\(85\) 2.59407 0.281366
\(86\) 8.77745 0.946497
\(87\) −12.3444 −1.32346
\(88\) 3.07730 0.328041
\(89\) −3.80313 −0.403131 −0.201565 0.979475i \(-0.564603\pi\)
−0.201565 + 0.979475i \(0.564603\pi\)
\(90\) 9.21618 0.971470
\(91\) 4.42443 0.463806
\(92\) −1.57731 −0.164446
\(93\) −1.44202 −0.149531
\(94\) 9.43667 0.973318
\(95\) 5.87796 0.603066
\(96\) −12.8438 −1.31086
\(97\) 0.336593 0.0341759 0.0170879 0.999854i \(-0.494560\pi\)
0.0170879 + 0.999854i \(0.494560\pi\)
\(98\) 14.2253 1.43697
\(99\) −8.14739 −0.818844
\(100\) −0.720430 −0.0720430
\(101\) −5.29201 −0.526575 −0.263288 0.964717i \(-0.584807\pi\)
−0.263288 + 0.964717i \(0.584807\pi\)
\(102\) −9.79716 −0.970064
\(103\) 12.3861 1.22044 0.610218 0.792234i \(-0.291082\pi\)
0.610218 + 0.792234i \(0.291082\pi\)
\(104\) 3.07730 0.301754
\(105\) 14.7722 1.44162
\(106\) 3.82240 0.371264
\(107\) −3.29272 −0.318319 −0.159159 0.987253i \(-0.550878\pi\)
−0.159159 + 0.987253i \(0.550878\pi\)
\(108\) 12.3813 1.19139
\(109\) −2.22914 −0.213513 −0.106757 0.994285i \(-0.534047\pi\)
−0.106757 + 0.994285i \(0.534047\pi\)
\(110\) −1.13118 −0.107854
\(111\) 21.6981 2.05950
\(112\) 9.02637 0.852912
\(113\) 8.35938 0.786384 0.393192 0.919456i \(-0.371371\pi\)
0.393192 + 0.919456i \(0.371371\pi\)
\(114\) −22.1996 −2.07918
\(115\) 2.18940 0.204163
\(116\) −2.66363 −0.247312
\(117\) −8.14739 −0.753227
\(118\) 7.28191 0.670354
\(119\) −11.4773 −1.05212
\(120\) 10.2744 0.937920
\(121\) 1.00000 0.0909091
\(122\) 16.9289 1.53267
\(123\) 22.5137 2.02999
\(124\) −0.311155 −0.0279425
\(125\) 1.00000 0.0894427
\(126\) −40.7763 −3.63264
\(127\) 6.08018 0.539529 0.269764 0.962926i \(-0.413054\pi\)
0.269764 + 0.962926i \(0.413054\pi\)
\(128\) 1.84411 0.162998
\(129\) −25.9073 −2.28101
\(130\) −1.13118 −0.0992111
\(131\) −6.07608 −0.530870 −0.265435 0.964129i \(-0.585516\pi\)
−0.265435 + 0.964129i \(0.585516\pi\)
\(132\) −2.40535 −0.209359
\(133\) −26.0066 −2.25506
\(134\) −3.63244 −0.313795
\(135\) −17.1860 −1.47913
\(136\) −7.98273 −0.684513
\(137\) −11.7293 −1.00210 −0.501052 0.865417i \(-0.667053\pi\)
−0.501052 + 0.865417i \(0.667053\pi\)
\(138\) −8.26882 −0.703889
\(139\) −1.95677 −0.165971 −0.0829856 0.996551i \(-0.526446\pi\)
−0.0829856 + 0.996551i \(0.526446\pi\)
\(140\) 3.18749 0.269392
\(141\) −27.8531 −2.34565
\(142\) −17.1676 −1.44067
\(143\) 1.00000 0.0836242
\(144\) −16.6217 −1.38514
\(145\) 3.69729 0.307043
\(146\) 11.0851 0.917411
\(147\) −41.9870 −3.46303
\(148\) 4.68196 0.384854
\(149\) 12.7341 1.04322 0.521609 0.853185i \(-0.325332\pi\)
0.521609 + 0.853185i \(0.325332\pi\)
\(150\) −3.77675 −0.308371
\(151\) −3.51593 −0.286123 −0.143061 0.989714i \(-0.545695\pi\)
−0.143061 + 0.989714i \(0.545695\pi\)
\(152\) −18.0882 −1.46715
\(153\) 21.1349 1.70866
\(154\) 5.00483 0.403301
\(155\) 0.431901 0.0346912
\(156\) −2.40535 −0.192582
\(157\) 4.43087 0.353622 0.176811 0.984245i \(-0.443422\pi\)
0.176811 + 0.984245i \(0.443422\pi\)
\(158\) −13.7138 −1.09101
\(159\) −11.2821 −0.894731
\(160\) 3.84685 0.304120
\(161\) −9.68684 −0.763430
\(162\) 37.2587 2.92732
\(163\) 18.7596 1.46936 0.734681 0.678413i \(-0.237332\pi\)
0.734681 + 0.678413i \(0.237332\pi\)
\(164\) 4.85794 0.379342
\(165\) 3.33877 0.259923
\(166\) −11.6051 −0.900729
\(167\) 21.2041 1.64082 0.820409 0.571776i \(-0.193746\pi\)
0.820409 + 0.571776i \(0.193746\pi\)
\(168\) −45.4583 −3.50719
\(169\) 1.00000 0.0769231
\(170\) 2.93436 0.225055
\(171\) 47.8901 3.66224
\(172\) −5.59021 −0.426249
\(173\) 13.6030 1.03422 0.517110 0.855919i \(-0.327008\pi\)
0.517110 + 0.855919i \(0.327008\pi\)
\(174\) −13.9637 −1.05859
\(175\) −4.42443 −0.334455
\(176\) 2.04012 0.153780
\(177\) −21.4932 −1.61552
\(178\) −4.30203 −0.322451
\(179\) 12.6133 0.942760 0.471380 0.881930i \(-0.343756\pi\)
0.471380 + 0.881930i \(0.343756\pi\)
\(180\) −5.86962 −0.437496
\(181\) 14.8932 1.10701 0.553503 0.832847i \(-0.313291\pi\)
0.553503 + 0.832847i \(0.313291\pi\)
\(182\) 5.00483 0.370983
\(183\) −49.9669 −3.69366
\(184\) −6.73744 −0.496690
\(185\) −6.49884 −0.477804
\(186\) −1.63119 −0.119604
\(187\) −2.59407 −0.189697
\(188\) −6.01005 −0.438328
\(189\) 76.0381 5.53096
\(190\) 6.64904 0.482372
\(191\) 19.3365 1.39914 0.699570 0.714564i \(-0.253375\pi\)
0.699570 + 0.714564i \(0.253375\pi\)
\(192\) −28.1516 −2.03167
\(193\) −15.2407 −1.09705 −0.548523 0.836135i \(-0.684810\pi\)
−0.548523 + 0.836135i \(0.684810\pi\)
\(194\) 0.380748 0.0273361
\(195\) 3.33877 0.239094
\(196\) −9.05982 −0.647130
\(197\) 17.5628 1.25130 0.625648 0.780106i \(-0.284835\pi\)
0.625648 + 0.780106i \(0.284835\pi\)
\(198\) −9.21618 −0.654965
\(199\) 26.1437 1.85328 0.926639 0.375953i \(-0.122685\pi\)
0.926639 + 0.375953i \(0.122685\pi\)
\(200\) −3.07730 −0.217598
\(201\) 10.7214 0.756231
\(202\) −5.98623 −0.421189
\(203\) −16.3584 −1.14813
\(204\) 6.23965 0.436863
\(205\) −6.74312 −0.470960
\(206\) 14.0109 0.976184
\(207\) 17.8379 1.23982
\(208\) 2.04012 0.141457
\(209\) −5.87796 −0.406587
\(210\) 16.7100 1.15310
\(211\) −9.73935 −0.670485 −0.335242 0.942132i \(-0.608818\pi\)
−0.335242 + 0.942132i \(0.608818\pi\)
\(212\) −2.43442 −0.167197
\(213\) 50.6716 3.47196
\(214\) −3.72466 −0.254612
\(215\) 7.75955 0.529197
\(216\) 52.8864 3.59846
\(217\) −1.91092 −0.129722
\(218\) −2.52157 −0.170782
\(219\) −32.7186 −2.21092
\(220\) 0.720430 0.0485714
\(221\) −2.59407 −0.174496
\(222\) 24.5445 1.64732
\(223\) −0.349873 −0.0234292 −0.0117146 0.999931i \(-0.503729\pi\)
−0.0117146 + 0.999931i \(0.503729\pi\)
\(224\) −17.0201 −1.13720
\(225\) 8.14739 0.543160
\(226\) 9.45597 0.629002
\(227\) 21.5022 1.42715 0.713574 0.700580i \(-0.247075\pi\)
0.713574 + 0.700580i \(0.247075\pi\)
\(228\) 14.1386 0.936349
\(229\) 25.6393 1.69429 0.847146 0.531360i \(-0.178319\pi\)
0.847146 + 0.531360i \(0.178319\pi\)
\(230\) 2.47661 0.163303
\(231\) −14.7722 −0.971937
\(232\) −11.3776 −0.746979
\(233\) −2.33138 −0.152733 −0.0763667 0.997080i \(-0.524332\pi\)
−0.0763667 + 0.997080i \(0.524332\pi\)
\(234\) −9.21618 −0.602480
\(235\) 8.34232 0.544193
\(236\) −4.63773 −0.301890
\(237\) 40.4775 2.62930
\(238\) −12.9829 −0.841555
\(239\) 10.8582 0.702359 0.351179 0.936308i \(-0.385781\pi\)
0.351179 + 0.936308i \(0.385781\pi\)
\(240\) 6.81150 0.439680
\(241\) −20.2866 −1.30678 −0.653388 0.757023i \(-0.726653\pi\)
−0.653388 + 0.757023i \(0.726653\pi\)
\(242\) 1.13118 0.0727151
\(243\) −58.4140 −3.74726
\(244\) −10.7817 −0.690228
\(245\) 12.5756 0.803424
\(246\) 25.4671 1.62372
\(247\) −5.87796 −0.374006
\(248\) −1.32909 −0.0843973
\(249\) 34.2533 2.17072
\(250\) 1.13118 0.0715422
\(251\) 12.2027 0.770229 0.385115 0.922869i \(-0.374162\pi\)
0.385115 + 0.922869i \(0.374162\pi\)
\(252\) 25.9697 1.63594
\(253\) −2.18940 −0.137646
\(254\) 6.87779 0.431551
\(255\) −8.66101 −0.542373
\(256\) −14.7774 −0.923590
\(257\) −8.21285 −0.512303 −0.256152 0.966637i \(-0.582455\pi\)
−0.256152 + 0.966637i \(0.582455\pi\)
\(258\) −29.3059 −1.82451
\(259\) 28.7536 1.78666
\(260\) 0.720430 0.0446792
\(261\) 30.1232 1.86458
\(262\) −6.87315 −0.424625
\(263\) −0.260793 −0.0160812 −0.00804060 0.999968i \(-0.502559\pi\)
−0.00804060 + 0.999968i \(0.502559\pi\)
\(264\) −10.2744 −0.632345
\(265\) 3.37912 0.207578
\(266\) −29.4182 −1.80375
\(267\) 12.6978 0.777091
\(268\) 2.31344 0.141316
\(269\) 10.9411 0.667094 0.333547 0.942734i \(-0.391754\pi\)
0.333547 + 0.942734i \(0.391754\pi\)
\(270\) −19.4404 −1.18311
\(271\) −18.6262 −1.13146 −0.565731 0.824590i \(-0.691406\pi\)
−0.565731 + 0.824590i \(0.691406\pi\)
\(272\) −5.29222 −0.320888
\(273\) −14.7722 −0.894052
\(274\) −13.2680 −0.801548
\(275\) −1.00000 −0.0603023
\(276\) 5.26627 0.316992
\(277\) −12.9722 −0.779426 −0.389713 0.920936i \(-0.627426\pi\)
−0.389713 + 0.920936i \(0.627426\pi\)
\(278\) −2.21346 −0.132755
\(279\) 3.51887 0.210669
\(280\) 13.6153 0.813669
\(281\) −12.9630 −0.773310 −0.386655 0.922224i \(-0.626370\pi\)
−0.386655 + 0.922224i \(0.626370\pi\)
\(282\) −31.5069 −1.87621
\(283\) −13.4951 −0.802198 −0.401099 0.916035i \(-0.631372\pi\)
−0.401099 + 0.916035i \(0.631372\pi\)
\(284\) 10.9338 0.648799
\(285\) −19.6252 −1.16249
\(286\) 1.13118 0.0668881
\(287\) 29.8344 1.76107
\(288\) 31.3418 1.84683
\(289\) −10.2708 −0.604165
\(290\) 4.18230 0.245593
\(291\) −1.12381 −0.0658788
\(292\) −7.05992 −0.413151
\(293\) −12.0529 −0.704139 −0.352070 0.935974i \(-0.614522\pi\)
−0.352070 + 0.935974i \(0.614522\pi\)
\(294\) −47.4949 −2.76996
\(295\) 6.43744 0.374802
\(296\) 19.9989 1.16241
\(297\) 17.1860 0.997231
\(298\) 14.4046 0.834434
\(299\) −2.18940 −0.126616
\(300\) 2.40535 0.138873
\(301\) −34.3316 −1.97884
\(302\) −3.97716 −0.228860
\(303\) 17.6688 1.01505
\(304\) −11.9918 −0.687774
\(305\) 14.9657 0.856932
\(306\) 23.9074 1.36670
\(307\) 20.2564 1.15610 0.578048 0.816003i \(-0.303815\pi\)
0.578048 + 0.816003i \(0.303815\pi\)
\(308\) −3.18749 −0.181624
\(309\) −41.3542 −2.35256
\(310\) 0.488559 0.0277483
\(311\) 16.7105 0.947566 0.473783 0.880642i \(-0.342888\pi\)
0.473783 + 0.880642i \(0.342888\pi\)
\(312\) −10.2744 −0.581673
\(313\) −15.2117 −0.859818 −0.429909 0.902872i \(-0.641454\pi\)
−0.429909 + 0.902872i \(0.641454\pi\)
\(314\) 5.01211 0.282850
\(315\) −36.0476 −2.03105
\(316\) 8.73411 0.491332
\(317\) −3.33665 −0.187405 −0.0937025 0.995600i \(-0.529870\pi\)
−0.0937025 + 0.995600i \(0.529870\pi\)
\(318\) −12.7621 −0.715664
\(319\) −3.69729 −0.207008
\(320\) 8.43173 0.471348
\(321\) 10.9936 0.613604
\(322\) −10.9576 −0.610642
\(323\) 15.2478 0.848413
\(324\) −23.7294 −1.31830
\(325\) −1.00000 −0.0554700
\(326\) 21.2205 1.17529
\(327\) 7.44260 0.411577
\(328\) 20.7506 1.14576
\(329\) −36.9100 −2.03491
\(330\) 3.77675 0.207903
\(331\) −23.8002 −1.30818 −0.654089 0.756417i \(-0.726948\pi\)
−0.654089 + 0.756417i \(0.726948\pi\)
\(332\) 7.39107 0.405638
\(333\) −52.9486 −2.90156
\(334\) 23.9856 1.31243
\(335\) −3.21119 −0.175446
\(336\) −30.1370 −1.64411
\(337\) 8.96215 0.488199 0.244100 0.969750i \(-0.421508\pi\)
0.244100 + 0.969750i \(0.421508\pi\)
\(338\) 1.13118 0.0615281
\(339\) −27.9101 −1.51587
\(340\) −1.86884 −0.101352
\(341\) −0.431901 −0.0233888
\(342\) 54.1723 2.92930
\(343\) −24.6688 −1.33199
\(344\) −23.8784 −1.28744
\(345\) −7.30990 −0.393552
\(346\) 15.3875 0.827236
\(347\) −9.88257 −0.530524 −0.265262 0.964176i \(-0.585458\pi\)
−0.265262 + 0.964176i \(0.585458\pi\)
\(348\) 8.89327 0.476729
\(349\) 22.1831 1.18744 0.593718 0.804674i \(-0.297660\pi\)
0.593718 + 0.804674i \(0.297660\pi\)
\(350\) −5.00483 −0.267519
\(351\) 17.1860 0.917319
\(352\) −3.84685 −0.205038
\(353\) −2.47522 −0.131743 −0.0658714 0.997828i \(-0.520983\pi\)
−0.0658714 + 0.997828i \(0.520983\pi\)
\(354\) −24.3126 −1.29220
\(355\) −15.1767 −0.805496
\(356\) 2.73989 0.145214
\(357\) 38.3200 2.02811
\(358\) 14.2679 0.754081
\(359\) −7.35173 −0.388009 −0.194005 0.981001i \(-0.562148\pi\)
−0.194005 + 0.981001i \(0.562148\pi\)
\(360\) −25.0720 −1.32141
\(361\) 15.5504 0.818444
\(362\) 16.8469 0.885455
\(363\) −3.33877 −0.175240
\(364\) −3.18749 −0.167070
\(365\) 9.79960 0.512934
\(366\) −56.5216 −2.95443
\(367\) −18.9963 −0.991600 −0.495800 0.868437i \(-0.665125\pi\)
−0.495800 + 0.868437i \(0.665125\pi\)
\(368\) −4.46664 −0.232840
\(369\) −54.9388 −2.86000
\(370\) −7.35136 −0.382179
\(371\) −14.9507 −0.776202
\(372\) 1.03887 0.0538631
\(373\) −28.3356 −1.46716 −0.733582 0.679601i \(-0.762153\pi\)
−0.733582 + 0.679601i \(0.762153\pi\)
\(374\) −2.93436 −0.151732
\(375\) −3.33877 −0.172413
\(376\) −25.6718 −1.32392
\(377\) −3.69729 −0.190420
\(378\) 86.0129 4.42402
\(379\) 8.72609 0.448229 0.224114 0.974563i \(-0.428051\pi\)
0.224114 + 0.974563i \(0.428051\pi\)
\(380\) −4.23466 −0.217233
\(381\) −20.3003 −1.04002
\(382\) 21.8731 1.11912
\(383\) 19.7049 1.00687 0.503436 0.864032i \(-0.332069\pi\)
0.503436 + 0.864032i \(0.332069\pi\)
\(384\) −6.15705 −0.314201
\(385\) 4.42443 0.225490
\(386\) −17.2399 −0.877490
\(387\) 63.2201 3.21366
\(388\) −0.242492 −0.0123107
\(389\) 15.9784 0.810135 0.405067 0.914287i \(-0.367248\pi\)
0.405067 + 0.914287i \(0.367248\pi\)
\(390\) 3.77675 0.191243
\(391\) 5.67945 0.287222
\(392\) −38.6988 −1.95458
\(393\) 20.2867 1.02333
\(394\) 19.8667 1.00087
\(395\) −12.1235 −0.609998
\(396\) 5.86962 0.294960
\(397\) 12.5518 0.629956 0.314978 0.949099i \(-0.398003\pi\)
0.314978 + 0.949099i \(0.398003\pi\)
\(398\) 29.5732 1.48237
\(399\) 86.8302 4.34695
\(400\) −2.04012 −0.102006
\(401\) 11.6966 0.584102 0.292051 0.956403i \(-0.405662\pi\)
0.292051 + 0.956403i \(0.405662\pi\)
\(402\) 12.1279 0.604883
\(403\) −0.431901 −0.0215145
\(404\) 3.81252 0.189680
\(405\) 32.9378 1.63669
\(406\) −18.5043 −0.918352
\(407\) 6.49884 0.322135
\(408\) 26.6525 1.31950
\(409\) −6.97614 −0.344948 −0.172474 0.985014i \(-0.555176\pi\)
−0.172474 + 0.985014i \(0.555176\pi\)
\(410\) −7.62768 −0.376704
\(411\) 39.1615 1.93169
\(412\) −8.92329 −0.439619
\(413\) −28.4820 −1.40151
\(414\) 20.1779 0.991689
\(415\) −10.2593 −0.503607
\(416\) −3.84685 −0.188607
\(417\) 6.53322 0.319933
\(418\) −6.64904 −0.325215
\(419\) 40.4814 1.97765 0.988824 0.149087i \(-0.0476335\pi\)
0.988824 + 0.149087i \(0.0476335\pi\)
\(420\) −10.6423 −0.519291
\(421\) −21.6528 −1.05529 −0.527647 0.849464i \(-0.676926\pi\)
−0.527647 + 0.849464i \(0.676926\pi\)
\(422\) −11.0170 −0.536298
\(423\) 67.9682 3.30472
\(424\) −10.3986 −0.504999
\(425\) 2.59407 0.125831
\(426\) 57.3187 2.77710
\(427\) −66.2145 −3.20435
\(428\) 2.37217 0.114663
\(429\) −3.33877 −0.161197
\(430\) 8.77745 0.423286
\(431\) −11.0342 −0.531499 −0.265749 0.964042i \(-0.585619\pi\)
−0.265749 + 0.964042i \(0.585619\pi\)
\(432\) 35.0615 1.68690
\(433\) −23.7361 −1.14068 −0.570342 0.821407i \(-0.693189\pi\)
−0.570342 + 0.821407i \(0.693189\pi\)
\(434\) −2.16159 −0.103760
\(435\) −12.3444 −0.591868
\(436\) 1.60594 0.0769107
\(437\) 12.8692 0.615618
\(438\) −37.0107 −1.76844
\(439\) −11.7722 −0.561857 −0.280929 0.959729i \(-0.590642\pi\)
−0.280929 + 0.959729i \(0.590642\pi\)
\(440\) 3.07730 0.146704
\(441\) 102.458 4.87896
\(442\) −2.93436 −0.139573
\(443\) 1.63575 0.0777167 0.0388583 0.999245i \(-0.487628\pi\)
0.0388583 + 0.999245i \(0.487628\pi\)
\(444\) −15.6320 −0.741861
\(445\) −3.80313 −0.180286
\(446\) −0.395770 −0.0187402
\(447\) −42.5162 −2.01095
\(448\) −37.3056 −1.76252
\(449\) −34.4135 −1.62407 −0.812036 0.583608i \(-0.801641\pi\)
−0.812036 + 0.583608i \(0.801641\pi\)
\(450\) 9.21618 0.434455
\(451\) 6.74312 0.317521
\(452\) −6.02235 −0.283267
\(453\) 11.7389 0.551541
\(454\) 24.3228 1.14153
\(455\) 4.42443 0.207420
\(456\) 60.3925 2.82814
\(457\) −32.2262 −1.50748 −0.753739 0.657173i \(-0.771752\pi\)
−0.753739 + 0.657173i \(0.771752\pi\)
\(458\) 29.0027 1.35521
\(459\) −44.5816 −2.08089
\(460\) −1.57731 −0.0735424
\(461\) −0.849990 −0.0395880 −0.0197940 0.999804i \(-0.506301\pi\)
−0.0197940 + 0.999804i \(0.506301\pi\)
\(462\) −16.7100 −0.777419
\(463\) 18.7174 0.869872 0.434936 0.900461i \(-0.356771\pi\)
0.434936 + 0.900461i \(0.356771\pi\)
\(464\) −7.54291 −0.350171
\(465\) −1.44202 −0.0668721
\(466\) −2.63721 −0.122166
\(467\) −28.8534 −1.33518 −0.667589 0.744530i \(-0.732674\pi\)
−0.667589 + 0.744530i \(0.732674\pi\)
\(468\) 5.86962 0.271324
\(469\) 14.2077 0.656050
\(470\) 9.43667 0.435281
\(471\) −14.7937 −0.681656
\(472\) −19.8099 −0.911826
\(473\) −7.75955 −0.356784
\(474\) 45.7874 2.10308
\(475\) 5.87796 0.269699
\(476\) 8.26857 0.378989
\(477\) 27.5311 1.26056
\(478\) 12.2826 0.561793
\(479\) −11.3098 −0.516760 −0.258380 0.966043i \(-0.583189\pi\)
−0.258380 + 0.966043i \(0.583189\pi\)
\(480\) −12.8438 −0.586234
\(481\) 6.49884 0.296321
\(482\) −22.9478 −1.04525
\(483\) 32.3422 1.47162
\(484\) −0.720430 −0.0327468
\(485\) 0.336593 0.0152839
\(486\) −66.0768 −2.99731
\(487\) 27.3173 1.23786 0.618932 0.785444i \(-0.287566\pi\)
0.618932 + 0.785444i \(0.287566\pi\)
\(488\) −46.0538 −2.08476
\(489\) −62.6339 −2.83240
\(490\) 14.2253 0.642632
\(491\) −1.94926 −0.0879689 −0.0439845 0.999032i \(-0.514005\pi\)
−0.0439845 + 0.999032i \(0.514005\pi\)
\(492\) −16.2196 −0.731234
\(493\) 9.59102 0.431958
\(494\) −6.64904 −0.299154
\(495\) −8.14739 −0.366198
\(496\) −0.881131 −0.0395640
\(497\) 67.1483 3.01201
\(498\) 38.7467 1.73628
\(499\) 25.9632 1.16227 0.581136 0.813806i \(-0.302608\pi\)
0.581136 + 0.813806i \(0.302608\pi\)
\(500\) −0.720430 −0.0322186
\(501\) −70.7955 −3.16291
\(502\) 13.8035 0.616080
\(503\) 4.78726 0.213453 0.106727 0.994288i \(-0.465963\pi\)
0.106727 + 0.994288i \(0.465963\pi\)
\(504\) 110.929 4.94118
\(505\) −5.29201 −0.235492
\(506\) −2.47661 −0.110099
\(507\) −3.33877 −0.148280
\(508\) −4.38034 −0.194346
\(509\) −0.644478 −0.0285660 −0.0142830 0.999898i \(-0.504547\pi\)
−0.0142830 + 0.999898i \(0.504547\pi\)
\(510\) −9.79716 −0.433826
\(511\) −43.3576 −1.91803
\(512\) −20.4042 −0.901745
\(513\) −101.018 −4.46007
\(514\) −9.29022 −0.409774
\(515\) 12.3861 0.545795
\(516\) 18.6644 0.821656
\(517\) −8.34232 −0.366895
\(518\) 32.5256 1.42909
\(519\) −45.4174 −1.99360
\(520\) 3.07730 0.134948
\(521\) −21.5446 −0.943887 −0.471944 0.881629i \(-0.656447\pi\)
−0.471944 + 0.881629i \(0.656447\pi\)
\(522\) 34.0748 1.49141
\(523\) −1.31658 −0.0575700 −0.0287850 0.999586i \(-0.509164\pi\)
−0.0287850 + 0.999586i \(0.509164\pi\)
\(524\) 4.37739 0.191227
\(525\) 14.7722 0.644710
\(526\) −0.295004 −0.0128628
\(527\) 1.12038 0.0488046
\(528\) −6.81150 −0.296432
\(529\) −18.2065 −0.791588
\(530\) 3.82240 0.166034
\(531\) 52.4484 2.27607
\(532\) 18.7359 0.812306
\(533\) 6.74312 0.292077
\(534\) 14.3635 0.621569
\(535\) −3.29272 −0.142357
\(536\) 9.88179 0.426828
\(537\) −42.1128 −1.81730
\(538\) 12.3764 0.533585
\(539\) −12.5756 −0.541669
\(540\) 12.3813 0.532806
\(541\) −1.14587 −0.0492650 −0.0246325 0.999697i \(-0.507842\pi\)
−0.0246325 + 0.999697i \(0.507842\pi\)
\(542\) −21.0696 −0.905018
\(543\) −49.7251 −2.13391
\(544\) 9.97900 0.427846
\(545\) −2.22914 −0.0954860
\(546\) −16.7100 −0.715121
\(547\) 10.9095 0.466455 0.233228 0.972422i \(-0.425071\pi\)
0.233228 + 0.972422i \(0.425071\pi\)
\(548\) 8.45015 0.360972
\(549\) 121.931 5.20390
\(550\) −1.13118 −0.0482337
\(551\) 21.7325 0.925836
\(552\) 22.4948 0.957440
\(553\) 53.6394 2.28098
\(554\) −14.6739 −0.623436
\(555\) 21.6981 0.921034
\(556\) 1.40972 0.0597853
\(557\) 30.7645 1.30353 0.651766 0.758420i \(-0.274028\pi\)
0.651766 + 0.758420i \(0.274028\pi\)
\(558\) 3.98048 0.168507
\(559\) −7.75955 −0.328194
\(560\) 9.02637 0.381434
\(561\) 8.66101 0.365668
\(562\) −14.6635 −0.618544
\(563\) 19.1181 0.805732 0.402866 0.915259i \(-0.368014\pi\)
0.402866 + 0.915259i \(0.368014\pi\)
\(564\) 20.0662 0.844939
\(565\) 8.35938 0.351682
\(566\) −15.2653 −0.641650
\(567\) −145.731 −6.12013
\(568\) 46.7033 1.95963
\(569\) −12.5432 −0.525839 −0.262920 0.964818i \(-0.584685\pi\)
−0.262920 + 0.964818i \(0.584685\pi\)
\(570\) −22.1996 −0.929840
\(571\) −34.0574 −1.42526 −0.712630 0.701540i \(-0.752496\pi\)
−0.712630 + 0.701540i \(0.752496\pi\)
\(572\) −0.720430 −0.0301227
\(573\) −64.5601 −2.69704
\(574\) 33.7482 1.40862
\(575\) 2.18940 0.0913043
\(576\) 68.6966 2.86236
\(577\) 26.9491 1.12191 0.560954 0.827847i \(-0.310435\pi\)
0.560954 + 0.827847i \(0.310435\pi\)
\(578\) −11.6181 −0.483251
\(579\) 50.8851 2.11471
\(580\) −2.66363 −0.110601
\(581\) 45.3914 1.88315
\(582\) −1.27123 −0.0526942
\(583\) −3.37912 −0.139949
\(584\) −30.1563 −1.24788
\(585\) −8.14739 −0.336853
\(586\) −13.6340 −0.563217
\(587\) −39.2837 −1.62141 −0.810706 0.585454i \(-0.800916\pi\)
−0.810706 + 0.585454i \(0.800916\pi\)
\(588\) 30.2487 1.24743
\(589\) 2.53870 0.104605
\(590\) 7.28191 0.299792
\(591\) −58.6381 −2.41205
\(592\) 13.2584 0.544918
\(593\) 19.5180 0.801509 0.400754 0.916185i \(-0.368748\pi\)
0.400754 + 0.916185i \(0.368748\pi\)
\(594\) 19.4404 0.797651
\(595\) −11.4773 −0.470523
\(596\) −9.17402 −0.375783
\(597\) −87.2878 −3.57245
\(598\) −2.47661 −0.101276
\(599\) 10.4430 0.426690 0.213345 0.976977i \(-0.431564\pi\)
0.213345 + 0.976977i \(0.431564\pi\)
\(600\) 10.2744 0.419450
\(601\) −21.4314 −0.874203 −0.437102 0.899412i \(-0.643995\pi\)
−0.437102 + 0.899412i \(0.643995\pi\)
\(602\) −38.8352 −1.58281
\(603\) −26.1628 −1.06543
\(604\) 2.53298 0.103066
\(605\) 1.00000 0.0406558
\(606\) 19.9866 0.811902
\(607\) 23.5700 0.956675 0.478338 0.878176i \(-0.341240\pi\)
0.478338 + 0.878176i \(0.341240\pi\)
\(608\) 22.6116 0.917023
\(609\) 54.6169 2.21319
\(610\) 16.9289 0.685430
\(611\) −8.34232 −0.337494
\(612\) −15.2262 −0.615483
\(613\) 3.81144 0.153942 0.0769712 0.997033i \(-0.475475\pi\)
0.0769712 + 0.997033i \(0.475475\pi\)
\(614\) 22.9137 0.924721
\(615\) 22.5137 0.907841
\(616\) −13.6153 −0.548576
\(617\) 0.502452 0.0202280 0.0101140 0.999949i \(-0.496781\pi\)
0.0101140 + 0.999949i \(0.496781\pi\)
\(618\) −46.7791 −1.88173
\(619\) 45.1440 1.81449 0.907246 0.420601i \(-0.138181\pi\)
0.907246 + 0.420601i \(0.138181\pi\)
\(620\) −0.311155 −0.0124963
\(621\) −37.6270 −1.50992
\(622\) 18.9026 0.757926
\(623\) 16.8267 0.674147
\(624\) −6.81150 −0.272678
\(625\) 1.00000 0.0400000
\(626\) −17.2072 −0.687739
\(627\) 19.6252 0.783754
\(628\) −3.19213 −0.127380
\(629\) −16.8584 −0.672190
\(630\) −40.7763 −1.62457
\(631\) −19.6367 −0.781723 −0.390862 0.920449i \(-0.627823\pi\)
−0.390862 + 0.920449i \(0.627823\pi\)
\(632\) 37.3075 1.48401
\(633\) 32.5175 1.29245
\(634\) −3.77436 −0.149899
\(635\) 6.08018 0.241285
\(636\) 8.12798 0.322295
\(637\) −12.5756 −0.498263
\(638\) −4.18230 −0.165579
\(639\) −123.651 −4.89154
\(640\) 1.84411 0.0728948
\(641\) 25.4251 1.00423 0.502115 0.864801i \(-0.332556\pi\)
0.502115 + 0.864801i \(0.332556\pi\)
\(642\) 12.4358 0.490801
\(643\) 8.01245 0.315980 0.157990 0.987441i \(-0.449499\pi\)
0.157990 + 0.987441i \(0.449499\pi\)
\(644\) 6.97869 0.274999
\(645\) −25.9073 −1.02010
\(646\) 17.2481 0.678616
\(647\) 20.4630 0.804485 0.402242 0.915533i \(-0.368231\pi\)
0.402242 + 0.915533i \(0.368231\pi\)
\(648\) −101.360 −3.98178
\(649\) −6.43744 −0.252692
\(650\) −1.13118 −0.0443686
\(651\) 6.38012 0.250056
\(652\) −13.5149 −0.529286
\(653\) −4.67131 −0.182803 −0.0914013 0.995814i \(-0.529135\pi\)
−0.0914013 + 0.995814i \(0.529135\pi\)
\(654\) 8.41893 0.329206
\(655\) −6.07608 −0.237412
\(656\) 13.7568 0.537112
\(657\) 79.8412 3.11490
\(658\) −41.7519 −1.62766
\(659\) 8.34828 0.325203 0.162601 0.986692i \(-0.448012\pi\)
0.162601 + 0.986692i \(0.448012\pi\)
\(660\) −2.40535 −0.0936281
\(661\) 33.9259 1.31957 0.659783 0.751457i \(-0.270648\pi\)
0.659783 + 0.751457i \(0.270648\pi\)
\(662\) −26.9224 −1.04637
\(663\) 8.66101 0.336366
\(664\) 31.5708 1.22518
\(665\) −26.0066 −1.00849
\(666\) −59.8944 −2.32086
\(667\) 8.09483 0.313433
\(668\) −15.2760 −0.591047
\(669\) 1.16815 0.0451632
\(670\) −3.63244 −0.140333
\(671\) −14.9657 −0.577743
\(672\) 56.8263 2.19212
\(673\) −9.48362 −0.365567 −0.182783 0.983153i \(-0.558511\pi\)
−0.182783 + 0.983153i \(0.558511\pi\)
\(674\) 10.1378 0.390494
\(675\) −17.1860 −0.661488
\(676\) −0.720430 −0.0277088
\(677\) 30.3886 1.16793 0.583964 0.811779i \(-0.301501\pi\)
0.583964 + 0.811779i \(0.301501\pi\)
\(678\) −31.5713 −1.21249
\(679\) −1.48923 −0.0571515
\(680\) −7.98273 −0.306124
\(681\) −71.7908 −2.75103
\(682\) −0.488559 −0.0187079
\(683\) −33.6635 −1.28810 −0.644049 0.764984i \(-0.722747\pi\)
−0.644049 + 0.764984i \(0.722747\pi\)
\(684\) −34.5014 −1.31920
\(685\) −11.7293 −0.448154
\(686\) −27.9048 −1.06541
\(687\) −85.6037 −3.26599
\(688\) −15.8304 −0.603529
\(689\) −3.37912 −0.128734
\(690\) −8.26882 −0.314789
\(691\) 35.5742 1.35331 0.676653 0.736302i \(-0.263430\pi\)
0.676653 + 0.736302i \(0.263430\pi\)
\(692\) −9.80003 −0.372541
\(693\) 36.0476 1.36933
\(694\) −11.1790 −0.424348
\(695\) −1.95677 −0.0742246
\(696\) 37.9874 1.43991
\(697\) −17.4921 −0.662561
\(698\) 25.0931 0.949789
\(699\) 7.78393 0.294415
\(700\) 3.18749 0.120476
\(701\) 13.7246 0.518370 0.259185 0.965828i \(-0.416546\pi\)
0.259185 + 0.965828i \(0.416546\pi\)
\(702\) 19.4404 0.733732
\(703\) −38.1999 −1.44074
\(704\) −8.43173 −0.317783
\(705\) −27.8531 −1.04901
\(706\) −2.79992 −0.105376
\(707\) 23.4141 0.880580
\(708\) 15.4843 0.581936
\(709\) −47.8364 −1.79653 −0.898267 0.439451i \(-0.855173\pi\)
−0.898267 + 0.439451i \(0.855173\pi\)
\(710\) −17.1676 −0.644289
\(711\) −98.7747 −3.70434
\(712\) 11.7034 0.438602
\(713\) 0.945605 0.0354132
\(714\) 43.3469 1.62222
\(715\) 1.00000 0.0373979
\(716\) −9.08697 −0.339596
\(717\) −36.2531 −1.35390
\(718\) −8.31614 −0.310355
\(719\) 10.6872 0.398566 0.199283 0.979942i \(-0.436139\pi\)
0.199283 + 0.979942i \(0.436139\pi\)
\(720\) −16.6217 −0.619453
\(721\) −54.8013 −2.04091
\(722\) 17.5903 0.654645
\(723\) 67.7324 2.51899
\(724\) −10.7295 −0.398760
\(725\) 3.69729 0.137314
\(726\) −3.77675 −0.140169
\(727\) −26.2267 −0.972694 −0.486347 0.873766i \(-0.661671\pi\)
−0.486347 + 0.873766i \(0.661671\pi\)
\(728\) −13.6153 −0.504616
\(729\) 96.2175 3.56361
\(730\) 11.0851 0.410279
\(731\) 20.1288 0.744491
\(732\) 35.9977 1.33051
\(733\) −12.4094 −0.458351 −0.229175 0.973385i \(-0.573603\pi\)
−0.229175 + 0.973385i \(0.573603\pi\)
\(734\) −21.4883 −0.793147
\(735\) −41.9870 −1.54871
\(736\) 8.42229 0.310450
\(737\) 3.21119 0.118286
\(738\) −62.1457 −2.28762
\(739\) −14.8018 −0.544492 −0.272246 0.962228i \(-0.587766\pi\)
−0.272246 + 0.962228i \(0.587766\pi\)
\(740\) 4.68196 0.172112
\(741\) 19.6252 0.720949
\(742\) −16.9119 −0.620857
\(743\) 34.4730 1.26469 0.632345 0.774687i \(-0.282093\pi\)
0.632345 + 0.774687i \(0.282093\pi\)
\(744\) 4.43753 0.162688
\(745\) 12.7341 0.466541
\(746\) −32.0527 −1.17353
\(747\) −83.5862 −3.05826
\(748\) 1.86884 0.0683317
\(749\) 14.5684 0.532317
\(750\) −3.77675 −0.137908
\(751\) 44.3549 1.61853 0.809266 0.587443i \(-0.199865\pi\)
0.809266 + 0.587443i \(0.199865\pi\)
\(752\) −17.0193 −0.620632
\(753\) −40.7421 −1.48472
\(754\) −4.18230 −0.152310
\(755\) −3.51593 −0.127958
\(756\) −54.7801 −1.99233
\(757\) −0.643538 −0.0233898 −0.0116949 0.999932i \(-0.503723\pi\)
−0.0116949 + 0.999932i \(0.503723\pi\)
\(758\) 9.87078 0.358523
\(759\) 7.30990 0.265333
\(760\) −18.0882 −0.656129
\(761\) 16.5759 0.600878 0.300439 0.953801i \(-0.402867\pi\)
0.300439 + 0.953801i \(0.402867\pi\)
\(762\) −22.9634 −0.831875
\(763\) 9.86269 0.357053
\(764\) −13.9306 −0.503991
\(765\) 21.1349 0.764134
\(766\) 22.2898 0.805363
\(767\) −6.43744 −0.232443
\(768\) 49.3385 1.78035
\(769\) −33.4701 −1.20696 −0.603481 0.797377i \(-0.706220\pi\)
−0.603481 + 0.797377i \(0.706220\pi\)
\(770\) 5.00483 0.180362
\(771\) 27.4208 0.987537
\(772\) 10.9798 0.395172
\(773\) 44.8029 1.61145 0.805725 0.592290i \(-0.201776\pi\)
0.805725 + 0.592290i \(0.201776\pi\)
\(774\) 71.5133 2.57049
\(775\) 0.431901 0.0155144
\(776\) −1.03580 −0.0371830
\(777\) −96.0019 −3.44405
\(778\) 18.0744 0.647999
\(779\) −39.6358 −1.42010
\(780\) −2.40535 −0.0861254
\(781\) 15.1767 0.543065
\(782\) 6.42449 0.229739
\(783\) −63.5414 −2.27079
\(784\) −25.6557 −0.916275
\(785\) 4.43087 0.158144
\(786\) 22.9479 0.818524
\(787\) 11.8111 0.421020 0.210510 0.977592i \(-0.432487\pi\)
0.210510 + 0.977592i \(0.432487\pi\)
\(788\) −12.6527 −0.450735
\(789\) 0.870729 0.0309988
\(790\) −13.7138 −0.487916
\(791\) −36.9855 −1.31505
\(792\) 25.0720 0.890893
\(793\) −14.9657 −0.531446
\(794\) 14.1983 0.503881
\(795\) −11.2821 −0.400136
\(796\) −18.8347 −0.667578
\(797\) 24.2331 0.858380 0.429190 0.903214i \(-0.358799\pi\)
0.429190 + 0.903214i \(0.358799\pi\)
\(798\) 98.2206 3.47697
\(799\) 21.6406 0.765588
\(800\) 3.84685 0.136007
\(801\) −30.9856 −1.09482
\(802\) 13.2310 0.467203
\(803\) −9.79960 −0.345820
\(804\) −7.72404 −0.272406
\(805\) −9.68684 −0.341416
\(806\) −0.488559 −0.0172087
\(807\) −36.5300 −1.28592
\(808\) 16.2851 0.572908
\(809\) 31.1027 1.09351 0.546757 0.837291i \(-0.315862\pi\)
0.546757 + 0.837291i \(0.315862\pi\)
\(810\) 37.2587 1.30914
\(811\) 3.04310 0.106858 0.0534289 0.998572i \(-0.482985\pi\)
0.0534289 + 0.998572i \(0.482985\pi\)
\(812\) 11.7851 0.413575
\(813\) 62.1887 2.18105
\(814\) 7.35136 0.257665
\(815\) 18.7596 0.657119
\(816\) 17.6695 0.618556
\(817\) 45.6103 1.59570
\(818\) −7.89127 −0.275912
\(819\) 36.0476 1.25960
\(820\) 4.85794 0.169647
\(821\) −7.99479 −0.279020 −0.139510 0.990221i \(-0.544553\pi\)
−0.139510 + 0.990221i \(0.544553\pi\)
\(822\) 44.2987 1.54510
\(823\) −1.13399 −0.0395285 −0.0197642 0.999805i \(-0.506292\pi\)
−0.0197642 + 0.999805i \(0.506292\pi\)
\(824\) −38.1156 −1.32782
\(825\) 3.33877 0.116241
\(826\) −32.2183 −1.12102
\(827\) −33.9938 −1.18208 −0.591040 0.806642i \(-0.701283\pi\)
−0.591040 + 0.806642i \(0.701283\pi\)
\(828\) −12.8510 −0.446602
\(829\) −35.3174 −1.22662 −0.613312 0.789841i \(-0.710163\pi\)
−0.613312 + 0.789841i \(0.710163\pi\)
\(830\) −11.6051 −0.402818
\(831\) 43.3113 1.50245
\(832\) −8.43173 −0.292318
\(833\) 32.6219 1.13028
\(834\) 7.39025 0.255903
\(835\) 21.2041 0.733797
\(836\) 4.23466 0.146459
\(837\) −7.42264 −0.256564
\(838\) 45.7918 1.58185
\(839\) −52.6759 −1.81857 −0.909286 0.416171i \(-0.863372\pi\)
−0.909286 + 0.416171i \(0.863372\pi\)
\(840\) −45.4583 −1.56846
\(841\) −15.3301 −0.528623
\(842\) −24.4933 −0.844094
\(843\) 43.2806 1.49066
\(844\) 7.01652 0.241519
\(845\) 1.00000 0.0344010
\(846\) 76.8843 2.64334
\(847\) −4.42443 −0.152025
\(848\) −6.89382 −0.236735
\(849\) 45.0569 1.54635
\(850\) 2.93436 0.100648
\(851\) −14.2286 −0.487748
\(852\) −36.5053 −1.25065
\(853\) −29.7612 −1.01900 −0.509502 0.860470i \(-0.670170\pi\)
−0.509502 + 0.860470i \(0.670170\pi\)
\(854\) −74.9006 −2.56305
\(855\) 47.8901 1.63781
\(856\) 10.1327 0.346327
\(857\) −28.1349 −0.961070 −0.480535 0.876976i \(-0.659557\pi\)
−0.480535 + 0.876976i \(0.659557\pi\)
\(858\) −3.77675 −0.128936
\(859\) −8.95665 −0.305597 −0.152798 0.988257i \(-0.548829\pi\)
−0.152798 + 0.988257i \(0.548829\pi\)
\(860\) −5.59021 −0.190625
\(861\) −99.6104 −3.39471
\(862\) −12.4817 −0.425128
\(863\) 41.4051 1.40945 0.704723 0.709483i \(-0.251071\pi\)
0.704723 + 0.709483i \(0.251071\pi\)
\(864\) −66.1119 −2.24917
\(865\) 13.6030 0.462517
\(866\) −26.8498 −0.912394
\(867\) 34.2919 1.16461
\(868\) 1.37668 0.0467276
\(869\) 12.1235 0.411261
\(870\) −13.9637 −0.473415
\(871\) 3.21119 0.108807
\(872\) 6.85974 0.232300
\(873\) 2.74236 0.0928147
\(874\) 14.5574 0.492411
\(875\) −4.42443 −0.149573
\(876\) 23.5715 0.796406
\(877\) 21.4266 0.723524 0.361762 0.932271i \(-0.382175\pi\)
0.361762 + 0.932271i \(0.382175\pi\)
\(878\) −13.3165 −0.449410
\(879\) 40.2420 1.35733
\(880\) 2.04012 0.0687725
\(881\) 32.1627 1.08359 0.541795 0.840511i \(-0.317745\pi\)
0.541795 + 0.840511i \(0.317745\pi\)
\(882\) 115.899 3.90251
\(883\) −3.99847 −0.134559 −0.0672795 0.997734i \(-0.521432\pi\)
−0.0672795 + 0.997734i \(0.521432\pi\)
\(884\) 1.86884 0.0628561
\(885\) −21.4932 −0.722484
\(886\) 1.85033 0.0621629
\(887\) 14.5709 0.489244 0.244622 0.969618i \(-0.421336\pi\)
0.244622 + 0.969618i \(0.421336\pi\)
\(888\) −66.7716 −2.24071
\(889\) −26.9013 −0.902242
\(890\) −4.30203 −0.144204
\(891\) −32.9378 −1.10346
\(892\) 0.252059 0.00843956
\(893\) 49.0358 1.64092
\(894\) −48.0936 −1.60849
\(895\) 12.6133 0.421615
\(896\) −8.15913 −0.272577
\(897\) 7.30990 0.244071
\(898\) −38.9278 −1.29904
\(899\) 1.59686 0.0532584
\(900\) −5.86962 −0.195654
\(901\) 8.76568 0.292027
\(902\) 7.62768 0.253974
\(903\) 114.625 3.81449
\(904\) −25.7243 −0.855578
\(905\) 14.8932 0.495068
\(906\) 13.2788 0.441159
\(907\) 19.5452 0.648987 0.324494 0.945888i \(-0.394806\pi\)
0.324494 + 0.945888i \(0.394806\pi\)
\(908\) −15.4908 −0.514080
\(909\) −43.1161 −1.43007
\(910\) 5.00483 0.165909
\(911\) −42.2982 −1.40140 −0.700701 0.713455i \(-0.747129\pi\)
−0.700701 + 0.713455i \(0.747129\pi\)
\(912\) 40.0377 1.32578
\(913\) 10.2593 0.339532
\(914\) −36.4537 −1.20578
\(915\) −49.9669 −1.65186
\(916\) −18.4713 −0.610309
\(917\) 26.8832 0.887762
\(918\) −50.4299 −1.66443
\(919\) −20.4894 −0.675884 −0.337942 0.941167i \(-0.609731\pi\)
−0.337942 + 0.941167i \(0.609731\pi\)
\(920\) −6.73744 −0.222127
\(921\) −67.6316 −2.22854
\(922\) −0.961492 −0.0316651
\(923\) 15.1767 0.499548
\(924\) 10.6423 0.350106
\(925\) −6.49884 −0.213680
\(926\) 21.1728 0.695781
\(927\) 100.914 3.31446
\(928\) 14.2229 0.466890
\(929\) 1.78487 0.0585595 0.0292798 0.999571i \(-0.490679\pi\)
0.0292798 + 0.999571i \(0.490679\pi\)
\(930\) −1.63119 −0.0534887
\(931\) 73.9188 2.42259
\(932\) 1.67959 0.0550169
\(933\) −55.7926 −1.82657
\(934\) −32.6385 −1.06796
\(935\) −2.59407 −0.0848351
\(936\) 25.0720 0.819503
\(937\) −13.1804 −0.430583 −0.215292 0.976550i \(-0.569070\pi\)
−0.215292 + 0.976550i \(0.569070\pi\)
\(938\) 16.0715 0.524752
\(939\) 50.7885 1.65742
\(940\) −6.01005 −0.196026
\(941\) −22.1738 −0.722847 −0.361423 0.932402i \(-0.617709\pi\)
−0.361423 + 0.932402i \(0.617709\pi\)
\(942\) −16.7343 −0.545233
\(943\) −14.7634 −0.480762
\(944\) −13.1332 −0.427448
\(945\) 76.0381 2.47352
\(946\) −8.77745 −0.285380
\(947\) 43.5166 1.41410 0.707050 0.707164i \(-0.250026\pi\)
0.707050 + 0.707164i \(0.250026\pi\)
\(948\) −29.1612 −0.947111
\(949\) −9.79960 −0.318108
\(950\) 6.64904 0.215723
\(951\) 11.1403 0.361250
\(952\) 35.3190 1.14470
\(953\) 46.4467 1.50456 0.752278 0.658846i \(-0.228955\pi\)
0.752278 + 0.658846i \(0.228955\pi\)
\(954\) 31.1426 1.00828
\(955\) 19.3365 0.625714
\(956\) −7.82257 −0.253000
\(957\) 12.3444 0.399037
\(958\) −12.7935 −0.413338
\(959\) 51.8955 1.67579
\(960\) −28.1516 −0.908589
\(961\) −30.8135 −0.993983
\(962\) 7.35136 0.237017
\(963\) −26.8270 −0.864490
\(964\) 14.6151 0.470720
\(965\) −15.2407 −0.490614
\(966\) 36.5848 1.17710
\(967\) −42.3549 −1.36204 −0.681021 0.732264i \(-0.738464\pi\)
−0.681021 + 0.732264i \(0.738464\pi\)
\(968\) −3.07730 −0.0989081
\(969\) −50.9091 −1.63543
\(970\) 0.380748 0.0122251
\(971\) −31.9327 −1.02477 −0.512385 0.858756i \(-0.671238\pi\)
−0.512385 + 0.858756i \(0.671238\pi\)
\(972\) 42.0832 1.34982
\(973\) 8.65760 0.277550
\(974\) 30.9008 0.990125
\(975\) 3.33877 0.106926
\(976\) −30.5318 −0.977298
\(977\) 19.1141 0.611514 0.305757 0.952110i \(-0.401090\pi\)
0.305757 + 0.952110i \(0.401090\pi\)
\(978\) −70.8503 −2.26554
\(979\) 3.80313 0.121549
\(980\) −9.05982 −0.289405
\(981\) −18.1617 −0.579859
\(982\) −2.20497 −0.0703633
\(983\) −8.03743 −0.256354 −0.128177 0.991751i \(-0.540913\pi\)
−0.128177 + 0.991751i \(0.540913\pi\)
\(984\) −69.2814 −2.20861
\(985\) 17.5628 0.559596
\(986\) 10.8492 0.345508
\(987\) 123.234 3.92258
\(988\) 4.23466 0.134722
\(989\) 16.9887 0.540211
\(990\) −9.21618 −0.292909
\(991\) −22.6134 −0.718338 −0.359169 0.933273i \(-0.616940\pi\)
−0.359169 + 0.933273i \(0.616940\pi\)
\(992\) 1.66146 0.0527514
\(993\) 79.4635 2.52170
\(994\) 75.9569 2.40921
\(995\) 26.1437 0.828811
\(996\) −24.6771 −0.781924
\(997\) −7.68488 −0.243383 −0.121691 0.992568i \(-0.538832\pi\)
−0.121691 + 0.992568i \(0.538832\pi\)
\(998\) 29.3691 0.929662
\(999\) 111.689 3.53368
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 715.2.a.i.1.6 9
3.2 odd 2 6435.2.a.bq.1.4 9
5.4 even 2 3575.2.a.t.1.4 9
11.10 odd 2 7865.2.a.w.1.4 9
13.12 even 2 9295.2.a.t.1.4 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
715.2.a.i.1.6 9 1.1 even 1 trivial
3575.2.a.t.1.4 9 5.4 even 2
6435.2.a.bq.1.4 9 3.2 odd 2
7865.2.a.w.1.4 9 11.10 odd 2
9295.2.a.t.1.4 9 13.12 even 2