Properties

Label 7865.2.a.u
Level $7865$
Weight $2$
Character orbit 7865.a
Self dual yes
Analytic conductor $62.802$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7865,2,Mod(1,7865)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7865, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7865.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7865 = 5 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7865.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,1,-5,7,-8,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.8023411897\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 11x^{6} + 9x^{5} + 34x^{4} - 13x^{3} - 35x^{2} - 3x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{4} - 1) q^{3} + (\beta_{2} + 1) q^{4} - q^{5} + ( - \beta_{3} - \beta_1 - 1) q^{6} + (\beta_{7} - \beta_{5} - 2 \beta_{4} + \cdots + 2) q^{7} + ( - \beta_{6} + \beta_{4} + \cdots + \beta_1) q^{8}+ \cdots + ( - \beta_{7} + \beta_{5} + 5 \beta_{4} + \cdots + 3) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} - 5 q^{3} + 7 q^{4} - 8 q^{5} - 7 q^{6} + 9 q^{7} + 3 q^{8} + 3 q^{9} - q^{10} - 15 q^{12} - 8 q^{13} - 7 q^{14} + 5 q^{15} + 9 q^{16} + 4 q^{17} + 8 q^{18} + 16 q^{19} - 7 q^{20} - 23 q^{21}+ \cdots + 41 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - x^{7} - 11x^{6} + 9x^{5} + 34x^{4} - 13x^{3} - 35x^{2} - 3x + 5 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{7} - \nu^{6} - 9\nu^{5} + 10\nu^{4} + 18\nu^{3} - 18\nu^{2} - 10\nu + 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{7} - 2\nu^{6} - 10\nu^{5} + 18\nu^{4} + 24\nu^{3} - 31\nu^{2} - 17\nu + 7 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{7} - 2\nu^{6} - 10\nu^{5} + 19\nu^{4} + 24\nu^{3} - 38\nu^{2} - 16\nu + 12 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( 2\nu^{7} - 3\nu^{6} - 19\nu^{5} + 28\nu^{4} + 41\nu^{3} - 49\nu^{2} - 22\nu + 11 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( 2\nu^{7} - 3\nu^{6} - 20\nu^{5} + 28\nu^{4} + 49\nu^{3} - 50\nu^{2} - 33\nu + 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{6} + \beta_{4} + \beta_{3} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} - \beta_{4} + 7\beta_{2} - \beta _1 + 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{7} - 7\beta_{6} + 8\beta_{4} + 8\beta_{3} - \beta_{2} + 29\beta _1 - 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{7} + \beta_{6} + 8\beta_{5} - 11\beta_{4} - \beta_{3} + 44\beta_{2} - 14\beta _1 + 96 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -8\beta_{7} - 44\beta_{6} - 2\beta_{5} + 53\beta_{4} + 54\beta_{3} - 17\beta_{2} + 177\beta _1 - 50 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.61443
−1.42417
−0.769771
−0.652625
0.336128
1.46613
2.28679
2.37195
−2.61443 −1.48757 4.83523 −1.00000 3.88914 3.12719 −7.41251 −0.787143 2.61443
1.2 −1.42417 2.07465 0.0282518 −1.00000 −2.95465 −0.710933 2.80810 1.30416 1.42417
1.3 −0.769771 −1.78335 −1.40745 −1.00000 1.37277 4.81089 2.62296 0.180351 0.769771
1.4 −0.652625 1.46424 −1.57408 −1.00000 −0.955597 0.0215714 2.33253 −0.856014 0.652625
1.5 0.336128 −2.12071 −1.88702 −1.00000 −0.712829 −1.25721 −1.30653 1.49741 −0.336128
1.6 1.46613 0.200225 0.149532 −1.00000 0.293556 3.52421 −2.71302 −2.95991 −1.46613
1.7 2.28679 −0.0897034 3.22941 −1.00000 −0.205133 −4.22248 2.81139 −2.99195 −2.28679
1.8 2.37195 −3.25777 3.62613 −1.00000 −7.72726 3.70677 3.85709 7.61309 −2.37195
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(11\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7865.2.a.u yes 8
11.b odd 2 1 7865.2.a.t 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7865.2.a.t 8 11.b odd 2 1
7865.2.a.u yes 8 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7865))\):

\( T_{2}^{8} - T_{2}^{7} - 11T_{2}^{6} + 9T_{2}^{5} + 34T_{2}^{4} - 13T_{2}^{3} - 35T_{2}^{2} - 3T_{2} + 5 \) Copy content Toggle raw display
\( T_{3}^{8} + 5T_{3}^{7} - T_{3}^{6} - 33T_{3}^{5} - 26T_{3}^{4} + 51T_{3}^{3} + 51T_{3}^{2} - 7T_{3} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - T^{7} - 11 T^{6} + \cdots + 5 \) Copy content Toggle raw display
$3$ \( T^{8} + 5 T^{7} + \cdots - 1 \) Copy content Toggle raw display
$5$ \( (T + 1)^{8} \) Copy content Toggle raw display
$7$ \( T^{8} - 9 T^{7} + \cdots - 16 \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( (T + 1)^{8} \) Copy content Toggle raw display
$17$ \( T^{8} - 4 T^{7} + \cdots - 269 \) Copy content Toggle raw display
$19$ \( T^{8} - 16 T^{7} + \cdots - 406400 \) Copy content Toggle raw display
$23$ \( T^{8} + 9 T^{7} + \cdots + 111535 \) Copy content Toggle raw display
$29$ \( T^{8} + 13 T^{7} + \cdots + 27 \) Copy content Toggle raw display
$31$ \( T^{8} - 224 T^{6} + \cdots + 880092 \) Copy content Toggle raw display
$37$ \( T^{8} + 5 T^{7} + \cdots + 4 \) Copy content Toggle raw display
$41$ \( T^{8} - 13 T^{7} + \cdots - 48796 \) Copy content Toggle raw display
$43$ \( T^{8} - 5 T^{7} + \cdots + 1189 \) Copy content Toggle raw display
$47$ \( T^{8} - 10 T^{7} + \cdots + 117508 \) Copy content Toggle raw display
$53$ \( T^{8} - 14 T^{7} + \cdots + 111563 \) Copy content Toggle raw display
$59$ \( T^{8} + 20 T^{7} + \cdots - 332236 \) Copy content Toggle raw display
$61$ \( T^{8} - 6 T^{7} + \cdots - 151121 \) Copy content Toggle raw display
$67$ \( T^{8} - 4 T^{7} + \cdots - 143540 \) Copy content Toggle raw display
$71$ \( T^{8} + 9 T^{7} + \cdots - 62596 \) Copy content Toggle raw display
$73$ \( T^{8} - 10 T^{7} + \cdots - 44806096 \) Copy content Toggle raw display
$79$ \( T^{8} - 13 T^{7} + \cdots + 734999 \) Copy content Toggle raw display
$83$ \( T^{8} - 26 T^{7} + \cdots + 7754860 \) Copy content Toggle raw display
$89$ \( T^{8} + 6 T^{7} + \cdots + 183680 \) Copy content Toggle raw display
$97$ \( T^{8} - 26 T^{7} + \cdots - 1408 \) Copy content Toggle raw display
show more
show less