Properties

Label 7865.2.a.u.1.4
Level $7865$
Weight $2$
Character 7865.1
Self dual yes
Analytic conductor $62.802$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7865,2,Mod(1,7865)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7865.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7865, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7865 = 5 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7865.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,1,-5,7,-8,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.8023411897\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 11x^{6} + 9x^{5} + 34x^{4} - 13x^{3} - 35x^{2} - 3x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.652625\) of defining polynomial
Character \(\chi\) \(=\) 7865.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.652625 q^{2} +1.46424 q^{3} -1.57408 q^{4} -1.00000 q^{5} -0.955597 q^{6} +0.0215714 q^{7} +2.33253 q^{8} -0.856014 q^{9} +0.652625 q^{10} -2.30483 q^{12} -1.00000 q^{13} -0.0140780 q^{14} -1.46424 q^{15} +1.62589 q^{16} -0.943312 q^{17} +0.558656 q^{18} +4.14101 q^{19} +1.57408 q^{20} +0.0315856 q^{21} +6.12899 q^{23} +3.41538 q^{24} +1.00000 q^{25} +0.652625 q^{26} -5.64611 q^{27} -0.0339551 q^{28} +0.897861 q^{29} +0.955597 q^{30} +10.2470 q^{31} -5.72617 q^{32} +0.615629 q^{34} -0.0215714 q^{35} +1.34743 q^{36} +0.0527321 q^{37} -2.70252 q^{38} -1.46424 q^{39} -2.33253 q^{40} -7.32799 q^{41} -0.0206136 q^{42} +3.30725 q^{43} +0.856014 q^{45} -3.99993 q^{46} -2.20356 q^{47} +2.38069 q^{48} -6.99953 q^{49} -0.652625 q^{50} -1.38123 q^{51} +1.57408 q^{52} +2.37453 q^{53} +3.68479 q^{54} +0.0503160 q^{56} +6.06341 q^{57} -0.585967 q^{58} -2.53023 q^{59} +2.30483 q^{60} -8.11828 q^{61} -6.68746 q^{62} -0.0184654 q^{63} +0.485257 q^{64} +1.00000 q^{65} -11.5771 q^{67} +1.48485 q^{68} +8.97429 q^{69} +0.0140780 q^{70} -14.4740 q^{71} -1.99668 q^{72} +4.38236 q^{73} -0.0344143 q^{74} +1.46424 q^{75} -6.51828 q^{76} +0.955597 q^{78} +1.43091 q^{79} -1.62589 q^{80} -5.69920 q^{81} +4.78243 q^{82} +6.35117 q^{83} -0.0497183 q^{84} +0.943312 q^{85} -2.15840 q^{86} +1.31468 q^{87} -4.01534 q^{89} -0.558656 q^{90} -0.0215714 q^{91} -9.64753 q^{92} +15.0041 q^{93} +1.43810 q^{94} -4.14101 q^{95} -8.38446 q^{96} +7.88347 q^{97} +4.56807 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} - 5 q^{3} + 7 q^{4} - 8 q^{5} - 7 q^{6} + 9 q^{7} + 3 q^{8} + 3 q^{9} - q^{10} - 15 q^{12} - 8 q^{13} - 7 q^{14} + 5 q^{15} + 9 q^{16} + 4 q^{17} + 8 q^{18} + 16 q^{19} - 7 q^{20} - 23 q^{21}+ \cdots + 41 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.652625 −0.461476 −0.230738 0.973016i \(-0.574114\pi\)
−0.230738 + 0.973016i \(0.574114\pi\)
\(3\) 1.46424 0.845377 0.422688 0.906275i \(-0.361086\pi\)
0.422688 + 0.906275i \(0.361086\pi\)
\(4\) −1.57408 −0.787040
\(5\) −1.00000 −0.447214
\(6\) −0.955597 −0.390121
\(7\) 0.0215714 0.00815322 0.00407661 0.999992i \(-0.498702\pi\)
0.00407661 + 0.999992i \(0.498702\pi\)
\(8\) 2.33253 0.824675
\(9\) −0.856014 −0.285338
\(10\) 0.652625 0.206378
\(11\) 0 0
\(12\) −2.30483 −0.665346
\(13\) −1.00000 −0.277350
\(14\) −0.0140780 −0.00376251
\(15\) −1.46424 −0.378064
\(16\) 1.62589 0.406473
\(17\) −0.943312 −0.228787 −0.114393 0.993436i \(-0.536492\pi\)
−0.114393 + 0.993436i \(0.536492\pi\)
\(18\) 0.558656 0.131676
\(19\) 4.14101 0.950012 0.475006 0.879983i \(-0.342446\pi\)
0.475006 + 0.879983i \(0.342446\pi\)
\(20\) 1.57408 0.351975
\(21\) 0.0315856 0.00689255
\(22\) 0 0
\(23\) 6.12899 1.27798 0.638992 0.769214i \(-0.279352\pi\)
0.638992 + 0.769214i \(0.279352\pi\)
\(24\) 3.41538 0.697162
\(25\) 1.00000 0.200000
\(26\) 0.652625 0.127990
\(27\) −5.64611 −1.08659
\(28\) −0.0339551 −0.00641692
\(29\) 0.897861 0.166729 0.0833643 0.996519i \(-0.473433\pi\)
0.0833643 + 0.996519i \(0.473433\pi\)
\(30\) 0.955597 0.174467
\(31\) 10.2470 1.84042 0.920210 0.391425i \(-0.128018\pi\)
0.920210 + 0.391425i \(0.128018\pi\)
\(32\) −5.72617 −1.01225
\(33\) 0 0
\(34\) 0.615629 0.105580
\(35\) −0.0215714 −0.00364623
\(36\) 1.34743 0.224572
\(37\) 0.0527321 0.00866910 0.00433455 0.999991i \(-0.498620\pi\)
0.00433455 + 0.999991i \(0.498620\pi\)
\(38\) −2.70252 −0.438407
\(39\) −1.46424 −0.234465
\(40\) −2.33253 −0.368806
\(41\) −7.32799 −1.14444 −0.572220 0.820100i \(-0.693918\pi\)
−0.572220 + 0.820100i \(0.693918\pi\)
\(42\) −0.0206136 −0.00318074
\(43\) 3.30725 0.504352 0.252176 0.967681i \(-0.418854\pi\)
0.252176 + 0.967681i \(0.418854\pi\)
\(44\) 0 0
\(45\) 0.856014 0.127607
\(46\) −3.99993 −0.589758
\(47\) −2.20356 −0.321423 −0.160711 0.987001i \(-0.551379\pi\)
−0.160711 + 0.987001i \(0.551379\pi\)
\(48\) 2.38069 0.343623
\(49\) −6.99953 −0.999934
\(50\) −0.652625 −0.0922951
\(51\) −1.38123 −0.193411
\(52\) 1.57408 0.218286
\(53\) 2.37453 0.326167 0.163084 0.986612i \(-0.447856\pi\)
0.163084 + 0.986612i \(0.447856\pi\)
\(54\) 3.68479 0.501437
\(55\) 0 0
\(56\) 0.0503160 0.00672376
\(57\) 6.06341 0.803118
\(58\) −0.585967 −0.0769412
\(59\) −2.53023 −0.329408 −0.164704 0.986343i \(-0.552667\pi\)
−0.164704 + 0.986343i \(0.552667\pi\)
\(60\) 2.30483 0.297552
\(61\) −8.11828 −1.03944 −0.519719 0.854337i \(-0.673964\pi\)
−0.519719 + 0.854337i \(0.673964\pi\)
\(62\) −6.68746 −0.849309
\(63\) −0.0184654 −0.00232642
\(64\) 0.485257 0.0606571
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) −11.5771 −1.41437 −0.707184 0.707029i \(-0.750035\pi\)
−0.707184 + 0.707029i \(0.750035\pi\)
\(68\) 1.48485 0.180064
\(69\) 8.97429 1.08038
\(70\) 0.0140780 0.00168265
\(71\) −14.4740 −1.71775 −0.858873 0.512188i \(-0.828835\pi\)
−0.858873 + 0.512188i \(0.828835\pi\)
\(72\) −1.99668 −0.235311
\(73\) 4.38236 0.512916 0.256458 0.966555i \(-0.417444\pi\)
0.256458 + 0.966555i \(0.417444\pi\)
\(74\) −0.0344143 −0.00400058
\(75\) 1.46424 0.169075
\(76\) −6.51828 −0.747698
\(77\) 0 0
\(78\) 0.955597 0.108200
\(79\) 1.43091 0.160990 0.0804951 0.996755i \(-0.474350\pi\)
0.0804951 + 0.996755i \(0.474350\pi\)
\(80\) −1.62589 −0.181780
\(81\) −5.69920 −0.633244
\(82\) 4.78243 0.528131
\(83\) 6.35117 0.697131 0.348566 0.937284i \(-0.386669\pi\)
0.348566 + 0.937284i \(0.386669\pi\)
\(84\) −0.0497183 −0.00542471
\(85\) 0.943312 0.102317
\(86\) −2.15840 −0.232746
\(87\) 1.31468 0.140949
\(88\) 0 0
\(89\) −4.01534 −0.425626 −0.212813 0.977093i \(-0.568262\pi\)
−0.212813 + 0.977093i \(0.568262\pi\)
\(90\) −0.558656 −0.0588875
\(91\) −0.0215714 −0.00226130
\(92\) −9.64753 −1.00582
\(93\) 15.0041 1.55585
\(94\) 1.43810 0.148329
\(95\) −4.14101 −0.424858
\(96\) −8.38446 −0.855735
\(97\) 7.88347 0.800445 0.400223 0.916418i \(-0.368933\pi\)
0.400223 + 0.916418i \(0.368933\pi\)
\(98\) 4.56807 0.461445
\(99\) 0 0
\(100\) −1.57408 −0.157408
\(101\) −0.213280 −0.0212221 −0.0106111 0.999944i \(-0.503378\pi\)
−0.0106111 + 0.999944i \(0.503378\pi\)
\(102\) 0.901426 0.0892545
\(103\) −15.2477 −1.50240 −0.751200 0.660075i \(-0.770524\pi\)
−0.751200 + 0.660075i \(0.770524\pi\)
\(104\) −2.33253 −0.228724
\(105\) −0.0315856 −0.00308244
\(106\) −1.54968 −0.150518
\(107\) 17.9039 1.73084 0.865419 0.501049i \(-0.167052\pi\)
0.865419 + 0.501049i \(0.167052\pi\)
\(108\) 8.88744 0.855194
\(109\) 11.4522 1.09692 0.548462 0.836175i \(-0.315214\pi\)
0.548462 + 0.836175i \(0.315214\pi\)
\(110\) 0 0
\(111\) 0.0772122 0.00732865
\(112\) 0.0350728 0.00331406
\(113\) −4.94962 −0.465621 −0.232811 0.972522i \(-0.574792\pi\)
−0.232811 + 0.972522i \(0.574792\pi\)
\(114\) −3.95713 −0.370619
\(115\) −6.12899 −0.571532
\(116\) −1.41331 −0.131222
\(117\) 0.856014 0.0791385
\(118\) 1.65129 0.152014
\(119\) −0.0203486 −0.00186535
\(120\) −3.41538 −0.311780
\(121\) 0 0
\(122\) 5.29819 0.479676
\(123\) −10.7299 −0.967483
\(124\) −16.1296 −1.44848
\(125\) −1.00000 −0.0894427
\(126\) 0.0120510 0.00107359
\(127\) 1.43069 0.126953 0.0634767 0.997983i \(-0.479781\pi\)
0.0634767 + 0.997983i \(0.479781\pi\)
\(128\) 11.1356 0.984261
\(129\) 4.84260 0.426367
\(130\) −0.652625 −0.0572390
\(131\) 12.4613 1.08875 0.544375 0.838842i \(-0.316767\pi\)
0.544375 + 0.838842i \(0.316767\pi\)
\(132\) 0 0
\(133\) 0.0893273 0.00774566
\(134\) 7.55551 0.652696
\(135\) 5.64611 0.485940
\(136\) −2.20031 −0.188675
\(137\) −0.0752519 −0.00642920 −0.00321460 0.999995i \(-0.501023\pi\)
−0.00321460 + 0.999995i \(0.501023\pi\)
\(138\) −5.85685 −0.498568
\(139\) 17.6716 1.49888 0.749441 0.662071i \(-0.230322\pi\)
0.749441 + 0.662071i \(0.230322\pi\)
\(140\) 0.0339551 0.00286973
\(141\) −3.22654 −0.271723
\(142\) 9.44609 0.792698
\(143\) 0 0
\(144\) −1.39179 −0.115982
\(145\) −0.897861 −0.0745633
\(146\) −2.86004 −0.236698
\(147\) −10.2490 −0.845321
\(148\) −0.0830045 −0.00682293
\(149\) 4.43435 0.363276 0.181638 0.983365i \(-0.441860\pi\)
0.181638 + 0.983365i \(0.441860\pi\)
\(150\) −0.955597 −0.0780241
\(151\) 10.8635 0.884060 0.442030 0.897000i \(-0.354258\pi\)
0.442030 + 0.897000i \(0.354258\pi\)
\(152\) 9.65904 0.783451
\(153\) 0.807488 0.0652816
\(154\) 0 0
\(155\) −10.2470 −0.823061
\(156\) 2.30483 0.184534
\(157\) 8.74067 0.697582 0.348791 0.937201i \(-0.386592\pi\)
0.348791 + 0.937201i \(0.386592\pi\)
\(158\) −0.933849 −0.0742930
\(159\) 3.47688 0.275734
\(160\) 5.72617 0.452693
\(161\) 0.132211 0.0104197
\(162\) 3.71944 0.292227
\(163\) 19.6690 1.54059 0.770296 0.637686i \(-0.220108\pi\)
0.770296 + 0.637686i \(0.220108\pi\)
\(164\) 11.5348 0.900720
\(165\) 0 0
\(166\) −4.14493 −0.321709
\(167\) −14.7325 −1.14003 −0.570017 0.821633i \(-0.693063\pi\)
−0.570017 + 0.821633i \(0.693063\pi\)
\(168\) 0.0736745 0.00568411
\(169\) 1.00000 0.0769231
\(170\) −0.615629 −0.0472166
\(171\) −3.54476 −0.271074
\(172\) −5.20589 −0.396945
\(173\) 12.1295 0.922185 0.461093 0.887352i \(-0.347458\pi\)
0.461093 + 0.887352i \(0.347458\pi\)
\(174\) −0.857993 −0.0650443
\(175\) 0.0215714 0.00163064
\(176\) 0 0
\(177\) −3.70485 −0.278474
\(178\) 2.62051 0.196416
\(179\) 1.23274 0.0921397 0.0460698 0.998938i \(-0.485330\pi\)
0.0460698 + 0.998938i \(0.485330\pi\)
\(180\) −1.34743 −0.100432
\(181\) 13.4693 1.00117 0.500584 0.865688i \(-0.333119\pi\)
0.500584 + 0.865688i \(0.333119\pi\)
\(182\) 0.0140780 0.00104353
\(183\) −11.8871 −0.878718
\(184\) 14.2961 1.05392
\(185\) −0.0527321 −0.00387694
\(186\) −9.79202 −0.717986
\(187\) 0 0
\(188\) 3.46859 0.252973
\(189\) −0.121795 −0.00885925
\(190\) 2.70252 0.196062
\(191\) −0.381949 −0.0276369 −0.0138184 0.999905i \(-0.504399\pi\)
−0.0138184 + 0.999905i \(0.504399\pi\)
\(192\) 0.710530 0.0512781
\(193\) 5.24636 0.377641 0.188821 0.982012i \(-0.439534\pi\)
0.188821 + 0.982012i \(0.439534\pi\)
\(194\) −5.14495 −0.369386
\(195\) 1.46424 0.104856
\(196\) 11.0178 0.786988
\(197\) 1.63178 0.116260 0.0581298 0.998309i \(-0.481486\pi\)
0.0581298 + 0.998309i \(0.481486\pi\)
\(198\) 0 0
\(199\) 15.3354 1.08710 0.543548 0.839378i \(-0.317080\pi\)
0.543548 + 0.839378i \(0.317080\pi\)
\(200\) 2.33253 0.164935
\(201\) −16.9516 −1.19567
\(202\) 0.139192 0.00979350
\(203\) 0.0193681 0.00135938
\(204\) 2.17417 0.152222
\(205\) 7.32799 0.511809
\(206\) 9.95102 0.693321
\(207\) −5.24650 −0.364657
\(208\) −1.62589 −0.112735
\(209\) 0 0
\(210\) 0.0206136 0.00142247
\(211\) 27.9079 1.92126 0.960630 0.277830i \(-0.0896150\pi\)
0.960630 + 0.277830i \(0.0896150\pi\)
\(212\) −3.73771 −0.256707
\(213\) −21.1933 −1.45214
\(214\) −11.6845 −0.798739
\(215\) −3.30725 −0.225553
\(216\) −13.1698 −0.896088
\(217\) 0.221043 0.0150054
\(218\) −7.47401 −0.506204
\(219\) 6.41681 0.433608
\(220\) 0 0
\(221\) 0.943312 0.0634540
\(222\) −0.0503906 −0.00338199
\(223\) −10.5762 −0.708234 −0.354117 0.935201i \(-0.615218\pi\)
−0.354117 + 0.935201i \(0.615218\pi\)
\(224\) −0.123521 −0.00825312
\(225\) −0.856014 −0.0570676
\(226\) 3.23025 0.214873
\(227\) 10.0865 0.669464 0.334732 0.942313i \(-0.391354\pi\)
0.334732 + 0.942313i \(0.391354\pi\)
\(228\) −9.54429 −0.632086
\(229\) 23.2527 1.53658 0.768291 0.640101i \(-0.221108\pi\)
0.768291 + 0.640101i \(0.221108\pi\)
\(230\) 3.99993 0.263748
\(231\) 0 0
\(232\) 2.09429 0.137497
\(233\) 8.00823 0.524636 0.262318 0.964981i \(-0.415513\pi\)
0.262318 + 0.964981i \(0.415513\pi\)
\(234\) −0.558656 −0.0365205
\(235\) 2.20356 0.143745
\(236\) 3.98278 0.259257
\(237\) 2.09519 0.136097
\(238\) 0.0132800 0.000860813 0
\(239\) −18.6226 −1.20460 −0.602298 0.798271i \(-0.705748\pi\)
−0.602298 + 0.798271i \(0.705748\pi\)
\(240\) −2.38069 −0.153673
\(241\) 19.6117 1.26330 0.631652 0.775252i \(-0.282377\pi\)
0.631652 + 0.775252i \(0.282377\pi\)
\(242\) 0 0
\(243\) 8.59337 0.551265
\(244\) 12.7788 0.818080
\(245\) 6.99953 0.447184
\(246\) 7.00260 0.446470
\(247\) −4.14101 −0.263486
\(248\) 23.9015 1.51775
\(249\) 9.29961 0.589339
\(250\) 0.652625 0.0412756
\(251\) 10.3402 0.652666 0.326333 0.945255i \(-0.394187\pi\)
0.326333 + 0.945255i \(0.394187\pi\)
\(252\) 0.0290661 0.00183099
\(253\) 0 0
\(254\) −0.933705 −0.0585859
\(255\) 1.38123 0.0864960
\(256\) −8.23791 −0.514869
\(257\) −17.8434 −1.11304 −0.556519 0.830835i \(-0.687863\pi\)
−0.556519 + 0.830835i \(0.687863\pi\)
\(258\) −3.16040 −0.196758
\(259\) 0.00113750 7.06811e−5 0
\(260\) −1.57408 −0.0976203
\(261\) −0.768582 −0.0475740
\(262\) −8.13257 −0.502432
\(263\) −7.62715 −0.470310 −0.235155 0.971958i \(-0.575560\pi\)
−0.235155 + 0.971958i \(0.575560\pi\)
\(264\) 0 0
\(265\) −2.37453 −0.145866
\(266\) −0.0582972 −0.00357443
\(267\) −5.87941 −0.359814
\(268\) 18.2233 1.11316
\(269\) 14.4445 0.880697 0.440349 0.897827i \(-0.354855\pi\)
0.440349 + 0.897827i \(0.354855\pi\)
\(270\) −3.68479 −0.224249
\(271\) −25.5527 −1.55221 −0.776107 0.630601i \(-0.782808\pi\)
−0.776107 + 0.630601i \(0.782808\pi\)
\(272\) −1.53372 −0.0929956
\(273\) −0.0315856 −0.00191165
\(274\) 0.0491113 0.00296692
\(275\) 0 0
\(276\) −14.1263 −0.850301
\(277\) −10.4471 −0.627704 −0.313852 0.949472i \(-0.601620\pi\)
−0.313852 + 0.949472i \(0.601620\pi\)
\(278\) −11.5329 −0.691697
\(279\) −8.77159 −0.525142
\(280\) −0.0503160 −0.00300696
\(281\) 23.3473 1.39278 0.696392 0.717662i \(-0.254788\pi\)
0.696392 + 0.717662i \(0.254788\pi\)
\(282\) 2.10572 0.125394
\(283\) −24.7762 −1.47279 −0.736397 0.676550i \(-0.763474\pi\)
−0.736397 + 0.676550i \(0.763474\pi\)
\(284\) 22.7832 1.35194
\(285\) −6.06341 −0.359165
\(286\) 0 0
\(287\) −0.158075 −0.00933087
\(288\) 4.90168 0.288834
\(289\) −16.1102 −0.947657
\(290\) 0.585967 0.0344091
\(291\) 11.5433 0.676678
\(292\) −6.89819 −0.403686
\(293\) 29.5575 1.72677 0.863383 0.504550i \(-0.168342\pi\)
0.863383 + 0.504550i \(0.168342\pi\)
\(294\) 6.68873 0.390095
\(295\) 2.53023 0.147316
\(296\) 0.122999 0.00714919
\(297\) 0 0
\(298\) −2.89397 −0.167643
\(299\) −6.12899 −0.354449
\(300\) −2.30483 −0.133069
\(301\) 0.0713421 0.00411209
\(302\) −7.08980 −0.407972
\(303\) −0.312292 −0.0179407
\(304\) 6.73282 0.386154
\(305\) 8.11828 0.464851
\(306\) −0.526987 −0.0301258
\(307\) −9.51282 −0.542925 −0.271463 0.962449i \(-0.587507\pi\)
−0.271463 + 0.962449i \(0.587507\pi\)
\(308\) 0 0
\(309\) −22.3262 −1.27009
\(310\) 6.68746 0.379822
\(311\) −14.1294 −0.801202 −0.400601 0.916253i \(-0.631199\pi\)
−0.400601 + 0.916253i \(0.631199\pi\)
\(312\) −3.41538 −0.193358
\(313\) −8.98201 −0.507693 −0.253847 0.967245i \(-0.581696\pi\)
−0.253847 + 0.967245i \(0.581696\pi\)
\(314\) −5.70438 −0.321917
\(315\) 0.0184654 0.00104041
\(316\) −2.25237 −0.126706
\(317\) −1.74260 −0.0978743 −0.0489372 0.998802i \(-0.515583\pi\)
−0.0489372 + 0.998802i \(0.515583\pi\)
\(318\) −2.26910 −0.127245
\(319\) 0 0
\(320\) −0.485257 −0.0271267
\(321\) 26.2156 1.46321
\(322\) −0.0862842 −0.00480843
\(323\) −3.90626 −0.217350
\(324\) 8.97100 0.498389
\(325\) −1.00000 −0.0554700
\(326\) −12.8365 −0.710946
\(327\) 16.7688 0.927314
\(328\) −17.0928 −0.943791
\(329\) −0.0475339 −0.00262063
\(330\) 0 0
\(331\) −7.19486 −0.395465 −0.197733 0.980256i \(-0.563358\pi\)
−0.197733 + 0.980256i \(0.563358\pi\)
\(332\) −9.99725 −0.548670
\(333\) −0.0451394 −0.00247362
\(334\) 9.61478 0.526097
\(335\) 11.5771 0.632525
\(336\) 0.0513548 0.00280163
\(337\) 9.84432 0.536254 0.268127 0.963384i \(-0.413595\pi\)
0.268127 + 0.963384i \(0.413595\pi\)
\(338\) −0.652625 −0.0354981
\(339\) −7.24742 −0.393626
\(340\) −1.48485 −0.0805273
\(341\) 0 0
\(342\) 2.31340 0.125094
\(343\) −0.301990 −0.0163059
\(344\) 7.71429 0.415926
\(345\) −8.97429 −0.483160
\(346\) −7.91598 −0.425566
\(347\) −5.06522 −0.271915 −0.135958 0.990715i \(-0.543411\pi\)
−0.135958 + 0.990715i \(0.543411\pi\)
\(348\) −2.06941 −0.110932
\(349\) −2.08696 −0.111712 −0.0558562 0.998439i \(-0.517789\pi\)
−0.0558562 + 0.998439i \(0.517789\pi\)
\(350\) −0.0140780 −0.000752503 0
\(351\) 5.64611 0.301367
\(352\) 0 0
\(353\) 23.4745 1.24942 0.624712 0.780855i \(-0.285216\pi\)
0.624712 + 0.780855i \(0.285216\pi\)
\(354\) 2.41788 0.128509
\(355\) 14.4740 0.768200
\(356\) 6.32048 0.334985
\(357\) −0.0297951 −0.00157692
\(358\) −0.804520 −0.0425202
\(359\) 23.7498 1.25347 0.626735 0.779233i \(-0.284391\pi\)
0.626735 + 0.779233i \(0.284391\pi\)
\(360\) 1.99668 0.105234
\(361\) −1.85207 −0.0974775
\(362\) −8.79042 −0.462014
\(363\) 0 0
\(364\) 0.0339551 0.00177973
\(365\) −4.38236 −0.229383
\(366\) 7.75780 0.405507
\(367\) −30.1105 −1.57176 −0.785878 0.618381i \(-0.787789\pi\)
−0.785878 + 0.618381i \(0.787789\pi\)
\(368\) 9.96508 0.519466
\(369\) 6.27286 0.326552
\(370\) 0.0344143 0.00178911
\(371\) 0.0512220 0.00265931
\(372\) −23.6176 −1.22452
\(373\) −4.32146 −0.223757 −0.111878 0.993722i \(-0.535687\pi\)
−0.111878 + 0.993722i \(0.535687\pi\)
\(374\) 0 0
\(375\) −1.46424 −0.0756128
\(376\) −5.13989 −0.265069
\(377\) −0.897861 −0.0462422
\(378\) 0.0794862 0.00408833
\(379\) −22.5548 −1.15856 −0.579282 0.815127i \(-0.696667\pi\)
−0.579282 + 0.815127i \(0.696667\pi\)
\(380\) 6.51828 0.334381
\(381\) 2.09487 0.107323
\(382\) 0.249270 0.0127537
\(383\) 8.11000 0.414402 0.207201 0.978298i \(-0.433565\pi\)
0.207201 + 0.978298i \(0.433565\pi\)
\(384\) 16.3052 0.832071
\(385\) 0 0
\(386\) −3.42390 −0.174272
\(387\) −2.83106 −0.143911
\(388\) −12.4092 −0.629983
\(389\) 26.9628 1.36707 0.683534 0.729919i \(-0.260442\pi\)
0.683534 + 0.729919i \(0.260442\pi\)
\(390\) −0.955597 −0.0483885
\(391\) −5.78155 −0.292386
\(392\) −16.3267 −0.824621
\(393\) 18.2463 0.920405
\(394\) −1.06494 −0.0536510
\(395\) −1.43091 −0.0719970
\(396\) 0 0
\(397\) 25.9303 1.30140 0.650702 0.759334i \(-0.274475\pi\)
0.650702 + 0.759334i \(0.274475\pi\)
\(398\) −10.0083 −0.501669
\(399\) 0.130796 0.00654800
\(400\) 1.62589 0.0812946
\(401\) 17.4286 0.870341 0.435170 0.900348i \(-0.356688\pi\)
0.435170 + 0.900348i \(0.356688\pi\)
\(402\) 11.0630 0.551774
\(403\) −10.2470 −0.510441
\(404\) 0.335720 0.0167027
\(405\) 5.69920 0.283195
\(406\) −0.0126401 −0.000627319 0
\(407\) 0 0
\(408\) −3.22177 −0.159501
\(409\) 20.1361 0.995666 0.497833 0.867273i \(-0.334129\pi\)
0.497833 + 0.867273i \(0.334129\pi\)
\(410\) −4.78243 −0.236187
\(411\) −0.110186 −0.00543510
\(412\) 24.0011 1.18245
\(413\) −0.0545806 −0.00268573
\(414\) 3.42400 0.168280
\(415\) −6.35117 −0.311767
\(416\) 5.72617 0.280748
\(417\) 25.8753 1.26712
\(418\) 0 0
\(419\) 2.90916 0.142122 0.0710609 0.997472i \(-0.477362\pi\)
0.0710609 + 0.997472i \(0.477362\pi\)
\(420\) 0.0497183 0.00242600
\(421\) −15.0667 −0.734304 −0.367152 0.930161i \(-0.619667\pi\)
−0.367152 + 0.930161i \(0.619667\pi\)
\(422\) −18.2134 −0.886615
\(423\) 1.88628 0.0917141
\(424\) 5.53868 0.268982
\(425\) −0.943312 −0.0457574
\(426\) 13.8313 0.670128
\(427\) −0.175123 −0.00847478
\(428\) −28.1822 −1.36224
\(429\) 0 0
\(430\) 2.15840 0.104087
\(431\) 13.3253 0.641859 0.320929 0.947103i \(-0.396005\pi\)
0.320929 + 0.947103i \(0.396005\pi\)
\(432\) −9.17997 −0.441671
\(433\) 33.0717 1.58932 0.794661 0.607053i \(-0.207648\pi\)
0.794661 + 0.607053i \(0.207648\pi\)
\(434\) −0.144258 −0.00692460
\(435\) −1.31468 −0.0630341
\(436\) −18.0267 −0.863323
\(437\) 25.3802 1.21410
\(438\) −4.18777 −0.200099
\(439\) 23.0279 1.09906 0.549532 0.835473i \(-0.314806\pi\)
0.549532 + 0.835473i \(0.314806\pi\)
\(440\) 0 0
\(441\) 5.99170 0.285319
\(442\) −0.615629 −0.0292825
\(443\) −6.19307 −0.294241 −0.147121 0.989119i \(-0.547001\pi\)
−0.147121 + 0.989119i \(0.547001\pi\)
\(444\) −0.121538 −0.00576795
\(445\) 4.01534 0.190346
\(446\) 6.90228 0.326833
\(447\) 6.49294 0.307106
\(448\) 0.0104677 0.000494551 0
\(449\) 19.4942 0.919988 0.459994 0.887922i \(-0.347851\pi\)
0.459994 + 0.887922i \(0.347851\pi\)
\(450\) 0.558656 0.0263353
\(451\) 0 0
\(452\) 7.79111 0.366463
\(453\) 15.9067 0.747364
\(454\) −6.58270 −0.308941
\(455\) 0.0215714 0.00101128
\(456\) 14.1431 0.662312
\(457\) 16.7540 0.783717 0.391859 0.920025i \(-0.371832\pi\)
0.391859 + 0.920025i \(0.371832\pi\)
\(458\) −15.1753 −0.709095
\(459\) 5.32605 0.248599
\(460\) 9.64753 0.449818
\(461\) −41.9930 −1.95581 −0.977905 0.209049i \(-0.932963\pi\)
−0.977905 + 0.209049i \(0.932963\pi\)
\(462\) 0 0
\(463\) −22.3752 −1.03987 −0.519933 0.854207i \(-0.674043\pi\)
−0.519933 + 0.854207i \(0.674043\pi\)
\(464\) 1.45982 0.0677706
\(465\) −15.0041 −0.695797
\(466\) −5.22637 −0.242107
\(467\) 34.1746 1.58141 0.790705 0.612198i \(-0.209714\pi\)
0.790705 + 0.612198i \(0.209714\pi\)
\(468\) −1.34743 −0.0622852
\(469\) −0.249734 −0.0115317
\(470\) −1.43810 −0.0663346
\(471\) 12.7984 0.589719
\(472\) −5.90184 −0.271654
\(473\) 0 0
\(474\) −1.36737 −0.0628056
\(475\) 4.14101 0.190002
\(476\) 0.0320303 0.00146811
\(477\) −2.03263 −0.0930679
\(478\) 12.1536 0.555892
\(479\) 4.40869 0.201438 0.100719 0.994915i \(-0.467886\pi\)
0.100719 + 0.994915i \(0.467886\pi\)
\(480\) 8.38446 0.382696
\(481\) −0.0527321 −0.00240438
\(482\) −12.7991 −0.582984
\(483\) 0.193588 0.00880856
\(484\) 0 0
\(485\) −7.88347 −0.357970
\(486\) −5.60825 −0.254395
\(487\) 19.2373 0.871727 0.435864 0.900013i \(-0.356443\pi\)
0.435864 + 0.900013i \(0.356443\pi\)
\(488\) −18.9362 −0.857200
\(489\) 28.8000 1.30238
\(490\) −4.56807 −0.206364
\(491\) 6.25527 0.282296 0.141148 0.989988i \(-0.454921\pi\)
0.141148 + 0.989988i \(0.454921\pi\)
\(492\) 16.8897 0.761448
\(493\) −0.846963 −0.0381453
\(494\) 2.70252 0.121592
\(495\) 0 0
\(496\) 16.6605 0.748081
\(497\) −0.312224 −0.0140052
\(498\) −6.06916 −0.271965
\(499\) −6.25732 −0.280116 −0.140058 0.990143i \(-0.544729\pi\)
−0.140058 + 0.990143i \(0.544729\pi\)
\(500\) 1.57408 0.0703950
\(501\) −21.5718 −0.963758
\(502\) −6.74826 −0.301190
\(503\) 30.9182 1.37858 0.689288 0.724487i \(-0.257923\pi\)
0.689288 + 0.724487i \(0.257923\pi\)
\(504\) −0.0430712 −0.00191854
\(505\) 0.213280 0.00949083
\(506\) 0 0
\(507\) 1.46424 0.0650290
\(508\) −2.25202 −0.0999174
\(509\) −27.5532 −1.22128 −0.610638 0.791910i \(-0.709087\pi\)
−0.610638 + 0.791910i \(0.709087\pi\)
\(510\) −0.901426 −0.0399158
\(511\) 0.0945336 0.00418192
\(512\) −16.8950 −0.746661
\(513\) −23.3806 −1.03228
\(514\) 11.6450 0.513640
\(515\) 15.2477 0.671893
\(516\) −7.62264 −0.335568
\(517\) 0 0
\(518\) −0.000742364 0 −3.26176e−5 0
\(519\) 17.7604 0.779594
\(520\) 2.33253 0.102288
\(521\) −16.3130 −0.714684 −0.357342 0.933974i \(-0.616317\pi\)
−0.357342 + 0.933974i \(0.616317\pi\)
\(522\) 0.501596 0.0219542
\(523\) 17.7312 0.775331 0.387666 0.921800i \(-0.373282\pi\)
0.387666 + 0.921800i \(0.373282\pi\)
\(524\) −19.6151 −0.856891
\(525\) 0.0315856 0.00137851
\(526\) 4.97767 0.217037
\(527\) −9.66614 −0.421064
\(528\) 0 0
\(529\) 14.5646 0.633242
\(530\) 1.54968 0.0673138
\(531\) 2.16591 0.0939925
\(532\) −0.140608 −0.00609615
\(533\) 7.32799 0.317410
\(534\) 3.83705 0.166045
\(535\) −17.9039 −0.774054
\(536\) −27.0040 −1.16639
\(537\) 1.80503 0.0778928
\(538\) −9.42684 −0.406420
\(539\) 0 0
\(540\) −8.88744 −0.382454
\(541\) 8.70765 0.374371 0.187186 0.982325i \(-0.440063\pi\)
0.187186 + 0.982325i \(0.440063\pi\)
\(542\) 16.6763 0.716309
\(543\) 19.7223 0.846364
\(544\) 5.40156 0.231590
\(545\) −11.4522 −0.490559
\(546\) 0.0206136 0.000882179 0
\(547\) 33.5698 1.43534 0.717671 0.696382i \(-0.245208\pi\)
0.717671 + 0.696382i \(0.245208\pi\)
\(548\) 0.118453 0.00506004
\(549\) 6.94936 0.296591
\(550\) 0 0
\(551\) 3.71805 0.158394
\(552\) 20.9328 0.890961
\(553\) 0.0308668 0.00131259
\(554\) 6.81802 0.289670
\(555\) −0.0772122 −0.00327747
\(556\) −27.8165 −1.17968
\(557\) 22.9483 0.972352 0.486176 0.873861i \(-0.338391\pi\)
0.486176 + 0.873861i \(0.338391\pi\)
\(558\) 5.72456 0.242340
\(559\) −3.30725 −0.139882
\(560\) −0.0350728 −0.00148209
\(561\) 0 0
\(562\) −15.2370 −0.642735
\(563\) −37.7401 −1.59056 −0.795278 0.606245i \(-0.792675\pi\)
−0.795278 + 0.606245i \(0.792675\pi\)
\(564\) 5.07883 0.213857
\(565\) 4.94962 0.208232
\(566\) 16.1696 0.679659
\(567\) −0.122940 −0.00516298
\(568\) −33.7611 −1.41658
\(569\) 16.9841 0.712009 0.356004 0.934484i \(-0.384139\pi\)
0.356004 + 0.934484i \(0.384139\pi\)
\(570\) 3.95713 0.165746
\(571\) 25.8666 1.08248 0.541242 0.840867i \(-0.317954\pi\)
0.541242 + 0.840867i \(0.317954\pi\)
\(572\) 0 0
\(573\) −0.559264 −0.0233636
\(574\) 0.103164 0.00430597
\(575\) 6.12899 0.255597
\(576\) −0.415386 −0.0173078
\(577\) −19.8673 −0.827087 −0.413543 0.910484i \(-0.635709\pi\)
−0.413543 + 0.910484i \(0.635709\pi\)
\(578\) 10.5139 0.437320
\(579\) 7.68191 0.319249
\(580\) 1.41331 0.0586843
\(581\) 0.137004 0.00568387
\(582\) −7.53342 −0.312270
\(583\) 0 0
\(584\) 10.2220 0.422989
\(585\) −0.856014 −0.0353918
\(586\) −19.2899 −0.796860
\(587\) −21.6378 −0.893088 −0.446544 0.894762i \(-0.647345\pi\)
−0.446544 + 0.894762i \(0.647345\pi\)
\(588\) 16.1327 0.665301
\(589\) 42.4330 1.74842
\(590\) −1.65129 −0.0679825
\(591\) 2.38931 0.0982832
\(592\) 0.0857366 0.00352375
\(593\) 13.2238 0.543038 0.271519 0.962433i \(-0.412474\pi\)
0.271519 + 0.962433i \(0.412474\pi\)
\(594\) 0 0
\(595\) 0.0203486 0.000834210 0
\(596\) −6.98003 −0.285913
\(597\) 22.4546 0.919006
\(598\) 3.99993 0.163569
\(599\) −12.3607 −0.505045 −0.252522 0.967591i \(-0.581260\pi\)
−0.252522 + 0.967591i \(0.581260\pi\)
\(600\) 3.41538 0.139432
\(601\) −26.1446 −1.06646 −0.533230 0.845970i \(-0.679022\pi\)
−0.533230 + 0.845970i \(0.679022\pi\)
\(602\) −0.0465597 −0.00189763
\(603\) 9.91016 0.403573
\(604\) −17.1000 −0.695791
\(605\) 0 0
\(606\) 0.203810 0.00827920
\(607\) 21.1955 0.860297 0.430149 0.902758i \(-0.358461\pi\)
0.430149 + 0.902758i \(0.358461\pi\)
\(608\) −23.7121 −0.961652
\(609\) 0.0283595 0.00114918
\(610\) −5.29819 −0.214517
\(611\) 2.20356 0.0891466
\(612\) −1.27105 −0.0513792
\(613\) −17.6986 −0.714841 −0.357421 0.933944i \(-0.616344\pi\)
−0.357421 + 0.933944i \(0.616344\pi\)
\(614\) 6.20830 0.250547
\(615\) 10.7299 0.432671
\(616\) 0 0
\(617\) 13.0707 0.526205 0.263103 0.964768i \(-0.415254\pi\)
0.263103 + 0.964768i \(0.415254\pi\)
\(618\) 14.5706 0.586117
\(619\) 11.4550 0.460415 0.230208 0.973142i \(-0.426059\pi\)
0.230208 + 0.973142i \(0.426059\pi\)
\(620\) 16.1296 0.647782
\(621\) −34.6050 −1.38865
\(622\) 9.22117 0.369735
\(623\) −0.0866166 −0.00347022
\(624\) −2.38069 −0.0953038
\(625\) 1.00000 0.0400000
\(626\) 5.86188 0.234288
\(627\) 0 0
\(628\) −13.7585 −0.549025
\(629\) −0.0497428 −0.00198337
\(630\) −0.0120510 −0.000480123 0
\(631\) 28.1227 1.11955 0.559774 0.828645i \(-0.310888\pi\)
0.559774 + 0.828645i \(0.310888\pi\)
\(632\) 3.33765 0.132765
\(633\) 40.8638 1.62419
\(634\) 1.13727 0.0451666
\(635\) −1.43069 −0.0567753
\(636\) −5.47288 −0.217014
\(637\) 6.99953 0.277332
\(638\) 0 0
\(639\) 12.3899 0.490138
\(640\) −11.1356 −0.440175
\(641\) −36.4352 −1.43911 −0.719553 0.694438i \(-0.755653\pi\)
−0.719553 + 0.694438i \(0.755653\pi\)
\(642\) −17.1089 −0.675236
\(643\) −6.60860 −0.260618 −0.130309 0.991473i \(-0.541597\pi\)
−0.130309 + 0.991473i \(0.541597\pi\)
\(644\) −0.208111 −0.00820071
\(645\) −4.84260 −0.190677
\(646\) 2.54932 0.100302
\(647\) −41.0715 −1.61469 −0.807343 0.590082i \(-0.799095\pi\)
−0.807343 + 0.590082i \(0.799095\pi\)
\(648\) −13.2936 −0.522221
\(649\) 0 0
\(650\) 0.652625 0.0255981
\(651\) 0.323659 0.0126852
\(652\) −30.9605 −1.21251
\(653\) −0.831563 −0.0325416 −0.0162708 0.999868i \(-0.505179\pi\)
−0.0162708 + 0.999868i \(0.505179\pi\)
\(654\) −10.9437 −0.427933
\(655\) −12.4613 −0.486904
\(656\) −11.9145 −0.465184
\(657\) −3.75136 −0.146354
\(658\) 0.0310218 0.00120936
\(659\) −1.48271 −0.0577582 −0.0288791 0.999583i \(-0.509194\pi\)
−0.0288791 + 0.999583i \(0.509194\pi\)
\(660\) 0 0
\(661\) 24.0990 0.937341 0.468671 0.883373i \(-0.344733\pi\)
0.468671 + 0.883373i \(0.344733\pi\)
\(662\) 4.69554 0.182497
\(663\) 1.38123 0.0536426
\(664\) 14.8143 0.574907
\(665\) −0.0893273 −0.00346396
\(666\) 0.0294591 0.00114152
\(667\) 5.50299 0.213076
\(668\) 23.1901 0.897252
\(669\) −15.4860 −0.598724
\(670\) −7.55551 −0.291895
\(671\) 0 0
\(672\) −0.180864 −0.00697700
\(673\) −14.7400 −0.568186 −0.284093 0.958797i \(-0.591692\pi\)
−0.284093 + 0.958797i \(0.591692\pi\)
\(674\) −6.42465 −0.247468
\(675\) −5.64611 −0.217319
\(676\) −1.57408 −0.0605416
\(677\) −32.2136 −1.23807 −0.619035 0.785363i \(-0.712476\pi\)
−0.619035 + 0.785363i \(0.712476\pi\)
\(678\) 4.72984 0.181649
\(679\) 0.170058 0.00652621
\(680\) 2.20031 0.0843779
\(681\) 14.7690 0.565950
\(682\) 0 0
\(683\) 30.3594 1.16167 0.580836 0.814021i \(-0.302726\pi\)
0.580836 + 0.814021i \(0.302726\pi\)
\(684\) 5.57974 0.213347
\(685\) 0.0752519 0.00287523
\(686\) 0.197086 0.00752478
\(687\) 34.0474 1.29899
\(688\) 5.37724 0.205005
\(689\) −2.37453 −0.0904625
\(690\) 5.85685 0.222966
\(691\) −8.57639 −0.326261 −0.163131 0.986604i \(-0.552159\pi\)
−0.163131 + 0.986604i \(0.552159\pi\)
\(692\) −19.0927 −0.725797
\(693\) 0 0
\(694\) 3.30569 0.125482
\(695\) −17.6716 −0.670320
\(696\) 3.06654 0.116237
\(697\) 6.91258 0.261833
\(698\) 1.36200 0.0515525
\(699\) 11.7259 0.443515
\(700\) −0.0339551 −0.00128338
\(701\) 6.03629 0.227988 0.113994 0.993481i \(-0.463636\pi\)
0.113994 + 0.993481i \(0.463636\pi\)
\(702\) −3.68479 −0.139074
\(703\) 0.218364 0.00823575
\(704\) 0 0
\(705\) 3.22654 0.121518
\(706\) −15.3201 −0.576579
\(707\) −0.00460075 −0.000173029 0
\(708\) 5.83173 0.219170
\(709\) −15.4778 −0.581280 −0.290640 0.956833i \(-0.593868\pi\)
−0.290640 + 0.956833i \(0.593868\pi\)
\(710\) −9.44609 −0.354505
\(711\) −1.22488 −0.0459366
\(712\) −9.36593 −0.351003
\(713\) 62.8039 2.35203
\(714\) 0.0194450 0.000727712 0
\(715\) 0 0
\(716\) −1.94044 −0.0725176
\(717\) −27.2679 −1.01834
\(718\) −15.4997 −0.578445
\(719\) −23.9737 −0.894067 −0.447033 0.894517i \(-0.647520\pi\)
−0.447033 + 0.894517i \(0.647520\pi\)
\(720\) 1.39179 0.0518688
\(721\) −0.328914 −0.0122494
\(722\) 1.20871 0.0449835
\(723\) 28.7162 1.06797
\(724\) −21.2018 −0.787959
\(725\) 0.897861 0.0333457
\(726\) 0 0
\(727\) 38.7434 1.43691 0.718456 0.695572i \(-0.244849\pi\)
0.718456 + 0.695572i \(0.244849\pi\)
\(728\) −0.0503160 −0.00186484
\(729\) 29.6803 1.09927
\(730\) 2.86004 0.105855
\(731\) −3.11977 −0.115389
\(732\) 18.7112 0.691586
\(733\) 35.6170 1.31554 0.657771 0.753218i \(-0.271499\pi\)
0.657771 + 0.753218i \(0.271499\pi\)
\(734\) 19.6509 0.725327
\(735\) 10.2490 0.378039
\(736\) −35.0956 −1.29364
\(737\) 0 0
\(738\) −4.09383 −0.150696
\(739\) −12.6216 −0.464293 −0.232146 0.972681i \(-0.574575\pi\)
−0.232146 + 0.972681i \(0.574575\pi\)
\(740\) 0.0830045 0.00305131
\(741\) −6.06341 −0.222745
\(742\) −0.0334288 −0.00122721
\(743\) −1.85904 −0.0682017 −0.0341008 0.999418i \(-0.510857\pi\)
−0.0341008 + 0.999418i \(0.510857\pi\)
\(744\) 34.9975 1.28307
\(745\) −4.43435 −0.162462
\(746\) 2.82029 0.103258
\(747\) −5.43669 −0.198918
\(748\) 0 0
\(749\) 0.386213 0.0141119
\(750\) 0.955597 0.0348935
\(751\) −10.7509 −0.392306 −0.196153 0.980573i \(-0.562845\pi\)
−0.196153 + 0.980573i \(0.562845\pi\)
\(752\) −3.58275 −0.130650
\(753\) 15.1405 0.551749
\(754\) 0.585967 0.0213396
\(755\) −10.8635 −0.395364
\(756\) 0.191714 0.00697259
\(757\) −19.3195 −0.702179 −0.351089 0.936342i \(-0.614189\pi\)
−0.351089 + 0.936342i \(0.614189\pi\)
\(758\) 14.7199 0.534649
\(759\) 0 0
\(760\) −9.65904 −0.350370
\(761\) −5.86123 −0.212469 −0.106235 0.994341i \(-0.533879\pi\)
−0.106235 + 0.994341i \(0.533879\pi\)
\(762\) −1.36716 −0.0495271
\(763\) 0.247041 0.00894347
\(764\) 0.601219 0.0217513
\(765\) −0.807488 −0.0291948
\(766\) −5.29279 −0.191236
\(767\) 2.53023 0.0913613
\(768\) −12.0622 −0.435259
\(769\) 38.9298 1.40384 0.701922 0.712254i \(-0.252326\pi\)
0.701922 + 0.712254i \(0.252326\pi\)
\(770\) 0 0
\(771\) −26.1269 −0.940937
\(772\) −8.25819 −0.297219
\(773\) 46.1552 1.66009 0.830044 0.557698i \(-0.188315\pi\)
0.830044 + 0.557698i \(0.188315\pi\)
\(774\) 1.84762 0.0664113
\(775\) 10.2470 0.368084
\(776\) 18.3885 0.660108
\(777\) 0.00166557 5.97522e−5 0
\(778\) −17.5966 −0.630868
\(779\) −30.3452 −1.08723
\(780\) −2.30483 −0.0825260
\(781\) 0 0
\(782\) 3.77319 0.134929
\(783\) −5.06943 −0.181166
\(784\) −11.3805 −0.406446
\(785\) −8.74067 −0.311968
\(786\) −11.9080 −0.424744
\(787\) −45.2311 −1.61231 −0.806157 0.591702i \(-0.798456\pi\)
−0.806157 + 0.591702i \(0.798456\pi\)
\(788\) −2.56855 −0.0915010
\(789\) −11.1679 −0.397589
\(790\) 0.933849 0.0332249
\(791\) −0.106770 −0.00379632
\(792\) 0 0
\(793\) 8.11828 0.288288
\(794\) −16.9227 −0.600566
\(795\) −3.47688 −0.123312
\(796\) −24.1391 −0.855589
\(797\) −11.2911 −0.399950 −0.199975 0.979801i \(-0.564086\pi\)
−0.199975 + 0.979801i \(0.564086\pi\)
\(798\) −0.0853609 −0.00302174
\(799\) 2.07865 0.0735373
\(800\) −5.72617 −0.202451
\(801\) 3.43719 0.121447
\(802\) −11.3743 −0.401641
\(803\) 0 0
\(804\) 26.6832 0.941044
\(805\) −0.132211 −0.00465982
\(806\) 6.68746 0.235556
\(807\) 21.1502 0.744521
\(808\) −0.497483 −0.0175014
\(809\) −31.9482 −1.12324 −0.561620 0.827396i \(-0.689822\pi\)
−0.561620 + 0.827396i \(0.689822\pi\)
\(810\) −3.71944 −0.130688
\(811\) 15.0932 0.529994 0.264997 0.964249i \(-0.414629\pi\)
0.264997 + 0.964249i \(0.414629\pi\)
\(812\) −0.0304870 −0.00106988
\(813\) −37.4151 −1.31221
\(814\) 0 0
\(815\) −19.6690 −0.688974
\(816\) −2.24573 −0.0786163
\(817\) 13.6954 0.479140
\(818\) −13.1413 −0.459475
\(819\) 0.0184654 0.000645234 0
\(820\) −11.5348 −0.402814
\(821\) −51.2425 −1.78838 −0.894188 0.447692i \(-0.852246\pi\)
−0.894188 + 0.447692i \(0.852246\pi\)
\(822\) 0.0719105 0.00250817
\(823\) 15.4202 0.537514 0.268757 0.963208i \(-0.413387\pi\)
0.268757 + 0.963208i \(0.413387\pi\)
\(824\) −35.5658 −1.23899
\(825\) 0 0
\(826\) 0.0356206 0.00123940
\(827\) −28.9735 −1.00751 −0.503754 0.863847i \(-0.668048\pi\)
−0.503754 + 0.863847i \(0.668048\pi\)
\(828\) 8.25842 0.287000
\(829\) −15.7105 −0.545649 −0.272824 0.962064i \(-0.587958\pi\)
−0.272824 + 0.962064i \(0.587958\pi\)
\(830\) 4.14493 0.143873
\(831\) −15.2970 −0.530646
\(832\) −0.485257 −0.0168232
\(833\) 6.60275 0.228772
\(834\) −16.8869 −0.584745
\(835\) 14.7325 0.509838
\(836\) 0 0
\(837\) −57.8559 −1.99979
\(838\) −1.89859 −0.0655858
\(839\) 39.6206 1.36785 0.683927 0.729550i \(-0.260271\pi\)
0.683927 + 0.729550i \(0.260271\pi\)
\(840\) −0.0736745 −0.00254201
\(841\) −28.1938 −0.972202
\(842\) 9.83288 0.338864
\(843\) 34.1860 1.17743
\(844\) −43.9293 −1.51211
\(845\) −1.00000 −0.0344010
\(846\) −1.23103 −0.0423238
\(847\) 0 0
\(848\) 3.86073 0.132578
\(849\) −36.2782 −1.24507
\(850\) 0.615629 0.0211159
\(851\) 0.323194 0.0110790
\(852\) 33.3600 1.14290
\(853\) 33.0056 1.13009 0.565045 0.825060i \(-0.308859\pi\)
0.565045 + 0.825060i \(0.308859\pi\)
\(854\) 0.114289 0.00391090
\(855\) 3.54476 0.121228
\(856\) 41.7615 1.42738
\(857\) 38.3809 1.31107 0.655534 0.755166i \(-0.272444\pi\)
0.655534 + 0.755166i \(0.272444\pi\)
\(858\) 0 0
\(859\) −6.59064 −0.224870 −0.112435 0.993659i \(-0.535865\pi\)
−0.112435 + 0.993659i \(0.535865\pi\)
\(860\) 5.20589 0.177519
\(861\) −0.231459 −0.00788810
\(862\) −8.69644 −0.296202
\(863\) 11.4710 0.390476 0.195238 0.980756i \(-0.437452\pi\)
0.195238 + 0.980756i \(0.437452\pi\)
\(864\) 32.3306 1.09991
\(865\) −12.1295 −0.412414
\(866\) −21.5834 −0.733433
\(867\) −23.5891 −0.801127
\(868\) −0.347939 −0.0118098
\(869\) 0 0
\(870\) 0.857993 0.0290887
\(871\) 11.5771 0.392275
\(872\) 26.7127 0.904606
\(873\) −6.74836 −0.228397
\(874\) −16.5638 −0.560277
\(875\) −0.0215714 −0.000729246 0
\(876\) −10.1006 −0.341267
\(877\) −55.3903 −1.87040 −0.935199 0.354122i \(-0.884780\pi\)
−0.935199 + 0.354122i \(0.884780\pi\)
\(878\) −15.0286 −0.507191
\(879\) 43.2791 1.45977
\(880\) 0 0
\(881\) −40.3557 −1.35962 −0.679810 0.733389i \(-0.737938\pi\)
−0.679810 + 0.733389i \(0.737938\pi\)
\(882\) −3.91033 −0.131668
\(883\) −28.2815 −0.951747 −0.475874 0.879514i \(-0.657868\pi\)
−0.475874 + 0.879514i \(0.657868\pi\)
\(884\) −1.48485 −0.0499409
\(885\) 3.70485 0.124537
\(886\) 4.04175 0.135785
\(887\) 54.7993 1.83998 0.919989 0.391943i \(-0.128197\pi\)
0.919989 + 0.391943i \(0.128197\pi\)
\(888\) 0.180100 0.00604376
\(889\) 0.0308620 0.00103508
\(890\) −2.62051 −0.0878398
\(891\) 0 0
\(892\) 16.6478 0.557408
\(893\) −9.12497 −0.305355
\(894\) −4.23745 −0.141722
\(895\) −1.23274 −0.0412061
\(896\) 0.240211 0.00802490
\(897\) −8.97429 −0.299643
\(898\) −12.7224 −0.424552
\(899\) 9.20040 0.306851
\(900\) 1.34743 0.0449145
\(901\) −2.23993 −0.0746228
\(902\) 0 0
\(903\) 0.104462 0.00347627
\(904\) −11.5452 −0.383987
\(905\) −13.4693 −0.447736
\(906\) −10.3811 −0.344890
\(907\) 52.7060 1.75007 0.875037 0.484057i \(-0.160837\pi\)
0.875037 + 0.484057i \(0.160837\pi\)
\(908\) −15.8770 −0.526895
\(909\) 0.182571 0.00605548
\(910\) −0.0140780 −0.000466682 0
\(911\) −53.1427 −1.76070 −0.880348 0.474329i \(-0.842691\pi\)
−0.880348 + 0.474329i \(0.842691\pi\)
\(912\) 9.85844 0.326446
\(913\) 0 0
\(914\) −10.9341 −0.361666
\(915\) 11.8871 0.392974
\(916\) −36.6016 −1.20935
\(917\) 0.268808 0.00887683
\(918\) −3.47591 −0.114722
\(919\) 5.37402 0.177272 0.0886362 0.996064i \(-0.471749\pi\)
0.0886362 + 0.996064i \(0.471749\pi\)
\(920\) −14.2961 −0.471328
\(921\) −13.9290 −0.458976
\(922\) 27.4057 0.902559
\(923\) 14.4740 0.476417
\(924\) 0 0
\(925\) 0.0527321 0.00173382
\(926\) 14.6026 0.479872
\(927\) 13.0522 0.428692
\(928\) −5.14130 −0.168771
\(929\) −50.9686 −1.67223 −0.836113 0.548558i \(-0.815177\pi\)
−0.836113 + 0.548558i \(0.815177\pi\)
\(930\) 9.79202 0.321093
\(931\) −28.9851 −0.949949
\(932\) −12.6056 −0.412910
\(933\) −20.6887 −0.677318
\(934\) −22.3032 −0.729782
\(935\) 0 0
\(936\) 1.99668 0.0652636
\(937\) 15.6972 0.512805 0.256403 0.966570i \(-0.417463\pi\)
0.256403 + 0.966570i \(0.417463\pi\)
\(938\) 0.162983 0.00532158
\(939\) −13.1518 −0.429192
\(940\) −3.46859 −0.113133
\(941\) −11.7289 −0.382351 −0.191175 0.981556i \(-0.561230\pi\)
−0.191175 + 0.981556i \(0.561230\pi\)
\(942\) −8.35256 −0.272141
\(943\) −44.9132 −1.46258
\(944\) −4.11388 −0.133895
\(945\) 0.121795 0.00396198
\(946\) 0 0
\(947\) −5.92874 −0.192658 −0.0963291 0.995350i \(-0.530710\pi\)
−0.0963291 + 0.995350i \(0.530710\pi\)
\(948\) −3.29800 −0.107114
\(949\) −4.38236 −0.142257
\(950\) −2.70252 −0.0876814
\(951\) −2.55158 −0.0827407
\(952\) −0.0474637 −0.00153831
\(953\) −26.9527 −0.873082 −0.436541 0.899684i \(-0.643797\pi\)
−0.436541 + 0.899684i \(0.643797\pi\)
\(954\) 1.32655 0.0429486
\(955\) 0.381949 0.0123596
\(956\) 29.3135 0.948066
\(957\) 0 0
\(958\) −2.87722 −0.0929589
\(959\) −0.00162329 −5.24187e−5 0
\(960\) −0.710530 −0.0229323
\(961\) 74.0015 2.38714
\(962\) 0.0344143 0.00110956
\(963\) −15.3260 −0.493874
\(964\) −30.8705 −0.994271
\(965\) −5.24636 −0.168886
\(966\) −0.126340 −0.00406494
\(967\) 36.3652 1.16942 0.584712 0.811241i \(-0.301207\pi\)
0.584712 + 0.811241i \(0.301207\pi\)
\(968\) 0 0
\(969\) −5.71969 −0.183743
\(970\) 5.14495 0.165194
\(971\) 36.5391 1.17260 0.586298 0.810095i \(-0.300585\pi\)
0.586298 + 0.810095i \(0.300585\pi\)
\(972\) −13.5267 −0.433868
\(973\) 0.381200 0.0122207
\(974\) −12.5548 −0.402281
\(975\) −1.46424 −0.0468931
\(976\) −13.1994 −0.422504
\(977\) 23.3433 0.746817 0.373409 0.927667i \(-0.378189\pi\)
0.373409 + 0.927667i \(0.378189\pi\)
\(978\) −18.7956 −0.601017
\(979\) 0 0
\(980\) −11.0178 −0.351952
\(981\) −9.80326 −0.312994
\(982\) −4.08234 −0.130273
\(983\) 20.9729 0.668932 0.334466 0.942408i \(-0.391444\pi\)
0.334466 + 0.942408i \(0.391444\pi\)
\(984\) −25.0279 −0.797859
\(985\) −1.63178 −0.0519929
\(986\) 0.552749 0.0176031
\(987\) −0.0696009 −0.00221542
\(988\) 6.51828 0.207374
\(989\) 20.2701 0.644553
\(990\) 0 0
\(991\) −13.6667 −0.434137 −0.217068 0.976156i \(-0.569649\pi\)
−0.217068 + 0.976156i \(0.569649\pi\)
\(992\) −58.6762 −1.86297
\(993\) −10.5350 −0.334317
\(994\) 0.203765 0.00646304
\(995\) −15.3354 −0.486164
\(996\) −14.6383 −0.463833
\(997\) −39.8342 −1.26156 −0.630780 0.775962i \(-0.717265\pi\)
−0.630780 + 0.775962i \(0.717265\pi\)
\(998\) 4.08368 0.129267
\(999\) −0.297731 −0.00941980
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7865.2.a.u.1.4 yes 8
11.10 odd 2 7865.2.a.t.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7865.2.a.t.1.5 8 11.10 odd 2
7865.2.a.u.1.4 yes 8 1.1 even 1 trivial