Properties

Label 7865.2.a.u.1.5
Level $7865$
Weight $2$
Character 7865.1
Self dual yes
Analytic conductor $62.802$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7865,2,Mod(1,7865)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7865, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7865.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7865 = 5 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7865.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,1,-5,7,-8,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.8023411897\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 11x^{6} + 9x^{5} + 34x^{4} - 13x^{3} - 35x^{2} - 3x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.336128\) of defining polynomial
Character \(\chi\) \(=\) 7865.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.336128 q^{2} -2.12071 q^{3} -1.88702 q^{4} -1.00000 q^{5} -0.712829 q^{6} -1.25721 q^{7} -1.30653 q^{8} +1.49741 q^{9} -0.336128 q^{10} +4.00182 q^{12} -1.00000 q^{13} -0.422583 q^{14} +2.12071 q^{15} +3.33487 q^{16} +1.59876 q^{17} +0.503321 q^{18} +6.34435 q^{19} +1.88702 q^{20} +2.66618 q^{21} +2.01720 q^{23} +2.77078 q^{24} +1.00000 q^{25} -0.336128 q^{26} +3.18655 q^{27} +2.37238 q^{28} -3.54131 q^{29} +0.712829 q^{30} -4.93400 q^{31} +3.73401 q^{32} +0.537387 q^{34} +1.25721 q^{35} -2.82564 q^{36} -2.92059 q^{37} +2.13251 q^{38} +2.12071 q^{39} +1.30653 q^{40} +0.127199 q^{41} +0.896177 q^{42} -6.69458 q^{43} -1.49741 q^{45} +0.678035 q^{46} -6.75748 q^{47} -7.07230 q^{48} -5.41942 q^{49} +0.336128 q^{50} -3.39050 q^{51} +1.88702 q^{52} +4.99469 q^{53} +1.07109 q^{54} +1.64259 q^{56} -13.4545 q^{57} -1.19033 q^{58} -12.9532 q^{59} -4.00182 q^{60} +2.78047 q^{61} -1.65845 q^{62} -1.88256 q^{63} -5.41464 q^{64} +1.00000 q^{65} -0.638510 q^{67} -3.01689 q^{68} -4.27789 q^{69} +0.422583 q^{70} +6.26909 q^{71} -1.95642 q^{72} -5.31914 q^{73} -0.981692 q^{74} -2.12071 q^{75} -11.9719 q^{76} +0.712829 q^{78} -14.3733 q^{79} -3.33487 q^{80} -11.2500 q^{81} +0.0427550 q^{82} -9.60590 q^{83} -5.03113 q^{84} -1.59876 q^{85} -2.25023 q^{86} +7.51010 q^{87} +7.67233 q^{89} -0.503321 q^{90} +1.25721 q^{91} -3.80648 q^{92} +10.4636 q^{93} -2.27138 q^{94} -6.34435 q^{95} -7.91876 q^{96} +9.78708 q^{97} -1.82162 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} - 5 q^{3} + 7 q^{4} - 8 q^{5} - 7 q^{6} + 9 q^{7} + 3 q^{8} + 3 q^{9} - q^{10} - 15 q^{12} - 8 q^{13} - 7 q^{14} + 5 q^{15} + 9 q^{16} + 4 q^{17} + 8 q^{18} + 16 q^{19} - 7 q^{20} - 23 q^{21}+ \cdots + 41 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.336128 0.237678 0.118839 0.992914i \(-0.462083\pi\)
0.118839 + 0.992914i \(0.462083\pi\)
\(3\) −2.12071 −1.22439 −0.612196 0.790706i \(-0.709714\pi\)
−0.612196 + 0.790706i \(0.709714\pi\)
\(4\) −1.88702 −0.943509
\(5\) −1.00000 −0.447214
\(6\) −0.712829 −0.291011
\(7\) −1.25721 −0.475181 −0.237591 0.971365i \(-0.576358\pi\)
−0.237591 + 0.971365i \(0.576358\pi\)
\(8\) −1.30653 −0.461930
\(9\) 1.49741 0.499137
\(10\) −0.336128 −0.106293
\(11\) 0 0
\(12\) 4.00182 1.15523
\(13\) −1.00000 −0.277350
\(14\) −0.422583 −0.112940
\(15\) 2.12071 0.547565
\(16\) 3.33487 0.833719
\(17\) 1.59876 0.387756 0.193878 0.981026i \(-0.437893\pi\)
0.193878 + 0.981026i \(0.437893\pi\)
\(18\) 0.503321 0.118634
\(19\) 6.34435 1.45549 0.727746 0.685846i \(-0.240568\pi\)
0.727746 + 0.685846i \(0.240568\pi\)
\(20\) 1.88702 0.421950
\(21\) 2.66618 0.581808
\(22\) 0 0
\(23\) 2.01720 0.420614 0.210307 0.977635i \(-0.432554\pi\)
0.210307 + 0.977635i \(0.432554\pi\)
\(24\) 2.77078 0.565583
\(25\) 1.00000 0.200000
\(26\) −0.336128 −0.0659200
\(27\) 3.18655 0.613253
\(28\) 2.37238 0.448338
\(29\) −3.54131 −0.657606 −0.328803 0.944399i \(-0.606645\pi\)
−0.328803 + 0.944399i \(0.606645\pi\)
\(30\) 0.712829 0.130144
\(31\) −4.93400 −0.886172 −0.443086 0.896479i \(-0.646116\pi\)
−0.443086 + 0.896479i \(0.646116\pi\)
\(32\) 3.73401 0.660086
\(33\) 0 0
\(34\) 0.537387 0.0921611
\(35\) 1.25721 0.212508
\(36\) −2.82564 −0.470941
\(37\) −2.92059 −0.480143 −0.240071 0.970755i \(-0.577171\pi\)
−0.240071 + 0.970755i \(0.577171\pi\)
\(38\) 2.13251 0.345939
\(39\) 2.12071 0.339585
\(40\) 1.30653 0.206581
\(41\) 0.127199 0.0198651 0.00993256 0.999951i \(-0.496838\pi\)
0.00993256 + 0.999951i \(0.496838\pi\)
\(42\) 0.896177 0.138283
\(43\) −6.69458 −1.02091 −0.510457 0.859903i \(-0.670524\pi\)
−0.510457 + 0.859903i \(0.670524\pi\)
\(44\) 0 0
\(45\) −1.49741 −0.223221
\(46\) 0.678035 0.0999708
\(47\) −6.75748 −0.985680 −0.492840 0.870120i \(-0.664041\pi\)
−0.492840 + 0.870120i \(0.664041\pi\)
\(48\) −7.07230 −1.02080
\(49\) −5.41942 −0.774203
\(50\) 0.336128 0.0475356
\(51\) −3.39050 −0.474766
\(52\) 1.88702 0.261682
\(53\) 4.99469 0.686073 0.343037 0.939322i \(-0.388544\pi\)
0.343037 + 0.939322i \(0.388544\pi\)
\(54\) 1.07109 0.145757
\(55\) 0 0
\(56\) 1.64259 0.219500
\(57\) −13.4545 −1.78209
\(58\) −1.19033 −0.156298
\(59\) −12.9532 −1.68637 −0.843185 0.537624i \(-0.819322\pi\)
−0.843185 + 0.537624i \(0.819322\pi\)
\(60\) −4.00182 −0.516633
\(61\) 2.78047 0.356003 0.178002 0.984030i \(-0.443037\pi\)
0.178002 + 0.984030i \(0.443037\pi\)
\(62\) −1.65845 −0.210624
\(63\) −1.88256 −0.237181
\(64\) −5.41464 −0.676831
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) −0.638510 −0.0780064 −0.0390032 0.999239i \(-0.512418\pi\)
−0.0390032 + 0.999239i \(0.512418\pi\)
\(68\) −3.01689 −0.365851
\(69\) −4.27789 −0.514997
\(70\) 0.422583 0.0505084
\(71\) 6.26909 0.744004 0.372002 0.928232i \(-0.378671\pi\)
0.372002 + 0.928232i \(0.378671\pi\)
\(72\) −1.95642 −0.230566
\(73\) −5.31914 −0.622558 −0.311279 0.950319i \(-0.600757\pi\)
−0.311279 + 0.950319i \(0.600757\pi\)
\(74\) −0.981692 −0.114119
\(75\) −2.12071 −0.244879
\(76\) −11.9719 −1.37327
\(77\) 0 0
\(78\) 0.712829 0.0807120
\(79\) −14.3733 −1.61712 −0.808559 0.588415i \(-0.799752\pi\)
−0.808559 + 0.588415i \(0.799752\pi\)
\(80\) −3.33487 −0.372850
\(81\) −11.2500 −1.25000
\(82\) 0.0427550 0.00472150
\(83\) −9.60590 −1.05438 −0.527192 0.849746i \(-0.676755\pi\)
−0.527192 + 0.849746i \(0.676755\pi\)
\(84\) −5.03113 −0.548942
\(85\) −1.59876 −0.173410
\(86\) −2.25023 −0.242649
\(87\) 7.51010 0.805167
\(88\) 0 0
\(89\) 7.67233 0.813265 0.406633 0.913592i \(-0.366703\pi\)
0.406633 + 0.913592i \(0.366703\pi\)
\(90\) −0.503321 −0.0530547
\(91\) 1.25721 0.131792
\(92\) −3.80648 −0.396853
\(93\) 10.4636 1.08502
\(94\) −2.27138 −0.234275
\(95\) −6.34435 −0.650916
\(96\) −7.91876 −0.808205
\(97\) 9.78708 0.993727 0.496863 0.867829i \(-0.334485\pi\)
0.496863 + 0.867829i \(0.334485\pi\)
\(98\) −1.82162 −0.184011
\(99\) 0 0
\(100\) −1.88702 −0.188702
\(101\) −6.04138 −0.601139 −0.300570 0.953760i \(-0.597177\pi\)
−0.300570 + 0.953760i \(0.597177\pi\)
\(102\) −1.13964 −0.112841
\(103\) 15.5344 1.53065 0.765326 0.643643i \(-0.222578\pi\)
0.765326 + 0.643643i \(0.222578\pi\)
\(104\) 1.30653 0.128116
\(105\) −2.66618 −0.260193
\(106\) 1.67885 0.163065
\(107\) 4.24575 0.410452 0.205226 0.978715i \(-0.434207\pi\)
0.205226 + 0.978715i \(0.434207\pi\)
\(108\) −6.01309 −0.578609
\(109\) 1.55214 0.148668 0.0743340 0.997233i \(-0.476317\pi\)
0.0743340 + 0.997233i \(0.476317\pi\)
\(110\) 0 0
\(111\) 6.19373 0.587883
\(112\) −4.19264 −0.396167
\(113\) −12.2725 −1.15450 −0.577250 0.816567i \(-0.695874\pi\)
−0.577250 + 0.816567i \(0.695874\pi\)
\(114\) −4.52243 −0.423565
\(115\) −2.01720 −0.188104
\(116\) 6.68253 0.620457
\(117\) −1.49741 −0.138436
\(118\) −4.35394 −0.400813
\(119\) −2.00998 −0.184254
\(120\) −2.77078 −0.252936
\(121\) 0 0
\(122\) 0.934594 0.0846142
\(123\) −0.269752 −0.0243227
\(124\) 9.31054 0.836111
\(125\) −1.00000 −0.0894427
\(126\) −0.632781 −0.0563726
\(127\) 17.7780 1.57755 0.788773 0.614684i \(-0.210717\pi\)
0.788773 + 0.614684i \(0.210717\pi\)
\(128\) −9.28803 −0.820954
\(129\) 14.1973 1.25000
\(130\) 0.336128 0.0294803
\(131\) 2.45505 0.214498 0.107249 0.994232i \(-0.465796\pi\)
0.107249 + 0.994232i \(0.465796\pi\)
\(132\) 0 0
\(133\) −7.97618 −0.691623
\(134\) −0.214621 −0.0185404
\(135\) −3.18655 −0.274255
\(136\) −2.08883 −0.179116
\(137\) 5.45301 0.465882 0.232941 0.972491i \(-0.425165\pi\)
0.232941 + 0.972491i \(0.425165\pi\)
\(138\) −1.43792 −0.122404
\(139\) −22.7508 −1.92970 −0.964850 0.262802i \(-0.915353\pi\)
−0.964850 + 0.262802i \(0.915353\pi\)
\(140\) −2.37238 −0.200503
\(141\) 14.3307 1.20686
\(142\) 2.10721 0.176834
\(143\) 0 0
\(144\) 4.99368 0.416140
\(145\) 3.54131 0.294090
\(146\) −1.78791 −0.147968
\(147\) 11.4930 0.947928
\(148\) 5.51121 0.453019
\(149\) −10.1385 −0.830580 −0.415290 0.909689i \(-0.636320\pi\)
−0.415290 + 0.909689i \(0.636320\pi\)
\(150\) −0.712829 −0.0582023
\(151\) −3.60329 −0.293232 −0.146616 0.989194i \(-0.546838\pi\)
−0.146616 + 0.989194i \(0.546838\pi\)
\(152\) −8.28910 −0.672335
\(153\) 2.39400 0.193543
\(154\) 0 0
\(155\) 4.93400 0.396308
\(156\) −4.00182 −0.320402
\(157\) −13.6875 −1.09238 −0.546190 0.837661i \(-0.683922\pi\)
−0.546190 + 0.837661i \(0.683922\pi\)
\(158\) −4.83125 −0.384353
\(159\) −10.5923 −0.840023
\(160\) −3.73401 −0.295200
\(161\) −2.53604 −0.199868
\(162\) −3.78143 −0.297097
\(163\) 9.94504 0.778956 0.389478 0.921036i \(-0.372655\pi\)
0.389478 + 0.921036i \(0.372655\pi\)
\(164\) −0.240027 −0.0187429
\(165\) 0 0
\(166\) −3.22881 −0.250604
\(167\) 15.3760 1.18983 0.594914 0.803790i \(-0.297186\pi\)
0.594914 + 0.803790i \(0.297186\pi\)
\(168\) −3.48346 −0.268754
\(169\) 1.00000 0.0769231
\(170\) −0.537387 −0.0412157
\(171\) 9.50010 0.726491
\(172\) 12.6328 0.963242
\(173\) 11.3713 0.864542 0.432271 0.901744i \(-0.357712\pi\)
0.432271 + 0.901744i \(0.357712\pi\)
\(174\) 2.52435 0.191371
\(175\) −1.25721 −0.0950362
\(176\) 0 0
\(177\) 27.4701 2.06478
\(178\) 2.57888 0.193295
\(179\) 14.4377 1.07913 0.539563 0.841945i \(-0.318590\pi\)
0.539563 + 0.841945i \(0.318590\pi\)
\(180\) 2.82564 0.210611
\(181\) 3.78746 0.281520 0.140760 0.990044i \(-0.455045\pi\)
0.140760 + 0.990044i \(0.455045\pi\)
\(182\) 0.422583 0.0313240
\(183\) −5.89658 −0.435888
\(184\) −2.63553 −0.194294
\(185\) 2.92059 0.214726
\(186\) 3.51710 0.257886
\(187\) 0 0
\(188\) 12.7515 0.929998
\(189\) −4.00617 −0.291406
\(190\) −2.13251 −0.154708
\(191\) 8.56733 0.619910 0.309955 0.950751i \(-0.399686\pi\)
0.309955 + 0.950751i \(0.399686\pi\)
\(192\) 11.4829 0.828706
\(193\) −22.0513 −1.58728 −0.793642 0.608385i \(-0.791818\pi\)
−0.793642 + 0.608385i \(0.791818\pi\)
\(194\) 3.28971 0.236187
\(195\) −2.12071 −0.151867
\(196\) 10.2265 0.730467
\(197\) −16.6673 −1.18750 −0.593748 0.804651i \(-0.702352\pi\)
−0.593748 + 0.804651i \(0.702352\pi\)
\(198\) 0 0
\(199\) −13.6275 −0.966027 −0.483014 0.875613i \(-0.660458\pi\)
−0.483014 + 0.875613i \(0.660458\pi\)
\(200\) −1.30653 −0.0923859
\(201\) 1.35410 0.0955105
\(202\) −2.03067 −0.142878
\(203\) 4.45218 0.312482
\(204\) 6.39794 0.447946
\(205\) −0.127199 −0.00888395
\(206\) 5.22155 0.363802
\(207\) 3.02057 0.209944
\(208\) −3.33487 −0.231232
\(209\) 0 0
\(210\) −0.896177 −0.0618421
\(211\) 9.82022 0.676052 0.338026 0.941137i \(-0.390241\pi\)
0.338026 + 0.941137i \(0.390241\pi\)
\(212\) −9.42507 −0.647316
\(213\) −13.2949 −0.910953
\(214\) 1.42711 0.0975554
\(215\) 6.69458 0.456567
\(216\) −4.16334 −0.283279
\(217\) 6.20308 0.421092
\(218\) 0.521717 0.0353351
\(219\) 11.2804 0.762255
\(220\) 0 0
\(221\) −1.59876 −0.107544
\(222\) 2.08188 0.139727
\(223\) −6.00036 −0.401814 −0.200907 0.979610i \(-0.564389\pi\)
−0.200907 + 0.979610i \(0.564389\pi\)
\(224\) −4.69444 −0.313661
\(225\) 1.49741 0.0998275
\(226\) −4.12513 −0.274399
\(227\) 8.42756 0.559357 0.279678 0.960094i \(-0.409772\pi\)
0.279678 + 0.960094i \(0.409772\pi\)
\(228\) 25.3889 1.68142
\(229\) 24.0748 1.59091 0.795453 0.606015i \(-0.207233\pi\)
0.795453 + 0.606015i \(0.207233\pi\)
\(230\) −0.678035 −0.0447083
\(231\) 0 0
\(232\) 4.62685 0.303767
\(233\) −0.903711 −0.0592041 −0.0296020 0.999562i \(-0.509424\pi\)
−0.0296020 + 0.999562i \(0.509424\pi\)
\(234\) −0.503321 −0.0329031
\(235\) 6.75748 0.440810
\(236\) 24.4430 1.59110
\(237\) 30.4815 1.97999
\(238\) −0.675609 −0.0437932
\(239\) 16.0679 1.03934 0.519672 0.854366i \(-0.326054\pi\)
0.519672 + 0.854366i \(0.326054\pi\)
\(240\) 7.07230 0.456515
\(241\) −4.20389 −0.270797 −0.135398 0.990791i \(-0.543231\pi\)
−0.135398 + 0.990791i \(0.543231\pi\)
\(242\) 0 0
\(243\) 14.2983 0.917237
\(244\) −5.24681 −0.335892
\(245\) 5.41942 0.346234
\(246\) −0.0906710 −0.00578097
\(247\) −6.34435 −0.403681
\(248\) 6.44644 0.409349
\(249\) 20.3713 1.29098
\(250\) −0.336128 −0.0212586
\(251\) −16.3960 −1.03491 −0.517454 0.855711i \(-0.673120\pi\)
−0.517454 + 0.855711i \(0.673120\pi\)
\(252\) 3.55243 0.223782
\(253\) 0 0
\(254\) 5.97569 0.374948
\(255\) 3.39050 0.212322
\(256\) 7.70733 0.481708
\(257\) −1.15296 −0.0719197 −0.0359599 0.999353i \(-0.511449\pi\)
−0.0359599 + 0.999353i \(0.511449\pi\)
\(258\) 4.77209 0.297097
\(259\) 3.67180 0.228155
\(260\) −1.88702 −0.117028
\(261\) −5.30281 −0.328235
\(262\) 0.825208 0.0509815
\(263\) −15.8898 −0.979806 −0.489903 0.871777i \(-0.662968\pi\)
−0.489903 + 0.871777i \(0.662968\pi\)
\(264\) 0 0
\(265\) −4.99469 −0.306821
\(266\) −2.68102 −0.164384
\(267\) −16.2708 −0.995756
\(268\) 1.20488 0.0735998
\(269\) 0.825752 0.0503470 0.0251735 0.999683i \(-0.491986\pi\)
0.0251735 + 0.999683i \(0.491986\pi\)
\(270\) −1.07109 −0.0651844
\(271\) −9.36641 −0.568969 −0.284484 0.958681i \(-0.591822\pi\)
−0.284484 + 0.958681i \(0.591822\pi\)
\(272\) 5.33166 0.323279
\(273\) −2.66618 −0.161365
\(274\) 1.83291 0.110730
\(275\) 0 0
\(276\) 8.07245 0.485904
\(277\) 14.4310 0.867076 0.433538 0.901135i \(-0.357265\pi\)
0.433538 + 0.901135i \(0.357265\pi\)
\(278\) −7.64718 −0.458647
\(279\) −7.38823 −0.442322
\(280\) −1.64259 −0.0981635
\(281\) −11.1323 −0.664100 −0.332050 0.943262i \(-0.607740\pi\)
−0.332050 + 0.943262i \(0.607740\pi\)
\(282\) 4.81693 0.286844
\(283\) 12.8896 0.766206 0.383103 0.923706i \(-0.374855\pi\)
0.383103 + 0.923706i \(0.374855\pi\)
\(284\) −11.8299 −0.701975
\(285\) 13.4545 0.796977
\(286\) 0 0
\(287\) −0.159916 −0.00943953
\(288\) 5.59135 0.329474
\(289\) −14.4440 −0.849645
\(290\) 1.19033 0.0698988
\(291\) −20.7556 −1.21671
\(292\) 10.0373 0.587389
\(293\) −21.9596 −1.28289 −0.641447 0.767167i \(-0.721666\pi\)
−0.641447 + 0.767167i \(0.721666\pi\)
\(294\) 3.86312 0.225302
\(295\) 12.9532 0.754167
\(296\) 3.81586 0.221792
\(297\) 0 0
\(298\) −3.40784 −0.197411
\(299\) −2.01720 −0.116657
\(300\) 4.00182 0.231045
\(301\) 8.41650 0.485119
\(302\) −1.21117 −0.0696947
\(303\) 12.8120 0.736031
\(304\) 21.1576 1.21347
\(305\) −2.78047 −0.159210
\(306\) 0.804690 0.0460010
\(307\) 14.4840 0.826644 0.413322 0.910585i \(-0.364368\pi\)
0.413322 + 0.910585i \(0.364368\pi\)
\(308\) 0 0
\(309\) −32.9440 −1.87412
\(310\) 1.65845 0.0941938
\(311\) −32.2312 −1.82767 −0.913833 0.406090i \(-0.866892\pi\)
−0.913833 + 0.406090i \(0.866892\pi\)
\(312\) −2.77078 −0.156865
\(313\) 18.6044 1.05158 0.525792 0.850613i \(-0.323769\pi\)
0.525792 + 0.850613i \(0.323769\pi\)
\(314\) −4.60074 −0.259635
\(315\) 1.88256 0.106070
\(316\) 27.1226 1.52577
\(317\) 24.7501 1.39010 0.695051 0.718960i \(-0.255382\pi\)
0.695051 + 0.718960i \(0.255382\pi\)
\(318\) −3.56036 −0.199655
\(319\) 0 0
\(320\) 5.41464 0.302688
\(321\) −9.00400 −0.502554
\(322\) −0.852433 −0.0475042
\(323\) 10.1431 0.564376
\(324\) 21.2289 1.17939
\(325\) −1.00000 −0.0554700
\(326\) 3.34280 0.185141
\(327\) −3.29164 −0.182028
\(328\) −0.166190 −0.00917629
\(329\) 8.49558 0.468377
\(330\) 0 0
\(331\) −17.0382 −0.936503 −0.468252 0.883595i \(-0.655116\pi\)
−0.468252 + 0.883595i \(0.655116\pi\)
\(332\) 18.1265 0.994822
\(333\) −4.37333 −0.239657
\(334\) 5.16828 0.282796
\(335\) 0.638510 0.0348855
\(336\) 8.89138 0.485064
\(337\) 21.4192 1.16678 0.583389 0.812193i \(-0.301726\pi\)
0.583389 + 0.812193i \(0.301726\pi\)
\(338\) 0.336128 0.0182829
\(339\) 26.0264 1.41356
\(340\) 3.01689 0.163614
\(341\) 0 0
\(342\) 3.19324 0.172671
\(343\) 15.6138 0.843068
\(344\) 8.74670 0.471590
\(345\) 4.27789 0.230314
\(346\) 3.82220 0.205483
\(347\) 3.47333 0.186458 0.0932290 0.995645i \(-0.470281\pi\)
0.0932290 + 0.995645i \(0.470281\pi\)
\(348\) −14.1717 −0.759683
\(349\) 2.97477 0.159236 0.0796178 0.996825i \(-0.474630\pi\)
0.0796178 + 0.996825i \(0.474630\pi\)
\(350\) −0.422583 −0.0225880
\(351\) −3.18655 −0.170086
\(352\) 0 0
\(353\) −10.3433 −0.550521 −0.275260 0.961370i \(-0.588764\pi\)
−0.275260 + 0.961370i \(0.588764\pi\)
\(354\) 9.23345 0.490752
\(355\) −6.26909 −0.332729
\(356\) −14.4778 −0.767323
\(357\) 4.26258 0.225600
\(358\) 4.85291 0.256484
\(359\) 2.56651 0.135455 0.0677276 0.997704i \(-0.478425\pi\)
0.0677276 + 0.997704i \(0.478425\pi\)
\(360\) 1.95642 0.103112
\(361\) 21.2507 1.11846
\(362\) 1.27307 0.0669111
\(363\) 0 0
\(364\) −2.37238 −0.124347
\(365\) 5.31914 0.278416
\(366\) −1.98200 −0.103601
\(367\) −5.04531 −0.263363 −0.131682 0.991292i \(-0.542038\pi\)
−0.131682 + 0.991292i \(0.542038\pi\)
\(368\) 6.72709 0.350674
\(369\) 0.190469 0.00991542
\(370\) 0.981692 0.0510357
\(371\) −6.27938 −0.326009
\(372\) −19.7450 −1.02373
\(373\) −5.04186 −0.261058 −0.130529 0.991445i \(-0.541668\pi\)
−0.130529 + 0.991445i \(0.541668\pi\)
\(374\) 0 0
\(375\) 2.12071 0.109513
\(376\) 8.82888 0.455315
\(377\) 3.54131 0.182387
\(378\) −1.34658 −0.0692609
\(379\) 19.6349 1.00858 0.504289 0.863535i \(-0.331755\pi\)
0.504289 + 0.863535i \(0.331755\pi\)
\(380\) 11.9719 0.614145
\(381\) −37.7021 −1.93154
\(382\) 2.87972 0.147339
\(383\) −15.9095 −0.812940 −0.406470 0.913664i \(-0.633240\pi\)
−0.406470 + 0.913664i \(0.633240\pi\)
\(384\) 19.6972 1.00517
\(385\) 0 0
\(386\) −7.41204 −0.377263
\(387\) −10.0245 −0.509576
\(388\) −18.4684 −0.937590
\(389\) −22.1659 −1.12385 −0.561927 0.827187i \(-0.689940\pi\)
−0.561927 + 0.827187i \(0.689940\pi\)
\(390\) −0.712829 −0.0360955
\(391\) 3.22501 0.163096
\(392\) 7.08066 0.357627
\(393\) −5.20644 −0.262630
\(394\) −5.60234 −0.282242
\(395\) 14.3733 0.723197
\(396\) 0 0
\(397\) −17.5209 −0.879347 −0.439673 0.898158i \(-0.644906\pi\)
−0.439673 + 0.898158i \(0.644906\pi\)
\(398\) −4.58057 −0.229603
\(399\) 16.9152 0.846818
\(400\) 3.33487 0.166744
\(401\) −0.853210 −0.0426073 −0.0213036 0.999773i \(-0.506782\pi\)
−0.0213036 + 0.999773i \(0.506782\pi\)
\(402\) 0.455149 0.0227008
\(403\) 4.93400 0.245780
\(404\) 11.4002 0.567181
\(405\) 11.2500 0.559017
\(406\) 1.49650 0.0742701
\(407\) 0 0
\(408\) 4.42981 0.219308
\(409\) 32.1662 1.59051 0.795257 0.606272i \(-0.207336\pi\)
0.795257 + 0.606272i \(0.207336\pi\)
\(410\) −0.0427550 −0.00211152
\(411\) −11.5642 −0.570422
\(412\) −29.3137 −1.44418
\(413\) 16.2850 0.801331
\(414\) 1.01530 0.0498992
\(415\) 9.60590 0.471535
\(416\) −3.73401 −0.183075
\(417\) 48.2479 2.36271
\(418\) 0 0
\(419\) −27.4922 −1.34308 −0.671542 0.740966i \(-0.734368\pi\)
−0.671542 + 0.740966i \(0.734368\pi\)
\(420\) 5.03113 0.245494
\(421\) −4.50415 −0.219519 −0.109760 0.993958i \(-0.535008\pi\)
−0.109760 + 0.993958i \(0.535008\pi\)
\(422\) 3.30085 0.160683
\(423\) −10.1187 −0.491990
\(424\) −6.52573 −0.316918
\(425\) 1.59876 0.0775512
\(426\) −4.46879 −0.216514
\(427\) −3.49564 −0.169166
\(428\) −8.01180 −0.387265
\(429\) 0 0
\(430\) 2.25023 0.108516
\(431\) 10.9158 0.525795 0.262897 0.964824i \(-0.415322\pi\)
0.262897 + 0.964824i \(0.415322\pi\)
\(432\) 10.6268 0.511280
\(433\) −27.7153 −1.33191 −0.665955 0.745992i \(-0.731976\pi\)
−0.665955 + 0.745992i \(0.731976\pi\)
\(434\) 2.08503 0.100084
\(435\) −7.51010 −0.360082
\(436\) −2.92892 −0.140270
\(437\) 12.7978 0.612201
\(438\) 3.79164 0.181171
\(439\) 12.8592 0.613734 0.306867 0.951752i \(-0.400719\pi\)
0.306867 + 0.951752i \(0.400719\pi\)
\(440\) 0 0
\(441\) −8.11510 −0.386433
\(442\) −0.537387 −0.0255609
\(443\) 16.3529 0.776950 0.388475 0.921459i \(-0.373002\pi\)
0.388475 + 0.921459i \(0.373002\pi\)
\(444\) −11.6877 −0.554673
\(445\) −7.67233 −0.363703
\(446\) −2.01689 −0.0955024
\(447\) 21.5009 1.01696
\(448\) 6.80735 0.321617
\(449\) 0.809366 0.0381963 0.0190982 0.999818i \(-0.493920\pi\)
0.0190982 + 0.999818i \(0.493920\pi\)
\(450\) 0.503321 0.0237268
\(451\) 0 0
\(452\) 23.1584 1.08928
\(453\) 7.64153 0.359031
\(454\) 2.83273 0.132947
\(455\) −1.25721 −0.0589390
\(456\) 17.5788 0.823202
\(457\) 11.0545 0.517108 0.258554 0.965997i \(-0.416754\pi\)
0.258554 + 0.965997i \(0.416754\pi\)
\(458\) 8.09220 0.378124
\(459\) 5.09453 0.237792
\(460\) 3.80648 0.177478
\(461\) 17.6411 0.821629 0.410815 0.911719i \(-0.365244\pi\)
0.410815 + 0.911719i \(0.365244\pi\)
\(462\) 0 0
\(463\) 9.67331 0.449557 0.224778 0.974410i \(-0.427834\pi\)
0.224778 + 0.974410i \(0.427834\pi\)
\(464\) −11.8098 −0.548258
\(465\) −10.4636 −0.485237
\(466\) −0.303762 −0.0140715
\(467\) 7.21255 0.333757 0.166879 0.985977i \(-0.446631\pi\)
0.166879 + 0.985977i \(0.446631\pi\)
\(468\) 2.82564 0.130615
\(469\) 0.802742 0.0370672
\(470\) 2.27138 0.104771
\(471\) 29.0272 1.33750
\(472\) 16.9239 0.778984
\(473\) 0 0
\(474\) 10.2457 0.470600
\(475\) 6.34435 0.291099
\(476\) 3.79286 0.173846
\(477\) 7.47911 0.342445
\(478\) 5.40086 0.247029
\(479\) −34.7347 −1.58707 −0.793535 0.608524i \(-0.791762\pi\)
−0.793535 + 0.608524i \(0.791762\pi\)
\(480\) 7.91876 0.361440
\(481\) 2.92059 0.133168
\(482\) −1.41304 −0.0643624
\(483\) 5.37821 0.244717
\(484\) 0 0
\(485\) −9.78708 −0.444408
\(486\) 4.80606 0.218007
\(487\) −14.8116 −0.671179 −0.335589 0.942008i \(-0.608935\pi\)
−0.335589 + 0.942008i \(0.608935\pi\)
\(488\) −3.63279 −0.164448
\(489\) −21.0905 −0.953748
\(490\) 1.82162 0.0822922
\(491\) −26.7581 −1.20757 −0.603787 0.797145i \(-0.706342\pi\)
−0.603787 + 0.797145i \(0.706342\pi\)
\(492\) 0.509027 0.0229487
\(493\) −5.66171 −0.254991
\(494\) −2.13251 −0.0959461
\(495\) 0 0
\(496\) −16.4543 −0.738818
\(497\) −7.88157 −0.353537
\(498\) 6.84737 0.306838
\(499\) −28.9178 −1.29454 −0.647269 0.762262i \(-0.724089\pi\)
−0.647269 + 0.762262i \(0.724089\pi\)
\(500\) 1.88702 0.0843900
\(501\) −32.6080 −1.45682
\(502\) −5.51116 −0.245975
\(503\) 38.2908 1.70730 0.853650 0.520846i \(-0.174384\pi\)
0.853650 + 0.520846i \(0.174384\pi\)
\(504\) 2.45963 0.109561
\(505\) 6.04138 0.268838
\(506\) 0 0
\(507\) −2.12071 −0.0941840
\(508\) −33.5475 −1.48843
\(509\) 39.5880 1.75471 0.877353 0.479846i \(-0.159308\pi\)
0.877353 + 0.479846i \(0.159308\pi\)
\(510\) 1.13964 0.0504642
\(511\) 6.68728 0.295828
\(512\) 21.1667 0.935445
\(513\) 20.2166 0.892585
\(514\) −0.387542 −0.0170937
\(515\) −15.5344 −0.684528
\(516\) −26.7905 −1.17939
\(517\) 0 0
\(518\) 1.23419 0.0542274
\(519\) −24.1152 −1.05854
\(520\) −1.30653 −0.0572953
\(521\) 26.2445 1.14979 0.574897 0.818226i \(-0.305042\pi\)
0.574897 + 0.818226i \(0.305042\pi\)
\(522\) −1.78242 −0.0780144
\(523\) 7.57119 0.331065 0.165533 0.986204i \(-0.447066\pi\)
0.165533 + 0.986204i \(0.447066\pi\)
\(524\) −4.63271 −0.202381
\(525\) 2.66618 0.116362
\(526\) −5.34100 −0.232879
\(527\) −7.88827 −0.343619
\(528\) 0 0
\(529\) −18.9309 −0.823084
\(530\) −1.67885 −0.0729247
\(531\) −19.3963 −0.841730
\(532\) 15.0512 0.652552
\(533\) −0.127199 −0.00550959
\(534\) −5.46906 −0.236669
\(535\) −4.24575 −0.183560
\(536\) 0.834235 0.0360335
\(537\) −30.6182 −1.32127
\(538\) 0.277558 0.0119664
\(539\) 0 0
\(540\) 6.01309 0.258762
\(541\) 14.3784 0.618176 0.309088 0.951033i \(-0.399976\pi\)
0.309088 + 0.951033i \(0.399976\pi\)
\(542\) −3.14831 −0.135231
\(543\) −8.03211 −0.344691
\(544\) 5.96978 0.255952
\(545\) −1.55214 −0.0664863
\(546\) −0.896177 −0.0383528
\(547\) −1.14789 −0.0490801 −0.0245400 0.999699i \(-0.507812\pi\)
−0.0245400 + 0.999699i \(0.507812\pi\)
\(548\) −10.2899 −0.439564
\(549\) 4.16352 0.177695
\(550\) 0 0
\(551\) −22.4673 −0.957140
\(552\) 5.58920 0.237892
\(553\) 18.0702 0.768424
\(554\) 4.85066 0.206085
\(555\) −6.19373 −0.262909
\(556\) 42.9312 1.82069
\(557\) 19.1833 0.812823 0.406412 0.913690i \(-0.366780\pi\)
0.406412 + 0.913690i \(0.366780\pi\)
\(558\) −2.48339 −0.105130
\(559\) 6.69458 0.283151
\(560\) 4.19264 0.177171
\(561\) 0 0
\(562\) −3.74189 −0.157842
\(563\) 34.8962 1.47070 0.735351 0.677687i \(-0.237018\pi\)
0.735351 + 0.677687i \(0.237018\pi\)
\(564\) −27.0422 −1.13868
\(565\) 12.2725 0.516308
\(566\) 4.33254 0.182110
\(567\) 14.1436 0.593976
\(568\) −8.19078 −0.343678
\(569\) 13.9688 0.585602 0.292801 0.956173i \(-0.405413\pi\)
0.292801 + 0.956173i \(0.405413\pi\)
\(570\) 4.52243 0.189424
\(571\) 3.90306 0.163338 0.0816690 0.996660i \(-0.473975\pi\)
0.0816690 + 0.996660i \(0.473975\pi\)
\(572\) 0 0
\(573\) −18.1688 −0.759014
\(574\) −0.0537521 −0.00224357
\(575\) 2.01720 0.0841229
\(576\) −8.10795 −0.337831
\(577\) −24.7826 −1.03171 −0.515856 0.856675i \(-0.672526\pi\)
−0.515856 + 0.856675i \(0.672526\pi\)
\(578\) −4.85502 −0.201942
\(579\) 46.7643 1.94346
\(580\) −6.68253 −0.277477
\(581\) 12.0767 0.501024
\(582\) −6.97651 −0.289186
\(583\) 0 0
\(584\) 6.94963 0.287578
\(585\) 1.49741 0.0619104
\(586\) −7.38123 −0.304916
\(587\) 20.3244 0.838877 0.419439 0.907784i \(-0.362227\pi\)
0.419439 + 0.907784i \(0.362227\pi\)
\(588\) −21.6875 −0.894379
\(589\) −31.3030 −1.28982
\(590\) 4.35394 0.179249
\(591\) 35.3465 1.45396
\(592\) −9.73981 −0.400304
\(593\) 33.3920 1.37124 0.685622 0.727958i \(-0.259530\pi\)
0.685622 + 0.727958i \(0.259530\pi\)
\(594\) 0 0
\(595\) 2.00998 0.0824011
\(596\) 19.1316 0.783660
\(597\) 28.9000 1.18280
\(598\) −0.678035 −0.0277269
\(599\) 22.2780 0.910253 0.455126 0.890427i \(-0.349594\pi\)
0.455126 + 0.890427i \(0.349594\pi\)
\(600\) 2.77078 0.113117
\(601\) 1.07057 0.0436696 0.0218348 0.999762i \(-0.493049\pi\)
0.0218348 + 0.999762i \(0.493049\pi\)
\(602\) 2.82902 0.115302
\(603\) −0.956113 −0.0389359
\(604\) 6.79947 0.276667
\(605\) 0 0
\(606\) 4.30647 0.174938
\(607\) 18.0347 0.732006 0.366003 0.930614i \(-0.380726\pi\)
0.366003 + 0.930614i \(0.380726\pi\)
\(608\) 23.6899 0.960751
\(609\) −9.44179 −0.382600
\(610\) −0.934594 −0.0378406
\(611\) 6.75748 0.273378
\(612\) −4.51752 −0.182610
\(613\) −11.5137 −0.465034 −0.232517 0.972592i \(-0.574696\pi\)
−0.232517 + 0.972592i \(0.574696\pi\)
\(614\) 4.86846 0.196475
\(615\) 0.269752 0.0108774
\(616\) 0 0
\(617\) 23.6167 0.950772 0.475386 0.879777i \(-0.342308\pi\)
0.475386 + 0.879777i \(0.342308\pi\)
\(618\) −11.0734 −0.445437
\(619\) 43.9312 1.76574 0.882871 0.469615i \(-0.155607\pi\)
0.882871 + 0.469615i \(0.155607\pi\)
\(620\) −9.31054 −0.373920
\(621\) 6.42790 0.257943
\(622\) −10.8338 −0.434396
\(623\) −9.64574 −0.386448
\(624\) 7.07230 0.283119
\(625\) 1.00000 0.0400000
\(626\) 6.25345 0.249938
\(627\) 0 0
\(628\) 25.8285 1.03067
\(629\) −4.66933 −0.186178
\(630\) 0.632781 0.0252106
\(631\) 27.9264 1.11173 0.555867 0.831271i \(-0.312386\pi\)
0.555867 + 0.831271i \(0.312386\pi\)
\(632\) 18.7791 0.746994
\(633\) −20.8258 −0.827753
\(634\) 8.31918 0.330397
\(635\) −17.7780 −0.705500
\(636\) 19.9878 0.792569
\(637\) 5.41942 0.214725
\(638\) 0 0
\(639\) 9.38741 0.371360
\(640\) 9.28803 0.367142
\(641\) 10.5862 0.418130 0.209065 0.977902i \(-0.432958\pi\)
0.209065 + 0.977902i \(0.432958\pi\)
\(642\) −3.02649 −0.119446
\(643\) −33.8548 −1.33510 −0.667551 0.744564i \(-0.732657\pi\)
−0.667551 + 0.744564i \(0.732657\pi\)
\(644\) 4.78556 0.188577
\(645\) −14.1973 −0.559017
\(646\) 3.40937 0.134140
\(647\) 10.3375 0.406408 0.203204 0.979136i \(-0.434865\pi\)
0.203204 + 0.979136i \(0.434865\pi\)
\(648\) 14.6985 0.577412
\(649\) 0 0
\(650\) −0.336128 −0.0131840
\(651\) −13.1549 −0.515582
\(652\) −18.7665 −0.734952
\(653\) −37.3541 −1.46178 −0.730890 0.682495i \(-0.760895\pi\)
−0.730890 + 0.682495i \(0.760895\pi\)
\(654\) −1.10641 −0.0432641
\(655\) −2.45505 −0.0959265
\(656\) 0.424192 0.0165619
\(657\) −7.96494 −0.310742
\(658\) 2.85560 0.111323
\(659\) −2.84526 −0.110836 −0.0554178 0.998463i \(-0.517649\pi\)
−0.0554178 + 0.998463i \(0.517649\pi\)
\(660\) 0 0
\(661\) −29.5252 −1.14840 −0.574199 0.818716i \(-0.694687\pi\)
−0.574199 + 0.818716i \(0.694687\pi\)
\(662\) −5.72700 −0.222586
\(663\) 3.39050 0.131676
\(664\) 12.5504 0.487052
\(665\) 7.97618 0.309303
\(666\) −1.47000 −0.0569612
\(667\) −7.14352 −0.276598
\(668\) −29.0147 −1.12261
\(669\) 12.7250 0.491978
\(670\) 0.214621 0.00829153
\(671\) 0 0
\(672\) 9.95555 0.384044
\(673\) 27.7232 1.06865 0.534325 0.845279i \(-0.320566\pi\)
0.534325 + 0.845279i \(0.320566\pi\)
\(674\) 7.19959 0.277318
\(675\) 3.18655 0.122651
\(676\) −1.88702 −0.0725776
\(677\) −0.520642 −0.0200099 −0.0100050 0.999950i \(-0.503185\pi\)
−0.0100050 + 0.999950i \(0.503185\pi\)
\(678\) 8.74820 0.335973
\(679\) −12.3044 −0.472200
\(680\) 2.08883 0.0801031
\(681\) −17.8724 −0.684872
\(682\) 0 0
\(683\) −2.60913 −0.0998355 −0.0499177 0.998753i \(-0.515896\pi\)
−0.0499177 + 0.998753i \(0.515896\pi\)
\(684\) −17.9269 −0.685451
\(685\) −5.45301 −0.208349
\(686\) 5.24824 0.200379
\(687\) −51.0557 −1.94789
\(688\) −22.3256 −0.851155
\(689\) −4.99469 −0.190283
\(690\) 1.43792 0.0547405
\(691\) 43.4438 1.65268 0.826339 0.563173i \(-0.190419\pi\)
0.826339 + 0.563173i \(0.190419\pi\)
\(692\) −21.4578 −0.815703
\(693\) 0 0
\(694\) 1.16748 0.0443170
\(695\) 22.7508 0.862988
\(696\) −9.81220 −0.371931
\(697\) 0.203360 0.00770282
\(698\) 0.999902 0.0378468
\(699\) 1.91651 0.0724890
\(700\) 2.37238 0.0896676
\(701\) −4.76785 −0.180079 −0.0900395 0.995938i \(-0.528699\pi\)
−0.0900395 + 0.995938i \(0.528699\pi\)
\(702\) −1.07109 −0.0404256
\(703\) −18.5293 −0.698844
\(704\) 0 0
\(705\) −14.3307 −0.539724
\(706\) −3.47668 −0.130847
\(707\) 7.59529 0.285650
\(708\) −51.8365 −1.94814
\(709\) 2.48416 0.0932945 0.0466473 0.998911i \(-0.485146\pi\)
0.0466473 + 0.998911i \(0.485146\pi\)
\(710\) −2.10721 −0.0790823
\(711\) −21.5227 −0.807164
\(712\) −10.0242 −0.375671
\(713\) −9.95284 −0.372737
\(714\) 1.43277 0.0536201
\(715\) 0 0
\(716\) −27.2442 −1.01816
\(717\) −34.0753 −1.27257
\(718\) 0.862675 0.0321947
\(719\) −4.07962 −0.152144 −0.0760720 0.997102i \(-0.524238\pi\)
−0.0760720 + 0.997102i \(0.524238\pi\)
\(720\) −4.99368 −0.186103
\(721\) −19.5300 −0.727337
\(722\) 7.14295 0.265833
\(723\) 8.91524 0.331561
\(724\) −7.14701 −0.265617
\(725\) −3.54131 −0.131521
\(726\) 0 0
\(727\) 6.62965 0.245880 0.122940 0.992414i \(-0.460768\pi\)
0.122940 + 0.992414i \(0.460768\pi\)
\(728\) −1.64259 −0.0608784
\(729\) 3.42740 0.126941
\(730\) 1.78791 0.0661735
\(731\) −10.7030 −0.395865
\(732\) 11.1270 0.411264
\(733\) −1.44392 −0.0533325 −0.0266663 0.999644i \(-0.508489\pi\)
−0.0266663 + 0.999644i \(0.508489\pi\)
\(734\) −1.69587 −0.0625956
\(735\) −11.4930 −0.423926
\(736\) 7.53223 0.277642
\(737\) 0 0
\(738\) 0.0640219 0.00235668
\(739\) 50.7703 1.86762 0.933808 0.357774i \(-0.116464\pi\)
0.933808 + 0.357774i \(0.116464\pi\)
\(740\) −5.51121 −0.202596
\(741\) 13.4545 0.494264
\(742\) −2.11067 −0.0774852
\(743\) 5.66758 0.207923 0.103962 0.994581i \(-0.466848\pi\)
0.103962 + 0.994581i \(0.466848\pi\)
\(744\) −13.6710 −0.501204
\(745\) 10.1385 0.371447
\(746\) −1.69471 −0.0620477
\(747\) −14.3840 −0.526283
\(748\) 0 0
\(749\) −5.33780 −0.195039
\(750\) 0.712829 0.0260288
\(751\) 11.8202 0.431327 0.215663 0.976468i \(-0.430809\pi\)
0.215663 + 0.976468i \(0.430809\pi\)
\(752\) −22.5354 −0.821780
\(753\) 34.7712 1.26713
\(754\) 1.19033 0.0433494
\(755\) 3.60329 0.131137
\(756\) 7.55972 0.274944
\(757\) 7.17784 0.260883 0.130441 0.991456i \(-0.458361\pi\)
0.130441 + 0.991456i \(0.458361\pi\)
\(758\) 6.59984 0.239717
\(759\) 0 0
\(760\) 8.28910 0.300677
\(761\) 12.1408 0.440104 0.220052 0.975488i \(-0.429377\pi\)
0.220052 + 0.975488i \(0.429377\pi\)
\(762\) −12.6727 −0.459084
\(763\) −1.95137 −0.0706442
\(764\) −16.1667 −0.584891
\(765\) −2.39400 −0.0865553
\(766\) −5.34764 −0.193218
\(767\) 12.9532 0.467715
\(768\) −16.3450 −0.589799
\(769\) −19.7789 −0.713246 −0.356623 0.934248i \(-0.616072\pi\)
−0.356623 + 0.934248i \(0.616072\pi\)
\(770\) 0 0
\(771\) 2.44510 0.0880580
\(772\) 41.6111 1.49762
\(773\) −16.0190 −0.576162 −0.288081 0.957606i \(-0.593017\pi\)
−0.288081 + 0.957606i \(0.593017\pi\)
\(774\) −3.36953 −0.121115
\(775\) −4.93400 −0.177234
\(776\) −12.7871 −0.459032
\(777\) −7.78683 −0.279351
\(778\) −7.45056 −0.267115
\(779\) 0.806993 0.0289135
\(780\) 4.00182 0.143288
\(781\) 0 0
\(782\) 1.08401 0.0387643
\(783\) −11.2846 −0.403278
\(784\) −18.0731 −0.645467
\(785\) 13.6875 0.488527
\(786\) −1.75003 −0.0624214
\(787\) 29.3542 1.04636 0.523182 0.852221i \(-0.324745\pi\)
0.523182 + 0.852221i \(0.324745\pi\)
\(788\) 31.4515 1.12041
\(789\) 33.6976 1.19967
\(790\) 4.83125 0.171888
\(791\) 15.4291 0.548597
\(792\) 0 0
\(793\) −2.78047 −0.0987376
\(794\) −5.88925 −0.209002
\(795\) 10.5923 0.375670
\(796\) 25.7153 0.911455
\(797\) −29.8671 −1.05795 −0.528973 0.848639i \(-0.677423\pi\)
−0.528973 + 0.848639i \(0.677423\pi\)
\(798\) 5.68566 0.201270
\(799\) −10.8036 −0.382203
\(800\) 3.73401 0.132017
\(801\) 11.4886 0.405931
\(802\) −0.286787 −0.0101268
\(803\) 0 0
\(804\) −2.55520 −0.0901150
\(805\) 2.53604 0.0893837
\(806\) 1.65845 0.0584165
\(807\) −1.75118 −0.0616445
\(808\) 7.89326 0.277684
\(809\) −34.7607 −1.22212 −0.611061 0.791583i \(-0.709257\pi\)
−0.611061 + 0.791583i \(0.709257\pi\)
\(810\) 3.78143 0.132866
\(811\) −37.4762 −1.31597 −0.657984 0.753032i \(-0.728591\pi\)
−0.657984 + 0.753032i \(0.728591\pi\)
\(812\) −8.40135 −0.294829
\(813\) 19.8634 0.696641
\(814\) 0 0
\(815\) −9.94504 −0.348360
\(816\) −11.3069 −0.395821
\(817\) −42.4727 −1.48593
\(818\) 10.8119 0.378031
\(819\) 1.88256 0.0657821
\(820\) 0.240027 0.00838209
\(821\) −16.4552 −0.574289 −0.287144 0.957887i \(-0.592706\pi\)
−0.287144 + 0.957887i \(0.592706\pi\)
\(822\) −3.88706 −0.135577
\(823\) −50.9494 −1.77598 −0.887992 0.459860i \(-0.847900\pi\)
−0.887992 + 0.459860i \(0.847900\pi\)
\(824\) −20.2962 −0.707053
\(825\) 0 0
\(826\) 5.47383 0.190459
\(827\) −4.11991 −0.143263 −0.0716317 0.997431i \(-0.522821\pi\)
−0.0716317 + 0.997431i \(0.522821\pi\)
\(828\) −5.69987 −0.198084
\(829\) 20.1973 0.701481 0.350741 0.936473i \(-0.385930\pi\)
0.350741 + 0.936473i \(0.385930\pi\)
\(830\) 3.22881 0.112074
\(831\) −30.6040 −1.06164
\(832\) 5.41464 0.187719
\(833\) −8.66435 −0.300202
\(834\) 16.2175 0.561564
\(835\) −15.3760 −0.532107
\(836\) 0 0
\(837\) −15.7225 −0.543447
\(838\) −9.24090 −0.319222
\(839\) 43.8429 1.51362 0.756812 0.653632i \(-0.226756\pi\)
0.756812 + 0.653632i \(0.226756\pi\)
\(840\) 3.48346 0.120191
\(841\) −16.4591 −0.567555
\(842\) −1.51397 −0.0521749
\(843\) 23.6085 0.813119
\(844\) −18.5309 −0.637861
\(845\) −1.00000 −0.0344010
\(846\) −3.40119 −0.116935
\(847\) 0 0
\(848\) 16.6567 0.571992
\(849\) −27.3351 −0.938137
\(850\) 0.537387 0.0184322
\(851\) −5.89141 −0.201955
\(852\) 25.0878 0.859493
\(853\) −8.74666 −0.299480 −0.149740 0.988725i \(-0.547844\pi\)
−0.149740 + 0.988725i \(0.547844\pi\)
\(854\) −1.17498 −0.0402071
\(855\) −9.50010 −0.324897
\(856\) −5.54721 −0.189600
\(857\) 44.7039 1.52706 0.763528 0.645775i \(-0.223466\pi\)
0.763528 + 0.645775i \(0.223466\pi\)
\(858\) 0 0
\(859\) 4.21902 0.143951 0.0719755 0.997406i \(-0.477070\pi\)
0.0719755 + 0.997406i \(0.477070\pi\)
\(860\) −12.6328 −0.430775
\(861\) 0.339135 0.0115577
\(862\) 3.66909 0.124970
\(863\) 33.2729 1.13262 0.566311 0.824192i \(-0.308370\pi\)
0.566311 + 0.824192i \(0.308370\pi\)
\(864\) 11.8986 0.404800
\(865\) −11.3713 −0.386635
\(866\) −9.31586 −0.316566
\(867\) 30.6315 1.04030
\(868\) −11.7053 −0.397304
\(869\) 0 0
\(870\) −2.52435 −0.0855836
\(871\) 0.638510 0.0216351
\(872\) −2.02792 −0.0686741
\(873\) 14.6553 0.496006
\(874\) 4.30169 0.145507
\(875\) 1.25721 0.0425015
\(876\) −21.2862 −0.719195
\(877\) 23.4583 0.792131 0.396066 0.918222i \(-0.370375\pi\)
0.396066 + 0.918222i \(0.370375\pi\)
\(878\) 4.32232 0.145871
\(879\) 46.5700 1.57077
\(880\) 0 0
\(881\) −50.7212 −1.70884 −0.854420 0.519583i \(-0.826087\pi\)
−0.854420 + 0.519583i \(0.826087\pi\)
\(882\) −2.72771 −0.0918468
\(883\) −17.8801 −0.601713 −0.300856 0.953669i \(-0.597272\pi\)
−0.300856 + 0.953669i \(0.597272\pi\)
\(884\) 3.01689 0.101469
\(885\) −27.4701 −0.923397
\(886\) 5.49667 0.184664
\(887\) 31.4391 1.05562 0.527810 0.849362i \(-0.323013\pi\)
0.527810 + 0.849362i \(0.323013\pi\)
\(888\) −8.09232 −0.271561
\(889\) −22.3508 −0.749620
\(890\) −2.57888 −0.0864443
\(891\) 0 0
\(892\) 11.3228 0.379115
\(893\) −42.8718 −1.43465
\(894\) 7.22703 0.241708
\(895\) −14.4377 −0.482600
\(896\) 11.6770 0.390102
\(897\) 4.27789 0.142834
\(898\) 0.272050 0.00907843
\(899\) 17.4728 0.582752
\(900\) −2.82564 −0.0941881
\(901\) 7.98530 0.266029
\(902\) 0 0
\(903\) −17.8490 −0.593976
\(904\) 16.0344 0.533298
\(905\) −3.78746 −0.125900
\(906\) 2.56853 0.0853337
\(907\) 5.81037 0.192930 0.0964651 0.995336i \(-0.469246\pi\)
0.0964651 + 0.995336i \(0.469246\pi\)
\(908\) −15.9030 −0.527758
\(909\) −9.04643 −0.300051
\(910\) −0.422583 −0.0140085
\(911\) 44.5831 1.47710 0.738551 0.674197i \(-0.235510\pi\)
0.738551 + 0.674197i \(0.235510\pi\)
\(912\) −44.8691 −1.48577
\(913\) 0 0
\(914\) 3.71573 0.122905
\(915\) 5.89658 0.194935
\(916\) −45.4296 −1.50104
\(917\) −3.08651 −0.101926
\(918\) 1.71241 0.0565180
\(919\) 36.6414 1.20869 0.604343 0.796724i \(-0.293436\pi\)
0.604343 + 0.796724i \(0.293436\pi\)
\(920\) 2.63553 0.0868910
\(921\) −30.7163 −1.01214
\(922\) 5.92967 0.195283
\(923\) −6.26909 −0.206350
\(924\) 0 0
\(925\) −2.92059 −0.0960285
\(926\) 3.25146 0.106850
\(927\) 23.2614 0.764005
\(928\) −13.2233 −0.434076
\(929\) −12.7328 −0.417751 −0.208876 0.977942i \(-0.566980\pi\)
−0.208876 + 0.977942i \(0.566980\pi\)
\(930\) −3.51710 −0.115330
\(931\) −34.3827 −1.12685
\(932\) 1.70532 0.0558596
\(933\) 68.3531 2.23778
\(934\) 2.42434 0.0793268
\(935\) 0 0
\(936\) 1.95642 0.0639476
\(937\) 24.5637 0.802462 0.401231 0.915977i \(-0.368583\pi\)
0.401231 + 0.915977i \(0.368583\pi\)
\(938\) 0.269824 0.00881006
\(939\) −39.4545 −1.28755
\(940\) −12.7515 −0.415908
\(941\) 14.3627 0.468210 0.234105 0.972211i \(-0.424784\pi\)
0.234105 + 0.972211i \(0.424784\pi\)
\(942\) 9.75683 0.317895
\(943\) 0.256585 0.00835555
\(944\) −43.1974 −1.40596
\(945\) 4.00617 0.130321
\(946\) 0 0
\(947\) 56.7586 1.84441 0.922204 0.386705i \(-0.126387\pi\)
0.922204 + 0.386705i \(0.126387\pi\)
\(948\) −57.5192 −1.86814
\(949\) 5.31914 0.172667
\(950\) 2.13251 0.0691877
\(951\) −52.4877 −1.70203
\(952\) 2.62610 0.0851125
\(953\) −46.7552 −1.51455 −0.757275 0.653097i \(-0.773470\pi\)
−0.757275 + 0.653097i \(0.773470\pi\)
\(954\) 2.51393 0.0813916
\(955\) −8.56733 −0.277232
\(956\) −30.3204 −0.980631
\(957\) 0 0
\(958\) −11.6753 −0.377212
\(959\) −6.85558 −0.221378
\(960\) −11.4829 −0.370609
\(961\) −6.65567 −0.214699
\(962\) 0.981692 0.0316510
\(963\) 6.35763 0.204872
\(964\) 7.93282 0.255499
\(965\) 22.0513 0.709855
\(966\) 1.80776 0.0581639
\(967\) 53.1619 1.70957 0.854786 0.518981i \(-0.173688\pi\)
0.854786 + 0.518981i \(0.173688\pi\)
\(968\) 0 0
\(969\) −21.5105 −0.691018
\(970\) −3.28971 −0.105626
\(971\) −43.0786 −1.38246 −0.691229 0.722636i \(-0.742930\pi\)
−0.691229 + 0.722636i \(0.742930\pi\)
\(972\) −26.9812 −0.865422
\(973\) 28.6026 0.916957
\(974\) −4.97859 −0.159524
\(975\) 2.12071 0.0679171
\(976\) 9.27253 0.296807
\(977\) 27.4889 0.879449 0.439725 0.898133i \(-0.355076\pi\)
0.439725 + 0.898133i \(0.355076\pi\)
\(978\) −7.08911 −0.226685
\(979\) 0 0
\(980\) −10.2265 −0.326675
\(981\) 2.32419 0.0742057
\(982\) −8.99412 −0.287014
\(983\) −5.56017 −0.177342 −0.0886709 0.996061i \(-0.528262\pi\)
−0.0886709 + 0.996061i \(0.528262\pi\)
\(984\) 0.352440 0.0112354
\(985\) 16.6673 0.531064
\(986\) −1.90306 −0.0606057
\(987\) −18.0167 −0.573477
\(988\) 11.9719 0.380877
\(989\) −13.5043 −0.429411
\(990\) 0 0
\(991\) 19.1507 0.608341 0.304171 0.952618i \(-0.401621\pi\)
0.304171 + 0.952618i \(0.401621\pi\)
\(992\) −18.4236 −0.584950
\(993\) 36.1331 1.14665
\(994\) −2.64921 −0.0840280
\(995\) 13.6275 0.432020
\(996\) −38.4411 −1.21805
\(997\) −17.6921 −0.560316 −0.280158 0.959954i \(-0.590387\pi\)
−0.280158 + 0.959954i \(0.590387\pi\)
\(998\) −9.72007 −0.307683
\(999\) −9.30663 −0.294449
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7865.2.a.u.1.5 yes 8
11.10 odd 2 7865.2.a.t.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7865.2.a.t.1.4 8 11.10 odd 2
7865.2.a.u.1.5 yes 8 1.1 even 1 trivial