Properties

Label 7865.2.a.u.1.7
Level $7865$
Weight $2$
Character 7865.1
Self dual yes
Analytic conductor $62.802$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7865,2,Mod(1,7865)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7865, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7865.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7865 = 5 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7865.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,1,-5,7,-8,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.8023411897\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 11x^{6} + 9x^{5} + 34x^{4} - 13x^{3} - 35x^{2} - 3x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(2.28679\) of defining polynomial
Character \(\chi\) \(=\) 7865.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.28679 q^{2} -0.0897034 q^{3} +3.22941 q^{4} -1.00000 q^{5} -0.205133 q^{6} -4.22248 q^{7} +2.81139 q^{8} -2.99195 q^{9} -2.28679 q^{10} -0.289689 q^{12} -1.00000 q^{13} -9.65593 q^{14} +0.0897034 q^{15} -0.0297495 q^{16} -0.295990 q^{17} -6.84197 q^{18} +5.10234 q^{19} -3.22941 q^{20} +0.378771 q^{21} +4.20345 q^{23} -0.252191 q^{24} +1.00000 q^{25} -2.28679 q^{26} +0.537498 q^{27} -13.6361 q^{28} +1.22057 q^{29} +0.205133 q^{30} -4.30728 q^{31} -5.69082 q^{32} -0.676868 q^{34} +4.22248 q^{35} -9.66223 q^{36} +0.0195553 q^{37} +11.6680 q^{38} +0.0897034 q^{39} -2.81139 q^{40} +4.83445 q^{41} +0.866170 q^{42} +2.39529 q^{43} +2.99195 q^{45} +9.61240 q^{46} +11.8632 q^{47} +0.00266863 q^{48} +10.8294 q^{49} +2.28679 q^{50} +0.0265513 q^{51} -3.22941 q^{52} +0.166482 q^{53} +1.22915 q^{54} -11.8711 q^{56} -0.457697 q^{57} +2.79118 q^{58} +5.42688 q^{59} +0.289689 q^{60} +3.36902 q^{61} -9.84984 q^{62} +12.6335 q^{63} -12.9542 q^{64} +1.00000 q^{65} -0.529973 q^{67} -0.955873 q^{68} -0.377064 q^{69} +9.65593 q^{70} +0.0282052 q^{71} -8.41155 q^{72} +16.3670 q^{73} +0.0447189 q^{74} -0.0897034 q^{75} +16.4775 q^{76} +0.205133 q^{78} +2.93331 q^{79} +0.0297495 q^{80} +8.92764 q^{81} +11.0554 q^{82} -15.4009 q^{83} +1.22321 q^{84} +0.295990 q^{85} +5.47751 q^{86} -0.109489 q^{87} -1.98790 q^{89} +6.84197 q^{90} +4.22248 q^{91} +13.5746 q^{92} +0.386378 q^{93} +27.1286 q^{94} -5.10234 q^{95} +0.510485 q^{96} -2.76500 q^{97} +24.7645 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} - 5 q^{3} + 7 q^{4} - 8 q^{5} - 7 q^{6} + 9 q^{7} + 3 q^{8} + 3 q^{9} - q^{10} - 15 q^{12} - 8 q^{13} - 7 q^{14} + 5 q^{15} + 9 q^{16} + 4 q^{17} + 8 q^{18} + 16 q^{19} - 7 q^{20} - 23 q^{21}+ \cdots + 41 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.28679 1.61700 0.808502 0.588493i \(-0.200279\pi\)
0.808502 + 0.588493i \(0.200279\pi\)
\(3\) −0.0897034 −0.0517903 −0.0258951 0.999665i \(-0.508244\pi\)
−0.0258951 + 0.999665i \(0.508244\pi\)
\(4\) 3.22941 1.61470
\(5\) −1.00000 −0.447214
\(6\) −0.205133 −0.0837451
\(7\) −4.22248 −1.59595 −0.797974 0.602691i \(-0.794095\pi\)
−0.797974 + 0.602691i \(0.794095\pi\)
\(8\) 2.81139 0.993977
\(9\) −2.99195 −0.997318
\(10\) −2.28679 −0.723146
\(11\) 0 0
\(12\) −0.289689 −0.0836259
\(13\) −1.00000 −0.277350
\(14\) −9.65593 −2.58066
\(15\) 0.0897034 0.0231613
\(16\) −0.0297495 −0.00743737
\(17\) −0.295990 −0.0717882 −0.0358941 0.999356i \(-0.511428\pi\)
−0.0358941 + 0.999356i \(0.511428\pi\)
\(18\) −6.84197 −1.61267
\(19\) 5.10234 1.17056 0.585278 0.810833i \(-0.300985\pi\)
0.585278 + 0.810833i \(0.300985\pi\)
\(20\) −3.22941 −0.722117
\(21\) 0.378771 0.0826546
\(22\) 0 0
\(23\) 4.20345 0.876480 0.438240 0.898858i \(-0.355602\pi\)
0.438240 + 0.898858i \(0.355602\pi\)
\(24\) −0.252191 −0.0514784
\(25\) 1.00000 0.200000
\(26\) −2.28679 −0.448476
\(27\) 0.537498 0.103442
\(28\) −13.6361 −2.57698
\(29\) 1.22057 0.226653 0.113327 0.993558i \(-0.463849\pi\)
0.113327 + 0.993558i \(0.463849\pi\)
\(30\) 0.205133 0.0374519
\(31\) −4.30728 −0.773610 −0.386805 0.922161i \(-0.626421\pi\)
−0.386805 + 0.922161i \(0.626421\pi\)
\(32\) −5.69082 −1.00600
\(33\) 0 0
\(34\) −0.676868 −0.116082
\(35\) 4.22248 0.713730
\(36\) −9.66223 −1.61037
\(37\) 0.0195553 0.00321487 0.00160744 0.999999i \(-0.499488\pi\)
0.00160744 + 0.999999i \(0.499488\pi\)
\(38\) 11.6680 1.89279
\(39\) 0.0897034 0.0143640
\(40\) −2.81139 −0.444520
\(41\) 4.83445 0.755014 0.377507 0.926007i \(-0.376781\pi\)
0.377507 + 0.926007i \(0.376781\pi\)
\(42\) 0.866170 0.133653
\(43\) 2.39529 0.365278 0.182639 0.983180i \(-0.441536\pi\)
0.182639 + 0.983180i \(0.441536\pi\)
\(44\) 0 0
\(45\) 2.99195 0.446014
\(46\) 9.61240 1.41727
\(47\) 11.8632 1.73042 0.865211 0.501408i \(-0.167184\pi\)
0.865211 + 0.501408i \(0.167184\pi\)
\(48\) 0.00266863 0.000385183 0
\(49\) 10.8294 1.54705
\(50\) 2.28679 0.323401
\(51\) 0.0265513 0.00371793
\(52\) −3.22941 −0.447838
\(53\) 0.166482 0.0228681 0.0114340 0.999935i \(-0.496360\pi\)
0.0114340 + 0.999935i \(0.496360\pi\)
\(54\) 1.22915 0.167266
\(55\) 0 0
\(56\) −11.8711 −1.58634
\(57\) −0.457697 −0.0606234
\(58\) 2.79118 0.366500
\(59\) 5.42688 0.706520 0.353260 0.935525i \(-0.385073\pi\)
0.353260 + 0.935525i \(0.385073\pi\)
\(60\) 0.289689 0.0373986
\(61\) 3.36902 0.431358 0.215679 0.976464i \(-0.430803\pi\)
0.215679 + 0.976464i \(0.430803\pi\)
\(62\) −9.84984 −1.25093
\(63\) 12.6335 1.59167
\(64\) −12.9542 −1.61927
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) −0.529973 −0.0647465 −0.0323732 0.999476i \(-0.510307\pi\)
−0.0323732 + 0.999476i \(0.510307\pi\)
\(68\) −0.955873 −0.115917
\(69\) −0.377064 −0.0453931
\(70\) 9.65593 1.15410
\(71\) 0.0282052 0.00334734 0.00167367 0.999999i \(-0.499467\pi\)
0.00167367 + 0.999999i \(0.499467\pi\)
\(72\) −8.41155 −0.991311
\(73\) 16.3670 1.91561 0.957805 0.287420i \(-0.0927975\pi\)
0.957805 + 0.287420i \(0.0927975\pi\)
\(74\) 0.0447189 0.00519846
\(75\) −0.0897034 −0.0103581
\(76\) 16.4775 1.89010
\(77\) 0 0
\(78\) 0.205133 0.0232267
\(79\) 2.93331 0.330024 0.165012 0.986292i \(-0.447234\pi\)
0.165012 + 0.986292i \(0.447234\pi\)
\(80\) 0.0297495 0.00332609
\(81\) 8.92764 0.991960
\(82\) 11.0554 1.22086
\(83\) −15.4009 −1.69047 −0.845233 0.534398i \(-0.820538\pi\)
−0.845233 + 0.534398i \(0.820538\pi\)
\(84\) 1.22321 0.133463
\(85\) 0.295990 0.0321047
\(86\) 5.47751 0.590655
\(87\) −0.109489 −0.0117384
\(88\) 0 0
\(89\) −1.98790 −0.210717 −0.105358 0.994434i \(-0.533599\pi\)
−0.105358 + 0.994434i \(0.533599\pi\)
\(90\) 6.84197 0.721207
\(91\) 4.22248 0.442637
\(92\) 13.5746 1.41525
\(93\) 0.386378 0.0400655
\(94\) 27.1286 2.79810
\(95\) −5.10234 −0.523489
\(96\) 0.510485 0.0521012
\(97\) −2.76500 −0.280743 −0.140371 0.990099i \(-0.544830\pi\)
−0.140371 + 0.990099i \(0.544830\pi\)
\(98\) 24.7645 2.50159
\(99\) 0 0
\(100\) 3.22941 0.322941
\(101\) −15.7480 −1.56698 −0.783491 0.621403i \(-0.786563\pi\)
−0.783491 + 0.621403i \(0.786563\pi\)
\(102\) 0.0607173 0.00601191
\(103\) −7.53429 −0.742375 −0.371188 0.928558i \(-0.621049\pi\)
−0.371188 + 0.928558i \(0.621049\pi\)
\(104\) −2.81139 −0.275680
\(105\) −0.378771 −0.0369643
\(106\) 0.380709 0.0369778
\(107\) 16.9667 1.64023 0.820116 0.572197i \(-0.193909\pi\)
0.820116 + 0.572197i \(0.193909\pi\)
\(108\) 1.73580 0.167027
\(109\) 7.01141 0.671571 0.335786 0.941938i \(-0.390998\pi\)
0.335786 + 0.941938i \(0.390998\pi\)
\(110\) 0 0
\(111\) −0.00175418 −0.000166499 0
\(112\) 0.125617 0.0118697
\(113\) 8.10174 0.762148 0.381074 0.924545i \(-0.375554\pi\)
0.381074 + 0.924545i \(0.375554\pi\)
\(114\) −1.04666 −0.0980283
\(115\) −4.20345 −0.391974
\(116\) 3.94170 0.365978
\(117\) 2.99195 0.276606
\(118\) 12.4101 1.14245
\(119\) 1.24981 0.114570
\(120\) 0.252191 0.0230218
\(121\) 0 0
\(122\) 7.70423 0.697508
\(123\) −0.433667 −0.0391024
\(124\) −13.9100 −1.24915
\(125\) −1.00000 −0.0894427
\(126\) 28.8901 2.57373
\(127\) 18.5341 1.64463 0.822316 0.569031i \(-0.192681\pi\)
0.822316 + 0.569031i \(0.192681\pi\)
\(128\) −18.2419 −1.61237
\(129\) −0.214865 −0.0189178
\(130\) 2.28679 0.200565
\(131\) −3.31782 −0.289880 −0.144940 0.989440i \(-0.546299\pi\)
−0.144940 + 0.989440i \(0.546299\pi\)
\(132\) 0 0
\(133\) −21.5445 −1.86815
\(134\) −1.21194 −0.104695
\(135\) −0.537498 −0.0462605
\(136\) −0.832145 −0.0713558
\(137\) −4.22271 −0.360771 −0.180385 0.983596i \(-0.557734\pi\)
−0.180385 + 0.983596i \(0.557734\pi\)
\(138\) −0.862265 −0.0734009
\(139\) −2.33468 −0.198025 −0.0990126 0.995086i \(-0.531568\pi\)
−0.0990126 + 0.995086i \(0.531568\pi\)
\(140\) 13.6361 1.15246
\(141\) −1.06417 −0.0896190
\(142\) 0.0644993 0.00541266
\(143\) 0 0
\(144\) 0.0890091 0.00741742
\(145\) −1.22057 −0.101362
\(146\) 37.4278 3.09755
\(147\) −0.971431 −0.0801222
\(148\) 0.0631520 0.00519107
\(149\) 21.2329 1.73947 0.869733 0.493523i \(-0.164291\pi\)
0.869733 + 0.493523i \(0.164291\pi\)
\(150\) −0.205133 −0.0167490
\(151\) 5.78477 0.470758 0.235379 0.971904i \(-0.424367\pi\)
0.235379 + 0.971904i \(0.424367\pi\)
\(152\) 14.3447 1.16351
\(153\) 0.885589 0.0715956
\(154\) 0 0
\(155\) 4.30728 0.345969
\(156\) 0.289689 0.0231937
\(157\) 5.41751 0.432364 0.216182 0.976353i \(-0.430639\pi\)
0.216182 + 0.976353i \(0.430639\pi\)
\(158\) 6.70787 0.533650
\(159\) −0.0149340 −0.00118434
\(160\) 5.69082 0.449898
\(161\) −17.7490 −1.39882
\(162\) 20.4156 1.60400
\(163\) −17.1618 −1.34422 −0.672108 0.740453i \(-0.734611\pi\)
−0.672108 + 0.740453i \(0.734611\pi\)
\(164\) 15.6124 1.21912
\(165\) 0 0
\(166\) −35.2186 −2.73349
\(167\) −1.15418 −0.0893131 −0.0446565 0.999002i \(-0.514219\pi\)
−0.0446565 + 0.999002i \(0.514219\pi\)
\(168\) 1.06487 0.0821568
\(169\) 1.00000 0.0769231
\(170\) 0.676868 0.0519134
\(171\) −15.2660 −1.16742
\(172\) 7.73535 0.589815
\(173\) −3.47738 −0.264380 −0.132190 0.991224i \(-0.542201\pi\)
−0.132190 + 0.991224i \(0.542201\pi\)
\(174\) −0.250378 −0.0189811
\(175\) −4.22248 −0.319190
\(176\) 0 0
\(177\) −0.486810 −0.0365909
\(178\) −4.54590 −0.340730
\(179\) −15.9242 −1.19023 −0.595115 0.803641i \(-0.702893\pi\)
−0.595115 + 0.803641i \(0.702893\pi\)
\(180\) 9.66223 0.720180
\(181\) 1.26334 0.0939031 0.0469516 0.998897i \(-0.485049\pi\)
0.0469516 + 0.998897i \(0.485049\pi\)
\(182\) 9.65593 0.715745
\(183\) −0.302212 −0.0223402
\(184\) 11.8175 0.871201
\(185\) −0.0195553 −0.00143774
\(186\) 0.883564 0.0647861
\(187\) 0 0
\(188\) 38.3110 2.79412
\(189\) −2.26958 −0.165088
\(190\) −11.6680 −0.846483
\(191\) −1.14665 −0.0829689 −0.0414845 0.999139i \(-0.513209\pi\)
−0.0414845 + 0.999139i \(0.513209\pi\)
\(192\) 1.16204 0.0838627
\(193\) −11.7564 −0.846244 −0.423122 0.906073i \(-0.639066\pi\)
−0.423122 + 0.906073i \(0.639066\pi\)
\(194\) −6.32296 −0.453962
\(195\) −0.0897034 −0.00642379
\(196\) 34.9724 2.49803
\(197\) 17.3115 1.23339 0.616696 0.787201i \(-0.288471\pi\)
0.616696 + 0.787201i \(0.288471\pi\)
\(198\) 0 0
\(199\) 3.30924 0.234586 0.117293 0.993097i \(-0.462578\pi\)
0.117293 + 0.993097i \(0.462578\pi\)
\(200\) 2.81139 0.198795
\(201\) 0.0475403 0.00335324
\(202\) −36.0123 −2.53382
\(203\) −5.15382 −0.361727
\(204\) 0.0857450 0.00600335
\(205\) −4.83445 −0.337653
\(206\) −17.2293 −1.20042
\(207\) −12.5765 −0.874129
\(208\) 0.0297495 0.00206276
\(209\) 0 0
\(210\) −0.866170 −0.0597714
\(211\) −20.5128 −1.41216 −0.706081 0.708131i \(-0.749539\pi\)
−0.706081 + 0.708131i \(0.749539\pi\)
\(212\) 0.537638 0.0369251
\(213\) −0.00253010 −0.000173360 0
\(214\) 38.7993 2.65226
\(215\) −2.39529 −0.163357
\(216\) 1.51112 0.102819
\(217\) 18.1874 1.23464
\(218\) 16.0336 1.08593
\(219\) −1.46817 −0.0992099
\(220\) 0 0
\(221\) 0.295990 0.0199105
\(222\) −0.00401144 −0.000269230 0
\(223\) 22.0748 1.47824 0.739119 0.673575i \(-0.235242\pi\)
0.739119 + 0.673575i \(0.235242\pi\)
\(224\) 24.0294 1.60553
\(225\) −2.99195 −0.199464
\(226\) 18.5270 1.23240
\(227\) −7.20806 −0.478416 −0.239208 0.970968i \(-0.576888\pi\)
−0.239208 + 0.970968i \(0.576888\pi\)
\(228\) −1.47809 −0.0978888
\(229\) −14.7498 −0.974694 −0.487347 0.873208i \(-0.662035\pi\)
−0.487347 + 0.873208i \(0.662035\pi\)
\(230\) −9.61240 −0.633823
\(231\) 0 0
\(232\) 3.43149 0.225288
\(233\) 28.2147 1.84841 0.924204 0.381899i \(-0.124730\pi\)
0.924204 + 0.381899i \(0.124730\pi\)
\(234\) 6.84197 0.447273
\(235\) −11.8632 −0.773868
\(236\) 17.5256 1.14082
\(237\) −0.263128 −0.0170920
\(238\) 2.85806 0.185261
\(239\) −11.8785 −0.768358 −0.384179 0.923259i \(-0.625515\pi\)
−0.384179 + 0.923259i \(0.625515\pi\)
\(240\) −0.00266863 −0.000172259 0
\(241\) 14.8316 0.955386 0.477693 0.878527i \(-0.341473\pi\)
0.477693 + 0.878527i \(0.341473\pi\)
\(242\) 0 0
\(243\) −2.41334 −0.154816
\(244\) 10.8799 0.696516
\(245\) −10.8294 −0.691863
\(246\) −0.991704 −0.0632287
\(247\) −5.10234 −0.324654
\(248\) −12.1095 −0.768951
\(249\) 1.38151 0.0875497
\(250\) −2.28679 −0.144629
\(251\) 26.2337 1.65586 0.827929 0.560833i \(-0.189519\pi\)
0.827929 + 0.560833i \(0.189519\pi\)
\(252\) 40.7986 2.57007
\(253\) 0 0
\(254\) 42.3835 2.65938
\(255\) −0.0265513 −0.00166271
\(256\) −15.8070 −0.987936
\(257\) 19.2004 1.19769 0.598845 0.800865i \(-0.295627\pi\)
0.598845 + 0.800865i \(0.295627\pi\)
\(258\) −0.491351 −0.0305902
\(259\) −0.0825720 −0.00513077
\(260\) 3.22941 0.200279
\(261\) −3.65188 −0.226045
\(262\) −7.58717 −0.468737
\(263\) 23.7117 1.46213 0.731064 0.682309i \(-0.239024\pi\)
0.731064 + 0.682309i \(0.239024\pi\)
\(264\) 0 0
\(265\) −0.166482 −0.0102269
\(266\) −49.2678 −3.02080
\(267\) 0.178321 0.0109131
\(268\) −1.71150 −0.104546
\(269\) 16.3216 0.995146 0.497573 0.867422i \(-0.334225\pi\)
0.497573 + 0.867422i \(0.334225\pi\)
\(270\) −1.22915 −0.0748034
\(271\) 16.0782 0.976684 0.488342 0.872652i \(-0.337602\pi\)
0.488342 + 0.872652i \(0.337602\pi\)
\(272\) 0.00880556 0.000533916 0
\(273\) −0.378771 −0.0229243
\(274\) −9.65646 −0.583368
\(275\) 0 0
\(276\) −1.21769 −0.0732964
\(277\) −28.1527 −1.69153 −0.845766 0.533554i \(-0.820856\pi\)
−0.845766 + 0.533554i \(0.820856\pi\)
\(278\) −5.33893 −0.320208
\(279\) 12.8872 0.771535
\(280\) 11.8711 0.709431
\(281\) 23.1804 1.38282 0.691412 0.722460i \(-0.256989\pi\)
0.691412 + 0.722460i \(0.256989\pi\)
\(282\) −2.43353 −0.144914
\(283\) 13.2641 0.788466 0.394233 0.919011i \(-0.371010\pi\)
0.394233 + 0.919011i \(0.371010\pi\)
\(284\) 0.0910859 0.00540496
\(285\) 0.457697 0.0271116
\(286\) 0 0
\(287\) −20.4134 −1.20496
\(288\) 17.0267 1.00331
\(289\) −16.9124 −0.994846
\(290\) −2.79118 −0.163904
\(291\) 0.248030 0.0145397
\(292\) 52.8556 3.09314
\(293\) −7.32272 −0.427798 −0.213899 0.976856i \(-0.568616\pi\)
−0.213899 + 0.976856i \(0.568616\pi\)
\(294\) −2.22146 −0.129558
\(295\) −5.42688 −0.315965
\(296\) 0.0549777 0.00319551
\(297\) 0 0
\(298\) 48.5551 2.81272
\(299\) −4.20345 −0.243092
\(300\) −0.289689 −0.0167252
\(301\) −10.1141 −0.582964
\(302\) 13.2286 0.761218
\(303\) 1.41265 0.0811544
\(304\) −0.151792 −0.00870586
\(305\) −3.36902 −0.192909
\(306\) 2.02516 0.115770
\(307\) −30.8971 −1.76339 −0.881696 0.471817i \(-0.843598\pi\)
−0.881696 + 0.471817i \(0.843598\pi\)
\(308\) 0 0
\(309\) 0.675851 0.0384478
\(310\) 9.84984 0.559434
\(311\) −21.7138 −1.23128 −0.615639 0.788028i \(-0.711102\pi\)
−0.615639 + 0.788028i \(0.711102\pi\)
\(312\) 0.252191 0.0142775
\(313\) −32.6378 −1.84480 −0.922400 0.386237i \(-0.873775\pi\)
−0.922400 + 0.386237i \(0.873775\pi\)
\(314\) 12.3887 0.699135
\(315\) −12.6335 −0.711816
\(316\) 9.47286 0.532890
\(317\) 14.7816 0.830215 0.415108 0.909772i \(-0.363744\pi\)
0.415108 + 0.909772i \(0.363744\pi\)
\(318\) −0.0341509 −0.00191509
\(319\) 0 0
\(320\) 12.9542 0.724162
\(321\) −1.52197 −0.0849481
\(322\) −40.5882 −2.26189
\(323\) −1.51024 −0.0840321
\(324\) 28.8310 1.60172
\(325\) −1.00000 −0.0554700
\(326\) −39.2454 −2.17360
\(327\) −0.628947 −0.0347809
\(328\) 13.5915 0.750467
\(329\) −50.0921 −2.76167
\(330\) 0 0
\(331\) 21.0299 1.15591 0.577954 0.816069i \(-0.303851\pi\)
0.577954 + 0.816069i \(0.303851\pi\)
\(332\) −49.7357 −2.72960
\(333\) −0.0585086 −0.00320625
\(334\) −2.63936 −0.144420
\(335\) 0.529973 0.0289555
\(336\) −0.0112682 −0.000614733 0
\(337\) −7.00217 −0.381432 −0.190716 0.981645i \(-0.561081\pi\)
−0.190716 + 0.981645i \(0.561081\pi\)
\(338\) 2.28679 0.124385
\(339\) −0.726754 −0.0394718
\(340\) 0.955873 0.0518395
\(341\) 0 0
\(342\) −34.9100 −1.88772
\(343\) −16.1694 −0.873067
\(344\) 6.73409 0.363078
\(345\) 0.377064 0.0203004
\(346\) −7.95204 −0.427504
\(347\) 16.1037 0.864493 0.432246 0.901755i \(-0.357721\pi\)
0.432246 + 0.901755i \(0.357721\pi\)
\(348\) −0.353584 −0.0189541
\(349\) 7.02005 0.375775 0.187887 0.982191i \(-0.439836\pi\)
0.187887 + 0.982191i \(0.439836\pi\)
\(350\) −9.65593 −0.516131
\(351\) −0.537498 −0.0286895
\(352\) 0 0
\(353\) −7.72739 −0.411288 −0.205644 0.978627i \(-0.565929\pi\)
−0.205644 + 0.978627i \(0.565929\pi\)
\(354\) −1.11323 −0.0591676
\(355\) −0.0282052 −0.00149697
\(356\) −6.41973 −0.340245
\(357\) −0.112113 −0.00593363
\(358\) −36.4153 −1.92461
\(359\) −1.15902 −0.0611707 −0.0305854 0.999532i \(-0.509737\pi\)
−0.0305854 + 0.999532i \(0.509737\pi\)
\(360\) 8.41155 0.443328
\(361\) 7.03383 0.370202
\(362\) 2.88899 0.151842
\(363\) 0 0
\(364\) 13.6361 0.714726
\(365\) −16.3670 −0.856687
\(366\) −0.691096 −0.0361241
\(367\) 32.8746 1.71604 0.858020 0.513616i \(-0.171694\pi\)
0.858020 + 0.513616i \(0.171694\pi\)
\(368\) −0.125050 −0.00651871
\(369\) −14.4644 −0.752989
\(370\) −0.0447189 −0.00232482
\(371\) −0.702968 −0.0364963
\(372\) 1.24777 0.0646939
\(373\) 4.17716 0.216285 0.108143 0.994135i \(-0.465510\pi\)
0.108143 + 0.994135i \(0.465510\pi\)
\(374\) 0 0
\(375\) 0.0897034 0.00463226
\(376\) 33.3520 1.72000
\(377\) −1.22057 −0.0628623
\(378\) −5.19005 −0.266947
\(379\) −16.2306 −0.833709 −0.416854 0.908973i \(-0.636868\pi\)
−0.416854 + 0.908973i \(0.636868\pi\)
\(380\) −16.4775 −0.845279
\(381\) −1.66257 −0.0851760
\(382\) −2.62215 −0.134161
\(383\) 32.3638 1.65371 0.826856 0.562414i \(-0.190127\pi\)
0.826856 + 0.562414i \(0.190127\pi\)
\(384\) 1.63636 0.0835051
\(385\) 0 0
\(386\) −26.8844 −1.36838
\(387\) −7.16658 −0.364298
\(388\) −8.92930 −0.453316
\(389\) −26.7941 −1.35852 −0.679258 0.733900i \(-0.737698\pi\)
−0.679258 + 0.733900i \(0.737698\pi\)
\(390\) −0.205133 −0.0103873
\(391\) −1.24418 −0.0629209
\(392\) 30.4456 1.53773
\(393\) 0.297620 0.0150129
\(394\) 39.5877 1.99440
\(395\) −2.93331 −0.147591
\(396\) 0 0
\(397\) 4.70925 0.236350 0.118175 0.992993i \(-0.462296\pi\)
0.118175 + 0.992993i \(0.462296\pi\)
\(398\) 7.56753 0.379326
\(399\) 1.93262 0.0967519
\(400\) −0.0297495 −0.00148747
\(401\) −24.2196 −1.20947 −0.604735 0.796427i \(-0.706721\pi\)
−0.604735 + 0.796427i \(0.706721\pi\)
\(402\) 0.108715 0.00542220
\(403\) 4.30728 0.214561
\(404\) −50.8566 −2.53021
\(405\) −8.92764 −0.443618
\(406\) −11.7857 −0.584914
\(407\) 0 0
\(408\) 0.0746462 0.00369554
\(409\) −9.43737 −0.466648 −0.233324 0.972399i \(-0.574960\pi\)
−0.233324 + 0.972399i \(0.574960\pi\)
\(410\) −11.0554 −0.545986
\(411\) 0.378792 0.0186844
\(412\) −24.3313 −1.19872
\(413\) −22.9149 −1.12757
\(414\) −28.7599 −1.41347
\(415\) 15.4009 0.755999
\(416\) 5.69082 0.279015
\(417\) 0.209429 0.0102558
\(418\) 0 0
\(419\) 3.38273 0.165257 0.0826285 0.996580i \(-0.473668\pi\)
0.0826285 + 0.996580i \(0.473668\pi\)
\(420\) −1.22321 −0.0596863
\(421\) 22.8421 1.11325 0.556627 0.830763i \(-0.312095\pi\)
0.556627 + 0.830763i \(0.312095\pi\)
\(422\) −46.9086 −2.28347
\(423\) −35.4941 −1.72578
\(424\) 0.468046 0.0227303
\(425\) −0.295990 −0.0143576
\(426\) −0.00578580 −0.000280323 0
\(427\) −14.2256 −0.688426
\(428\) 54.7924 2.64849
\(429\) 0 0
\(430\) −5.47751 −0.264149
\(431\) −29.3771 −1.41505 −0.707523 0.706691i \(-0.750187\pi\)
−0.707523 + 0.706691i \(0.750187\pi\)
\(432\) −0.0159903 −0.000769334 0
\(433\) −27.3342 −1.31360 −0.656799 0.754066i \(-0.728090\pi\)
−0.656799 + 0.754066i \(0.728090\pi\)
\(434\) 41.5908 1.99642
\(435\) 0.109489 0.00524959
\(436\) 22.6427 1.08439
\(437\) 21.4474 1.02597
\(438\) −3.35740 −0.160423
\(439\) 3.79116 0.180942 0.0904711 0.995899i \(-0.471163\pi\)
0.0904711 + 0.995899i \(0.471163\pi\)
\(440\) 0 0
\(441\) −32.4010 −1.54290
\(442\) 0.676868 0.0321953
\(443\) −23.3795 −1.11079 −0.555396 0.831586i \(-0.687433\pi\)
−0.555396 + 0.831586i \(0.687433\pi\)
\(444\) −0.00566495 −0.000268847 0
\(445\) 1.98790 0.0942354
\(446\) 50.4804 2.39032
\(447\) −1.90466 −0.0900874
\(448\) 54.6989 2.58428
\(449\) 15.2761 0.720922 0.360461 0.932774i \(-0.382619\pi\)
0.360461 + 0.932774i \(0.382619\pi\)
\(450\) −6.84197 −0.322533
\(451\) 0 0
\(452\) 26.1638 1.23064
\(453\) −0.518914 −0.0243807
\(454\) −16.4833 −0.773601
\(455\) −4.22248 −0.197953
\(456\) −1.28677 −0.0602583
\(457\) 10.2756 0.480673 0.240337 0.970690i \(-0.422742\pi\)
0.240337 + 0.970690i \(0.422742\pi\)
\(458\) −33.7297 −1.57608
\(459\) −0.159094 −0.00742589
\(460\) −13.5746 −0.632921
\(461\) 38.4198 1.78939 0.894695 0.446677i \(-0.147393\pi\)
0.894695 + 0.446677i \(0.147393\pi\)
\(462\) 0 0
\(463\) −17.7835 −0.826471 −0.413236 0.910624i \(-0.635601\pi\)
−0.413236 + 0.910624i \(0.635601\pi\)
\(464\) −0.0363112 −0.00168571
\(465\) −0.386378 −0.0179178
\(466\) 64.5211 2.98888
\(467\) −27.5963 −1.27700 −0.638501 0.769621i \(-0.720445\pi\)
−0.638501 + 0.769621i \(0.720445\pi\)
\(468\) 9.66223 0.446637
\(469\) 2.23780 0.103332
\(470\) −27.1286 −1.25135
\(471\) −0.485969 −0.0223923
\(472\) 15.2571 0.702265
\(473\) 0 0
\(474\) −0.601719 −0.0276379
\(475\) 5.10234 0.234111
\(476\) 4.03616 0.184997
\(477\) −0.498106 −0.0228067
\(478\) −27.1637 −1.24244
\(479\) −31.8303 −1.45436 −0.727181 0.686446i \(-0.759170\pi\)
−0.727181 + 0.686446i \(0.759170\pi\)
\(480\) −0.510485 −0.0233004
\(481\) −0.0195553 −0.000891646 0
\(482\) 33.9167 1.54486
\(483\) 1.59214 0.0724451
\(484\) 0 0
\(485\) 2.76500 0.125552
\(486\) −5.51879 −0.250337
\(487\) 30.4831 1.38132 0.690660 0.723179i \(-0.257320\pi\)
0.690660 + 0.723179i \(0.257320\pi\)
\(488\) 9.47163 0.428760
\(489\) 1.53947 0.0696173
\(490\) −24.7645 −1.11874
\(491\) −25.5315 −1.15222 −0.576110 0.817372i \(-0.695430\pi\)
−0.576110 + 0.817372i \(0.695430\pi\)
\(492\) −1.40049 −0.0631387
\(493\) −0.361276 −0.0162710
\(494\) −11.6680 −0.524967
\(495\) 0 0
\(496\) 0.128139 0.00575363
\(497\) −0.119096 −0.00534218
\(498\) 3.15922 0.141568
\(499\) −6.81417 −0.305044 −0.152522 0.988300i \(-0.548740\pi\)
−0.152522 + 0.988300i \(0.548740\pi\)
\(500\) −3.22941 −0.144423
\(501\) 0.103534 0.00462555
\(502\) 59.9910 2.67753
\(503\) 3.26143 0.145420 0.0727101 0.997353i \(-0.476835\pi\)
0.0727101 + 0.997353i \(0.476835\pi\)
\(504\) 35.5176 1.58208
\(505\) 15.7480 0.700776
\(506\) 0 0
\(507\) −0.0897034 −0.00398387
\(508\) 59.8540 2.65559
\(509\) 13.9854 0.619891 0.309945 0.950754i \(-0.399689\pi\)
0.309945 + 0.950754i \(0.399689\pi\)
\(510\) −0.0607173 −0.00268861
\(511\) −69.1093 −3.05721
\(512\) 0.336574 0.0148746
\(513\) 2.74250 0.121084
\(514\) 43.9073 1.93667
\(515\) 7.53429 0.332000
\(516\) −0.693887 −0.0305467
\(517\) 0 0
\(518\) −0.188825 −0.00829648
\(519\) 0.311933 0.0136923
\(520\) 2.81139 0.123288
\(521\) −18.6309 −0.816235 −0.408118 0.912929i \(-0.633815\pi\)
−0.408118 + 0.912929i \(0.633815\pi\)
\(522\) −8.35107 −0.365516
\(523\) 14.7000 0.642787 0.321393 0.946946i \(-0.395849\pi\)
0.321393 + 0.946946i \(0.395849\pi\)
\(524\) −10.7146 −0.468070
\(525\) 0.378771 0.0165309
\(526\) 54.2237 2.36427
\(527\) 1.27491 0.0555361
\(528\) 0 0
\(529\) −5.33102 −0.231783
\(530\) −0.380709 −0.0165370
\(531\) −16.2370 −0.704625
\(532\) −69.5760 −3.01650
\(533\) −4.83445 −0.209403
\(534\) 0.407783 0.0176465
\(535\) −16.9667 −0.733534
\(536\) −1.48996 −0.0643565
\(537\) 1.42845 0.0616423
\(538\) 37.3241 1.60916
\(539\) 0 0
\(540\) −1.73580 −0.0746970
\(541\) 38.0499 1.63589 0.817945 0.575296i \(-0.195113\pi\)
0.817945 + 0.575296i \(0.195113\pi\)
\(542\) 36.7676 1.57930
\(543\) −0.113326 −0.00486327
\(544\) 1.68443 0.0722192
\(545\) −7.01141 −0.300336
\(546\) −0.866170 −0.0370686
\(547\) −16.5105 −0.705938 −0.352969 0.935635i \(-0.614828\pi\)
−0.352969 + 0.935635i \(0.614828\pi\)
\(548\) −13.6369 −0.582538
\(549\) −10.0799 −0.430201
\(550\) 0 0
\(551\) 6.22774 0.265311
\(552\) −1.06007 −0.0451197
\(553\) −12.3859 −0.526701
\(554\) −64.3793 −2.73522
\(555\) 0.00175418 7.44607e−5 0
\(556\) −7.53964 −0.319752
\(557\) −18.3009 −0.775432 −0.387716 0.921779i \(-0.626736\pi\)
−0.387716 + 0.921779i \(0.626736\pi\)
\(558\) 29.4703 1.24758
\(559\) −2.39529 −0.101310
\(560\) −0.125617 −0.00530827
\(561\) 0 0
\(562\) 53.0086 2.23603
\(563\) 39.2124 1.65261 0.826304 0.563225i \(-0.190439\pi\)
0.826304 + 0.563225i \(0.190439\pi\)
\(564\) −3.43663 −0.144708
\(565\) −8.10174 −0.340843
\(566\) 30.3321 1.27495
\(567\) −37.6968 −1.58312
\(568\) 0.0792958 0.00332718
\(569\) 30.2530 1.26827 0.634136 0.773221i \(-0.281356\pi\)
0.634136 + 0.773221i \(0.281356\pi\)
\(570\) 1.04666 0.0438396
\(571\) 17.5828 0.735817 0.367908 0.929862i \(-0.380074\pi\)
0.367908 + 0.929862i \(0.380074\pi\)
\(572\) 0 0
\(573\) 0.102859 0.00429698
\(574\) −46.6811 −1.94843
\(575\) 4.20345 0.175296
\(576\) 38.7584 1.61493
\(577\) 35.2971 1.46944 0.734719 0.678372i \(-0.237314\pi\)
0.734719 + 0.678372i \(0.237314\pi\)
\(578\) −38.6751 −1.60867
\(579\) 1.05459 0.0438272
\(580\) −3.94170 −0.163670
\(581\) 65.0300 2.69790
\(582\) 0.567191 0.0235108
\(583\) 0 0
\(584\) 46.0140 1.90407
\(585\) −2.99195 −0.123702
\(586\) −16.7455 −0.691751
\(587\) 12.6387 0.521656 0.260828 0.965385i \(-0.416004\pi\)
0.260828 + 0.965385i \(0.416004\pi\)
\(588\) −3.13714 −0.129374
\(589\) −21.9772 −0.905555
\(590\) −12.4101 −0.510917
\(591\) −1.55290 −0.0638777
\(592\) −0.000581761 0 −2.39102e−5 0
\(593\) 14.6517 0.601674 0.300837 0.953676i \(-0.402734\pi\)
0.300837 + 0.953676i \(0.402734\pi\)
\(594\) 0 0
\(595\) −1.24981 −0.0512374
\(596\) 68.5696 2.80872
\(597\) −0.296850 −0.0121492
\(598\) −9.61240 −0.393080
\(599\) 1.28391 0.0524593 0.0262296 0.999656i \(-0.491650\pi\)
0.0262296 + 0.999656i \(0.491650\pi\)
\(600\) −0.252191 −0.0102957
\(601\) 7.46468 0.304491 0.152245 0.988343i \(-0.451350\pi\)
0.152245 + 0.988343i \(0.451350\pi\)
\(602\) −23.1287 −0.942656
\(603\) 1.58565 0.0645728
\(604\) 18.6814 0.760134
\(605\) 0 0
\(606\) 3.23042 0.131227
\(607\) 41.6654 1.69115 0.845574 0.533858i \(-0.179258\pi\)
0.845574 + 0.533858i \(0.179258\pi\)
\(608\) −29.0365 −1.17758
\(609\) 0.462315 0.0187339
\(610\) −7.70423 −0.311935
\(611\) −11.8632 −0.479933
\(612\) 2.85993 0.115606
\(613\) −34.1977 −1.38123 −0.690617 0.723221i \(-0.742661\pi\)
−0.690617 + 0.723221i \(0.742661\pi\)
\(614\) −70.6553 −2.85141
\(615\) 0.433667 0.0174871
\(616\) 0 0
\(617\) −44.7288 −1.80071 −0.900357 0.435152i \(-0.856694\pi\)
−0.900357 + 0.435152i \(0.856694\pi\)
\(618\) 1.54553 0.0621703
\(619\) −10.4063 −0.418264 −0.209132 0.977887i \(-0.567064\pi\)
−0.209132 + 0.977887i \(0.567064\pi\)
\(620\) 13.9100 0.558637
\(621\) 2.25935 0.0906645
\(622\) −49.6549 −1.99098
\(623\) 8.39386 0.336293
\(624\) −0.00266863 −0.000106831 0
\(625\) 1.00000 0.0400000
\(626\) −74.6358 −2.98305
\(627\) 0 0
\(628\) 17.4953 0.698140
\(629\) −0.00578818 −0.000230790 0
\(630\) −28.8901 −1.15101
\(631\) 10.8081 0.430265 0.215133 0.976585i \(-0.430982\pi\)
0.215133 + 0.976585i \(0.430982\pi\)
\(632\) 8.24670 0.328036
\(633\) 1.84007 0.0731363
\(634\) 33.8023 1.34246
\(635\) −18.5341 −0.735502
\(636\) −0.0482279 −0.00191236
\(637\) −10.8294 −0.429075
\(638\) 0 0
\(639\) −0.0843885 −0.00333836
\(640\) 18.2419 0.721074
\(641\) −18.0688 −0.713676 −0.356838 0.934166i \(-0.616145\pi\)
−0.356838 + 0.934166i \(0.616145\pi\)
\(642\) −3.48043 −0.137361
\(643\) −39.7966 −1.56942 −0.784712 0.619861i \(-0.787189\pi\)
−0.784712 + 0.619861i \(0.787189\pi\)
\(644\) −57.3187 −2.25867
\(645\) 0.214865 0.00846031
\(646\) −3.45361 −0.135880
\(647\) 6.31669 0.248335 0.124167 0.992261i \(-0.460374\pi\)
0.124167 + 0.992261i \(0.460374\pi\)
\(648\) 25.0991 0.985986
\(649\) 0 0
\(650\) −2.28679 −0.0896953
\(651\) −1.63147 −0.0639425
\(652\) −55.4224 −2.17051
\(653\) 34.7597 1.36025 0.680127 0.733094i \(-0.261925\pi\)
0.680127 + 0.733094i \(0.261925\pi\)
\(654\) −1.43827 −0.0562408
\(655\) 3.31782 0.129638
\(656\) −0.143822 −0.00561532
\(657\) −48.9692 −1.91047
\(658\) −114.550 −4.46562
\(659\) −36.7071 −1.42991 −0.714953 0.699173i \(-0.753552\pi\)
−0.714953 + 0.699173i \(0.753552\pi\)
\(660\) 0 0
\(661\) 9.24285 0.359505 0.179753 0.983712i \(-0.442470\pi\)
0.179753 + 0.983712i \(0.442470\pi\)
\(662\) 48.0910 1.86911
\(663\) −0.0265513 −0.00103117
\(664\) −43.2979 −1.68028
\(665\) 21.5445 0.835461
\(666\) −0.133797 −0.00518452
\(667\) 5.13059 0.198657
\(668\) −3.72731 −0.144214
\(669\) −1.98018 −0.0765584
\(670\) 1.21194 0.0468212
\(671\) 0 0
\(672\) −2.15552 −0.0831508
\(673\) 22.7279 0.876097 0.438049 0.898951i \(-0.355670\pi\)
0.438049 + 0.898951i \(0.355670\pi\)
\(674\) −16.0125 −0.616778
\(675\) 0.537498 0.0206883
\(676\) 3.22941 0.124208
\(677\) 49.3234 1.89565 0.947827 0.318786i \(-0.103275\pi\)
0.947827 + 0.318786i \(0.103275\pi\)
\(678\) −1.66193 −0.0638261
\(679\) 11.6752 0.448051
\(680\) 0.832145 0.0319113
\(681\) 0.646587 0.0247773
\(682\) 0 0
\(683\) 35.0553 1.34136 0.670678 0.741749i \(-0.266003\pi\)
0.670678 + 0.741749i \(0.266003\pi\)
\(684\) −49.3000 −1.88503
\(685\) 4.22271 0.161342
\(686\) −36.9761 −1.41175
\(687\) 1.32311 0.0504797
\(688\) −0.0712585 −0.00271670
\(689\) −0.166482 −0.00634246
\(690\) 0.862265 0.0328259
\(691\) 13.0999 0.498343 0.249171 0.968459i \(-0.419842\pi\)
0.249171 + 0.968459i \(0.419842\pi\)
\(692\) −11.2299 −0.426896
\(693\) 0 0
\(694\) 36.8258 1.39789
\(695\) 2.33468 0.0885596
\(696\) −0.307816 −0.0116677
\(697\) −1.43095 −0.0542011
\(698\) 16.0534 0.607629
\(699\) −2.53096 −0.0957296
\(700\) −13.6361 −0.515397
\(701\) 15.5593 0.587668 0.293834 0.955856i \(-0.405069\pi\)
0.293834 + 0.955856i \(0.405069\pi\)
\(702\) −1.22915 −0.0463911
\(703\) 0.0997778 0.00376319
\(704\) 0 0
\(705\) 1.06417 0.0400789
\(706\) −17.6709 −0.665054
\(707\) 66.4956 2.50082
\(708\) −1.57211 −0.0590834
\(709\) −19.1870 −0.720584 −0.360292 0.932840i \(-0.617323\pi\)
−0.360292 + 0.932840i \(0.617323\pi\)
\(710\) −0.0644993 −0.00242061
\(711\) −8.77634 −0.329138
\(712\) −5.58876 −0.209448
\(713\) −18.1054 −0.678054
\(714\) −0.256378 −0.00959470
\(715\) 0 0
\(716\) −51.4257 −1.92187
\(717\) 1.06554 0.0397935
\(718\) −2.65043 −0.0989133
\(719\) −22.5237 −0.839993 −0.419997 0.907526i \(-0.637969\pi\)
−0.419997 + 0.907526i \(0.637969\pi\)
\(720\) −0.0890091 −0.00331717
\(721\) 31.8134 1.18479
\(722\) 16.0849 0.598618
\(723\) −1.33044 −0.0494797
\(724\) 4.07983 0.151626
\(725\) 1.22057 0.0453307
\(726\) 0 0
\(727\) 42.8494 1.58920 0.794599 0.607135i \(-0.207681\pi\)
0.794599 + 0.607135i \(0.207681\pi\)
\(728\) 11.8711 0.439971
\(729\) −26.5664 −0.983943
\(730\) −37.4278 −1.38527
\(731\) −0.708981 −0.0262226
\(732\) −0.975966 −0.0360727
\(733\) −31.6803 −1.17014 −0.585069 0.810983i \(-0.698933\pi\)
−0.585069 + 0.810983i \(0.698933\pi\)
\(734\) 75.1773 2.77484
\(735\) 0.971431 0.0358318
\(736\) −23.9211 −0.881742
\(737\) 0 0
\(738\) −33.0771 −1.21759
\(739\) −25.7790 −0.948297 −0.474149 0.880445i \(-0.657244\pi\)
−0.474149 + 0.880445i \(0.657244\pi\)
\(740\) −0.0631520 −0.00232152
\(741\) 0.457697 0.0168139
\(742\) −1.60754 −0.0590146
\(743\) 23.0534 0.845747 0.422874 0.906189i \(-0.361021\pi\)
0.422874 + 0.906189i \(0.361021\pi\)
\(744\) 1.08626 0.0398242
\(745\) −21.2329 −0.777913
\(746\) 9.55228 0.349734
\(747\) 46.0787 1.68593
\(748\) 0 0
\(749\) −71.6416 −2.61773
\(750\) 0.205133 0.00749039
\(751\) 39.9892 1.45923 0.729613 0.683860i \(-0.239700\pi\)
0.729613 + 0.683860i \(0.239700\pi\)
\(752\) −0.352923 −0.0128698
\(753\) −2.35325 −0.0857574
\(754\) −2.79118 −0.101649
\(755\) −5.78477 −0.210529
\(756\) −7.32939 −0.266567
\(757\) −33.8193 −1.22918 −0.614592 0.788845i \(-0.710679\pi\)
−0.614592 + 0.788845i \(0.710679\pi\)
\(758\) −37.1159 −1.34811
\(759\) 0 0
\(760\) −14.3447 −0.520336
\(761\) 16.6131 0.602225 0.301113 0.953589i \(-0.402642\pi\)
0.301113 + 0.953589i \(0.402642\pi\)
\(762\) −3.80194 −0.137730
\(763\) −29.6056 −1.07179
\(764\) −3.70301 −0.133970
\(765\) −0.885589 −0.0320185
\(766\) 74.0091 2.67406
\(767\) −5.42688 −0.195953
\(768\) 1.41794 0.0511654
\(769\) −36.7810 −1.32636 −0.663178 0.748462i \(-0.730793\pi\)
−0.663178 + 0.748462i \(0.730793\pi\)
\(770\) 0 0
\(771\) −1.72234 −0.0620287
\(772\) −37.9662 −1.36643
\(773\) 9.00677 0.323951 0.161976 0.986795i \(-0.448213\pi\)
0.161976 + 0.986795i \(0.448213\pi\)
\(774\) −16.3885 −0.589071
\(775\) −4.30728 −0.154722
\(776\) −7.77349 −0.279052
\(777\) 0.00740699 0.000265724 0
\(778\) −61.2725 −2.19673
\(779\) 24.6670 0.883787
\(780\) −0.289689 −0.0103725
\(781\) 0 0
\(782\) −2.84518 −0.101743
\(783\) 0.656052 0.0234454
\(784\) −0.322168 −0.0115060
\(785\) −5.41751 −0.193359
\(786\) 0.680594 0.0242760
\(787\) 54.2452 1.93363 0.966816 0.255475i \(-0.0822319\pi\)
0.966816 + 0.255475i \(0.0822319\pi\)
\(788\) 55.9058 1.99156
\(789\) −2.12702 −0.0757240
\(790\) −6.70787 −0.238655
\(791\) −34.2095 −1.21635
\(792\) 0 0
\(793\) −3.36902 −0.119637
\(794\) 10.7691 0.382179
\(795\) 0.0149340 0.000529654 0
\(796\) 10.6869 0.378786
\(797\) 45.4708 1.61066 0.805328 0.592829i \(-0.201989\pi\)
0.805328 + 0.592829i \(0.201989\pi\)
\(798\) 4.41949 0.156448
\(799\) −3.51139 −0.124224
\(800\) −5.69082 −0.201201
\(801\) 5.94770 0.210152
\(802\) −55.3852 −1.95572
\(803\) 0 0
\(804\) 0.153527 0.00541448
\(805\) 17.7490 0.625570
\(806\) 9.84984 0.346946
\(807\) −1.46410 −0.0515389
\(808\) −44.2737 −1.55754
\(809\) 42.7872 1.50432 0.752158 0.658983i \(-0.229013\pi\)
0.752158 + 0.658983i \(0.229013\pi\)
\(810\) −20.4156 −0.717333
\(811\) 46.8471 1.64502 0.822512 0.568748i \(-0.192572\pi\)
0.822512 + 0.568748i \(0.192572\pi\)
\(812\) −16.6438 −0.584082
\(813\) −1.44227 −0.0505827
\(814\) 0 0
\(815\) 17.1618 0.601152
\(816\) −0.000789889 0 −2.76516e−5 0
\(817\) 12.2215 0.427578
\(818\) −21.5813 −0.754572
\(819\) −12.6335 −0.441449
\(820\) −15.6124 −0.545209
\(821\) −32.6402 −1.13915 −0.569576 0.821939i \(-0.692893\pi\)
−0.569576 + 0.821939i \(0.692893\pi\)
\(822\) 0.866217 0.0302128
\(823\) −20.4742 −0.713687 −0.356844 0.934164i \(-0.616147\pi\)
−0.356844 + 0.934164i \(0.616147\pi\)
\(824\) −21.1818 −0.737904
\(825\) 0 0
\(826\) −52.4016 −1.82328
\(827\) 35.8528 1.24672 0.623362 0.781934i \(-0.285766\pi\)
0.623362 + 0.781934i \(0.285766\pi\)
\(828\) −40.6147 −1.41146
\(829\) −31.9326 −1.10906 −0.554532 0.832163i \(-0.687103\pi\)
−0.554532 + 0.832163i \(0.687103\pi\)
\(830\) 35.2186 1.22245
\(831\) 2.52539 0.0876049
\(832\) 12.9542 0.449106
\(833\) −3.20539 −0.111060
\(834\) 0.478920 0.0165836
\(835\) 1.15418 0.0399420
\(836\) 0 0
\(837\) −2.31516 −0.0800235
\(838\) 7.73559 0.267221
\(839\) 39.2793 1.35607 0.678036 0.735029i \(-0.262831\pi\)
0.678036 + 0.735029i \(0.262831\pi\)
\(840\) −1.06487 −0.0367416
\(841\) −27.5102 −0.948628
\(842\) 52.2350 1.80014
\(843\) −2.07936 −0.0716169
\(844\) −66.2443 −2.28022
\(845\) −1.00000 −0.0344010
\(846\) −81.1675 −2.79060
\(847\) 0 0
\(848\) −0.00495275 −0.000170078 0
\(849\) −1.18983 −0.0408349
\(850\) −0.676868 −0.0232164
\(851\) 0.0821998 0.00281777
\(852\) −0.00817072 −0.000279924 0
\(853\) 32.4254 1.11022 0.555112 0.831776i \(-0.312676\pi\)
0.555112 + 0.831776i \(0.312676\pi\)
\(854\) −32.5310 −1.11319
\(855\) 15.2660 0.522085
\(856\) 47.7001 1.63035
\(857\) 37.2652 1.27295 0.636477 0.771295i \(-0.280391\pi\)
0.636477 + 0.771295i \(0.280391\pi\)
\(858\) 0 0
\(859\) −24.5020 −0.835997 −0.417999 0.908448i \(-0.637268\pi\)
−0.417999 + 0.908448i \(0.637268\pi\)
\(860\) −7.73535 −0.263773
\(861\) 1.83115 0.0624054
\(862\) −67.1793 −2.28813
\(863\) −0.986462 −0.0335796 −0.0167898 0.999859i \(-0.505345\pi\)
−0.0167898 + 0.999859i \(0.505345\pi\)
\(864\) −3.05880 −0.104063
\(865\) 3.47738 0.118235
\(866\) −62.5075 −2.12409
\(867\) 1.51710 0.0515234
\(868\) 58.7346 1.99358
\(869\) 0 0
\(870\) 0.250378 0.00848861
\(871\) 0.529973 0.0179574
\(872\) 19.7118 0.667527
\(873\) 8.27274 0.279990
\(874\) 49.0457 1.65900
\(875\) 4.22248 0.142746
\(876\) −4.74133 −0.160195
\(877\) 29.8557 1.00816 0.504078 0.863658i \(-0.331833\pi\)
0.504078 + 0.863658i \(0.331833\pi\)
\(878\) 8.66958 0.292584
\(879\) 0.656872 0.0221558
\(880\) 0 0
\(881\) −58.5965 −1.97417 −0.987084 0.160205i \(-0.948785\pi\)
−0.987084 + 0.160205i \(0.948785\pi\)
\(882\) −74.0942 −2.49488
\(883\) −20.8430 −0.701423 −0.350711 0.936484i \(-0.614060\pi\)
−0.350711 + 0.936484i \(0.614060\pi\)
\(884\) 0.955873 0.0321495
\(885\) 0.486810 0.0163639
\(886\) −53.4640 −1.79616
\(887\) 11.5614 0.388193 0.194097 0.980982i \(-0.437822\pi\)
0.194097 + 0.980982i \(0.437822\pi\)
\(888\) −0.00493168 −0.000165496 0
\(889\) −78.2598 −2.62475
\(890\) 4.54590 0.152379
\(891\) 0 0
\(892\) 71.2885 2.38692
\(893\) 60.5299 2.02556
\(894\) −4.35556 −0.145672
\(895\) 15.9242 0.532287
\(896\) 77.0261 2.57326
\(897\) 0.377064 0.0125898
\(898\) 34.9331 1.16573
\(899\) −5.25732 −0.175341
\(900\) −9.66223 −0.322074
\(901\) −0.0492771 −0.00164166
\(902\) 0 0
\(903\) 0.907265 0.0301919
\(904\) 22.7772 0.757558
\(905\) −1.26334 −0.0419947
\(906\) −1.18665 −0.0394237
\(907\) 24.6006 0.816850 0.408425 0.912792i \(-0.366078\pi\)
0.408425 + 0.912792i \(0.366078\pi\)
\(908\) −23.2778 −0.772499
\(909\) 47.1172 1.56278
\(910\) −9.65593 −0.320091
\(911\) −21.2705 −0.704723 −0.352361 0.935864i \(-0.614621\pi\)
−0.352361 + 0.935864i \(0.614621\pi\)
\(912\) 0.0136162 0.000450879 0
\(913\) 0 0
\(914\) 23.4982 0.777251
\(915\) 0.302212 0.00999083
\(916\) −47.6331 −1.57384
\(917\) 14.0095 0.462633
\(918\) −0.363815 −0.0120077
\(919\) 56.4666 1.86266 0.931331 0.364175i \(-0.118649\pi\)
0.931331 + 0.364175i \(0.118649\pi\)
\(920\) −11.8175 −0.389613
\(921\) 2.77158 0.0913266
\(922\) 87.8581 2.89345
\(923\) −0.0282052 −0.000928384 0
\(924\) 0 0
\(925\) 0.0195553 0.000642975 0
\(926\) −40.6672 −1.33641
\(927\) 22.5422 0.740384
\(928\) −6.94602 −0.228014
\(929\) −17.7758 −0.583205 −0.291602 0.956540i \(-0.594188\pi\)
−0.291602 + 0.956540i \(0.594188\pi\)
\(930\) −0.883564 −0.0289732
\(931\) 55.2551 1.81091
\(932\) 91.1168 2.98463
\(933\) 1.94780 0.0637682
\(934\) −63.1068 −2.06492
\(935\) 0 0
\(936\) 8.41155 0.274940
\(937\) 47.7343 1.55941 0.779706 0.626146i \(-0.215369\pi\)
0.779706 + 0.626146i \(0.215369\pi\)
\(938\) 5.11738 0.167088
\(939\) 2.92772 0.0955426
\(940\) −38.3110 −1.24957
\(941\) 27.6323 0.900786 0.450393 0.892830i \(-0.351284\pi\)
0.450393 + 0.892830i \(0.351284\pi\)
\(942\) −1.11131 −0.0362084
\(943\) 20.3214 0.661755
\(944\) −0.161447 −0.00525465
\(945\) 2.26958 0.0738294
\(946\) 0 0
\(947\) −15.9621 −0.518697 −0.259349 0.965784i \(-0.583508\pi\)
−0.259349 + 0.965784i \(0.583508\pi\)
\(948\) −0.849748 −0.0275985
\(949\) −16.3670 −0.531294
\(950\) 11.6680 0.378559
\(951\) −1.32596 −0.0429971
\(952\) 3.51372 0.113880
\(953\) 25.4399 0.824079 0.412040 0.911166i \(-0.364816\pi\)
0.412040 + 0.911166i \(0.364816\pi\)
\(954\) −1.13906 −0.0368786
\(955\) 1.14665 0.0371048
\(956\) −38.3606 −1.24067
\(957\) 0 0
\(958\) −72.7891 −2.35171
\(959\) 17.8303 0.575772
\(960\) −1.16204 −0.0375045
\(961\) −12.4473 −0.401527
\(962\) −0.0447189 −0.00144179
\(963\) −50.7636 −1.63583
\(964\) 47.8972 1.54266
\(965\) 11.7564 0.378452
\(966\) 3.64090 0.117144
\(967\) −12.7377 −0.409615 −0.204808 0.978802i \(-0.565657\pi\)
−0.204808 + 0.978802i \(0.565657\pi\)
\(968\) 0 0
\(969\) 0.135474 0.00435205
\(970\) 6.32296 0.203018
\(971\) 40.0678 1.28584 0.642918 0.765935i \(-0.277724\pi\)
0.642918 + 0.765935i \(0.277724\pi\)
\(972\) −7.79364 −0.249981
\(973\) 9.85816 0.316038
\(974\) 69.7084 2.23360
\(975\) 0.0897034 0.00287281
\(976\) −0.100227 −0.00320817
\(977\) −32.5175 −1.04033 −0.520164 0.854066i \(-0.674129\pi\)
−0.520164 + 0.854066i \(0.674129\pi\)
\(978\) 3.52045 0.112571
\(979\) 0 0
\(980\) −34.9724 −1.11715
\(981\) −20.9778 −0.669770
\(982\) −58.3851 −1.86314
\(983\) −44.0299 −1.40434 −0.702168 0.712011i \(-0.747784\pi\)
−0.702168 + 0.712011i \(0.747784\pi\)
\(984\) −1.21921 −0.0388669
\(985\) −17.3115 −0.551590
\(986\) −0.826161 −0.0263103
\(987\) 4.49343 0.143027
\(988\) −16.4775 −0.524220
\(989\) 10.0685 0.320158
\(990\) 0 0
\(991\) 3.72501 0.118329 0.0591644 0.998248i \(-0.481156\pi\)
0.0591644 + 0.998248i \(0.481156\pi\)
\(992\) 24.5119 0.778255
\(993\) −1.88645 −0.0598648
\(994\) −0.272347 −0.00863833
\(995\) −3.30924 −0.104910
\(996\) 4.46146 0.141367
\(997\) −35.5463 −1.12576 −0.562881 0.826538i \(-0.690307\pi\)
−0.562881 + 0.826538i \(0.690307\pi\)
\(998\) −15.5826 −0.493258
\(999\) 0.0105110 0.000332552 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7865.2.a.u.1.7 yes 8
11.10 odd 2 7865.2.a.t.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7865.2.a.t.1.2 8 11.10 odd 2
7865.2.a.u.1.7 yes 8 1.1 even 1 trivial