Properties

Label 7865.2.a.u.1.3
Level $7865$
Weight $2$
Character 7865.1
Self dual yes
Analytic conductor $62.802$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7865,2,Mod(1,7865)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7865, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7865.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7865 = 5 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7865.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,1,-5,7,-8,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.8023411897\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 11x^{6} + 9x^{5} + 34x^{4} - 13x^{3} - 35x^{2} - 3x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.769771\) of defining polynomial
Character \(\chi\) \(=\) 7865.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.769771 q^{2} -1.78335 q^{3} -1.40745 q^{4} -1.00000 q^{5} +1.37277 q^{6} +4.81089 q^{7} +2.62296 q^{8} +0.180351 q^{9} +0.769771 q^{10} +2.50999 q^{12} -1.00000 q^{13} -3.70329 q^{14} +1.78335 q^{15} +0.795827 q^{16} +5.95944 q^{17} -0.138829 q^{18} -6.43825 q^{19} +1.40745 q^{20} -8.57952 q^{21} -2.25396 q^{23} -4.67766 q^{24} +1.00000 q^{25} +0.769771 q^{26} +5.02843 q^{27} -6.77110 q^{28} +7.17182 q^{29} -1.37277 q^{30} +8.29957 q^{31} -5.85852 q^{32} -4.58740 q^{34} -4.81089 q^{35} -0.253835 q^{36} -8.81816 q^{37} +4.95598 q^{38} +1.78335 q^{39} -2.62296 q^{40} +6.20968 q^{41} +6.60427 q^{42} +0.808116 q^{43} -0.180351 q^{45} +1.73503 q^{46} +1.10118 q^{47} -1.41924 q^{48} +16.1447 q^{49} -0.769771 q^{50} -10.6278 q^{51} +1.40745 q^{52} +8.25370 q^{53} -3.87074 q^{54} +12.6188 q^{56} +11.4817 q^{57} -5.52066 q^{58} +2.21329 q^{59} -2.50999 q^{60} -4.19995 q^{61} -6.38877 q^{62} +0.867648 q^{63} +2.91807 q^{64} +1.00000 q^{65} +9.52010 q^{67} -8.38762 q^{68} +4.01960 q^{69} +3.70329 q^{70} +4.50728 q^{71} +0.473052 q^{72} -13.8253 q^{73} +6.78796 q^{74} -1.78335 q^{75} +9.06152 q^{76} -1.37277 q^{78} +6.73319 q^{79} -0.795827 q^{80} -9.50853 q^{81} -4.78003 q^{82} +5.58735 q^{83} +12.0753 q^{84} -5.95944 q^{85} -0.622065 q^{86} -12.7899 q^{87} +13.3953 q^{89} +0.138829 q^{90} -4.81089 q^{91} +3.17234 q^{92} -14.8011 q^{93} -0.847655 q^{94} +6.43825 q^{95} +10.4478 q^{96} +4.75201 q^{97} -12.4277 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} - 5 q^{3} + 7 q^{4} - 8 q^{5} - 7 q^{6} + 9 q^{7} + 3 q^{8} + 3 q^{9} - q^{10} - 15 q^{12} - 8 q^{13} - 7 q^{14} + 5 q^{15} + 9 q^{16} + 4 q^{17} + 8 q^{18} + 16 q^{19} - 7 q^{20} - 23 q^{21}+ \cdots + 41 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.769771 −0.544310 −0.272155 0.962253i \(-0.587736\pi\)
−0.272155 + 0.962253i \(0.587736\pi\)
\(3\) −1.78335 −1.02962 −0.514810 0.857304i \(-0.672137\pi\)
−0.514810 + 0.857304i \(0.672137\pi\)
\(4\) −1.40745 −0.703726
\(5\) −1.00000 −0.447214
\(6\) 1.37277 0.560433
\(7\) 4.81089 1.81835 0.909173 0.416418i \(-0.136715\pi\)
0.909173 + 0.416418i \(0.136715\pi\)
\(8\) 2.62296 0.927356
\(9\) 0.180351 0.0601169
\(10\) 0.769771 0.243423
\(11\) 0 0
\(12\) 2.50999 0.724570
\(13\) −1.00000 −0.277350
\(14\) −3.70329 −0.989745
\(15\) 1.78335 0.460460
\(16\) 0.795827 0.198957
\(17\) 5.95944 1.44538 0.722688 0.691174i \(-0.242906\pi\)
0.722688 + 0.691174i \(0.242906\pi\)
\(18\) −0.138829 −0.0327222
\(19\) −6.43825 −1.47703 −0.738517 0.674234i \(-0.764474\pi\)
−0.738517 + 0.674234i \(0.764474\pi\)
\(20\) 1.40745 0.314716
\(21\) −8.57952 −1.87221
\(22\) 0 0
\(23\) −2.25396 −0.469982 −0.234991 0.971997i \(-0.575506\pi\)
−0.234991 + 0.971997i \(0.575506\pi\)
\(24\) −4.67766 −0.954824
\(25\) 1.00000 0.200000
\(26\) 0.769771 0.150965
\(27\) 5.02843 0.967722
\(28\) −6.77110 −1.27962
\(29\) 7.17182 1.33177 0.665886 0.746053i \(-0.268054\pi\)
0.665886 + 0.746053i \(0.268054\pi\)
\(30\) −1.37277 −0.250633
\(31\) 8.29957 1.49065 0.745324 0.666703i \(-0.232295\pi\)
0.745324 + 0.666703i \(0.232295\pi\)
\(32\) −5.85852 −1.03565
\(33\) 0 0
\(34\) −4.58740 −0.786733
\(35\) −4.81089 −0.813189
\(36\) −0.253835 −0.0423058
\(37\) −8.81816 −1.44970 −0.724848 0.688909i \(-0.758090\pi\)
−0.724848 + 0.688909i \(0.758090\pi\)
\(38\) 4.95598 0.803965
\(39\) 1.78335 0.285565
\(40\) −2.62296 −0.414726
\(41\) 6.20968 0.969789 0.484894 0.874573i \(-0.338858\pi\)
0.484894 + 0.874573i \(0.338858\pi\)
\(42\) 6.60427 1.01906
\(43\) 0.808116 0.123237 0.0616183 0.998100i \(-0.480374\pi\)
0.0616183 + 0.998100i \(0.480374\pi\)
\(44\) 0 0
\(45\) −0.180351 −0.0268851
\(46\) 1.73503 0.255816
\(47\) 1.10118 0.160623 0.0803116 0.996770i \(-0.474408\pi\)
0.0803116 + 0.996770i \(0.474408\pi\)
\(48\) −1.41924 −0.204850
\(49\) 16.1447 2.30638
\(50\) −0.769771 −0.108862
\(51\) −10.6278 −1.48819
\(52\) 1.40745 0.195179
\(53\) 8.25370 1.13373 0.566867 0.823810i \(-0.308156\pi\)
0.566867 + 0.823810i \(0.308156\pi\)
\(54\) −3.87074 −0.526741
\(55\) 0 0
\(56\) 12.6188 1.68625
\(57\) 11.4817 1.52078
\(58\) −5.52066 −0.724898
\(59\) 2.21329 0.288146 0.144073 0.989567i \(-0.453980\pi\)
0.144073 + 0.989567i \(0.453980\pi\)
\(60\) −2.50999 −0.324038
\(61\) −4.19995 −0.537749 −0.268874 0.963175i \(-0.586652\pi\)
−0.268874 + 0.963175i \(0.586652\pi\)
\(62\) −6.38877 −0.811375
\(63\) 0.867648 0.109313
\(64\) 2.91807 0.364758
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) 9.52010 1.16307 0.581533 0.813523i \(-0.302453\pi\)
0.581533 + 0.813523i \(0.302453\pi\)
\(68\) −8.38762 −1.01715
\(69\) 4.01960 0.483903
\(70\) 3.70329 0.442627
\(71\) 4.50728 0.534916 0.267458 0.963570i \(-0.413816\pi\)
0.267458 + 0.963570i \(0.413816\pi\)
\(72\) 0.473052 0.0557497
\(73\) −13.8253 −1.61813 −0.809064 0.587720i \(-0.800026\pi\)
−0.809064 + 0.587720i \(0.800026\pi\)
\(74\) 6.78796 0.789085
\(75\) −1.78335 −0.205924
\(76\) 9.06152 1.03943
\(77\) 0 0
\(78\) −1.37277 −0.155436
\(79\) 6.73319 0.757543 0.378771 0.925490i \(-0.376347\pi\)
0.378771 + 0.925490i \(0.376347\pi\)
\(80\) −0.795827 −0.0889761
\(81\) −9.50853 −1.05650
\(82\) −4.78003 −0.527866
\(83\) 5.58735 0.613292 0.306646 0.951824i \(-0.400793\pi\)
0.306646 + 0.951824i \(0.400793\pi\)
\(84\) 12.0753 1.31752
\(85\) −5.95944 −0.646392
\(86\) −0.622065 −0.0670790
\(87\) −12.7899 −1.37122
\(88\) 0 0
\(89\) 13.3953 1.41990 0.709951 0.704251i \(-0.248717\pi\)
0.709951 + 0.704251i \(0.248717\pi\)
\(90\) 0.138829 0.0146338
\(91\) −4.81089 −0.504319
\(92\) 3.17234 0.330739
\(93\) −14.8011 −1.53480
\(94\) −0.847655 −0.0874289
\(95\) 6.43825 0.660550
\(96\) 10.4478 1.06633
\(97\) 4.75201 0.482494 0.241247 0.970464i \(-0.422444\pi\)
0.241247 + 0.970464i \(0.422444\pi\)
\(98\) −12.4277 −1.25539
\(99\) 0 0
\(100\) −1.40745 −0.140745
\(101\) −10.7491 −1.06958 −0.534788 0.844986i \(-0.679609\pi\)
−0.534788 + 0.844986i \(0.679609\pi\)
\(102\) 8.18096 0.810036
\(103\) −9.97862 −0.983223 −0.491611 0.870815i \(-0.663592\pi\)
−0.491611 + 0.870815i \(0.663592\pi\)
\(104\) −2.62296 −0.257202
\(105\) 8.57952 0.837276
\(106\) −6.35346 −0.617103
\(107\) −8.74273 −0.845191 −0.422596 0.906318i \(-0.638881\pi\)
−0.422596 + 0.906318i \(0.638881\pi\)
\(108\) −7.07728 −0.681011
\(109\) 10.4009 0.996229 0.498114 0.867111i \(-0.334026\pi\)
0.498114 + 0.867111i \(0.334026\pi\)
\(110\) 0 0
\(111\) 15.7259 1.49264
\(112\) 3.82864 0.361772
\(113\) 3.78844 0.356387 0.178193 0.983995i \(-0.442975\pi\)
0.178193 + 0.983995i \(0.442975\pi\)
\(114\) −8.83826 −0.827779
\(115\) 2.25396 0.210183
\(116\) −10.0940 −0.937203
\(117\) −0.180351 −0.0166734
\(118\) −1.70373 −0.156841
\(119\) 28.6702 2.62819
\(120\) 4.67766 0.427010
\(121\) 0 0
\(122\) 3.23300 0.292702
\(123\) −11.0741 −0.998514
\(124\) −11.6813 −1.04901
\(125\) −1.00000 −0.0894427
\(126\) −0.667890 −0.0595004
\(127\) 15.4486 1.37084 0.685422 0.728146i \(-0.259618\pi\)
0.685422 + 0.728146i \(0.259618\pi\)
\(128\) 9.47080 0.837108
\(129\) −1.44116 −0.126887
\(130\) −0.769771 −0.0675134
\(131\) −19.1810 −1.67585 −0.837926 0.545784i \(-0.816232\pi\)
−0.837926 + 0.545784i \(0.816232\pi\)
\(132\) 0 0
\(133\) −30.9737 −2.68576
\(134\) −7.32830 −0.633069
\(135\) −5.02843 −0.432779
\(136\) 15.6314 1.34038
\(137\) −15.0138 −1.28272 −0.641358 0.767242i \(-0.721629\pi\)
−0.641358 + 0.767242i \(0.721629\pi\)
\(138\) −3.09417 −0.263394
\(139\) −0.809467 −0.0686581 −0.0343291 0.999411i \(-0.510929\pi\)
−0.0343291 + 0.999411i \(0.510929\pi\)
\(140\) 6.77110 0.572263
\(141\) −1.96379 −0.165381
\(142\) −3.46958 −0.291160
\(143\) 0 0
\(144\) 0.143528 0.0119607
\(145\) −7.17182 −0.595587
\(146\) 10.6423 0.880764
\(147\) −28.7917 −2.37470
\(148\) 12.4111 1.02019
\(149\) −12.9714 −1.06266 −0.531328 0.847166i \(-0.678307\pi\)
−0.531328 + 0.847166i \(0.678307\pi\)
\(150\) 1.37277 0.112087
\(151\) −3.01030 −0.244975 −0.122487 0.992470i \(-0.539087\pi\)
−0.122487 + 0.992470i \(0.539087\pi\)
\(152\) −16.8873 −1.36974
\(153\) 1.07479 0.0868915
\(154\) 0 0
\(155\) −8.29957 −0.666638
\(156\) −2.50999 −0.200960
\(157\) −6.42928 −0.513113 −0.256556 0.966529i \(-0.582588\pi\)
−0.256556 + 0.966529i \(0.582588\pi\)
\(158\) −5.18301 −0.412338
\(159\) −14.7193 −1.16731
\(160\) 5.85852 0.463157
\(161\) −10.8435 −0.854591
\(162\) 7.31939 0.575065
\(163\) −13.0458 −1.02182 −0.510912 0.859633i \(-0.670692\pi\)
−0.510912 + 0.859633i \(0.670692\pi\)
\(164\) −8.73982 −0.682466
\(165\) 0 0
\(166\) −4.30098 −0.333821
\(167\) 18.0745 1.39865 0.699325 0.714804i \(-0.253484\pi\)
0.699325 + 0.714804i \(0.253484\pi\)
\(168\) −22.5037 −1.73620
\(169\) 1.00000 0.0769231
\(170\) 4.58740 0.351838
\(171\) −1.16114 −0.0887947
\(172\) −1.13739 −0.0867248
\(173\) −9.81302 −0.746070 −0.373035 0.927817i \(-0.621683\pi\)
−0.373035 + 0.927817i \(0.621683\pi\)
\(174\) 9.84529 0.746369
\(175\) 4.81089 0.363669
\(176\) 0 0
\(177\) −3.94708 −0.296680
\(178\) −10.3113 −0.772867
\(179\) −7.42273 −0.554801 −0.277401 0.960754i \(-0.589473\pi\)
−0.277401 + 0.960754i \(0.589473\pi\)
\(180\) 0.253835 0.0189197
\(181\) 0.644667 0.0479177 0.0239589 0.999713i \(-0.492373\pi\)
0.0239589 + 0.999713i \(0.492373\pi\)
\(182\) 3.70329 0.274506
\(183\) 7.49000 0.553677
\(184\) −5.91203 −0.435841
\(185\) 8.81816 0.648324
\(186\) 11.3934 0.835408
\(187\) 0 0
\(188\) −1.54985 −0.113035
\(189\) 24.1912 1.75965
\(190\) −4.95598 −0.359544
\(191\) −17.4590 −1.26329 −0.631643 0.775259i \(-0.717619\pi\)
−0.631643 + 0.775259i \(0.717619\pi\)
\(192\) −5.20395 −0.375562
\(193\) 4.85709 0.349621 0.174811 0.984602i \(-0.444069\pi\)
0.174811 + 0.984602i \(0.444069\pi\)
\(194\) −3.65796 −0.262626
\(195\) −1.78335 −0.127709
\(196\) −22.7229 −1.62306
\(197\) 20.1931 1.43870 0.719351 0.694647i \(-0.244440\pi\)
0.719351 + 0.694647i \(0.244440\pi\)
\(198\) 0 0
\(199\) 3.67299 0.260372 0.130186 0.991490i \(-0.458443\pi\)
0.130186 + 0.991490i \(0.458443\pi\)
\(200\) 2.62296 0.185471
\(201\) −16.9777 −1.19752
\(202\) 8.27436 0.582182
\(203\) 34.5028 2.42162
\(204\) 14.9581 1.04728
\(205\) −6.20968 −0.433703
\(206\) 7.68126 0.535178
\(207\) −0.406502 −0.0282539
\(208\) −0.795827 −0.0551807
\(209\) 0 0
\(210\) −6.60427 −0.455738
\(211\) 14.9622 1.03004 0.515021 0.857178i \(-0.327784\pi\)
0.515021 + 0.857178i \(0.327784\pi\)
\(212\) −11.6167 −0.797838
\(213\) −8.03808 −0.550760
\(214\) 6.72990 0.460046
\(215\) −0.808116 −0.0551131
\(216\) 13.1894 0.897423
\(217\) 39.9284 2.71051
\(218\) −8.00634 −0.542258
\(219\) 24.6554 1.66606
\(220\) 0 0
\(221\) −5.95944 −0.400875
\(222\) −12.1053 −0.812457
\(223\) −17.5869 −1.17770 −0.588852 0.808241i \(-0.700420\pi\)
−0.588852 + 0.808241i \(0.700420\pi\)
\(224\) −28.1847 −1.88317
\(225\) 0.180351 0.0120234
\(226\) −2.91623 −0.193985
\(227\) −9.77823 −0.649004 −0.324502 0.945885i \(-0.605197\pi\)
−0.324502 + 0.945885i \(0.605197\pi\)
\(228\) −16.1599 −1.07022
\(229\) −23.3186 −1.54094 −0.770469 0.637477i \(-0.779978\pi\)
−0.770469 + 0.637477i \(0.779978\pi\)
\(230\) −1.73503 −0.114405
\(231\) 0 0
\(232\) 18.8114 1.23503
\(233\) −10.2178 −0.669390 −0.334695 0.942326i \(-0.608633\pi\)
−0.334695 + 0.942326i \(0.608633\pi\)
\(234\) 0.138829 0.00907552
\(235\) −1.10118 −0.0718329
\(236\) −3.11510 −0.202776
\(237\) −12.0077 −0.779981
\(238\) −22.0695 −1.43055
\(239\) −15.7709 −1.02014 −0.510068 0.860134i \(-0.670380\pi\)
−0.510068 + 0.860134i \(0.670380\pi\)
\(240\) 1.41924 0.0916116
\(241\) 17.6971 1.13997 0.569987 0.821654i \(-0.306948\pi\)
0.569987 + 0.821654i \(0.306948\pi\)
\(242\) 0 0
\(243\) 1.87177 0.120074
\(244\) 5.91123 0.378428
\(245\) −16.1447 −1.03145
\(246\) 8.52448 0.543501
\(247\) 6.43825 0.409656
\(248\) 21.7694 1.38236
\(249\) −9.96423 −0.631457
\(250\) 0.769771 0.0486846
\(251\) 19.7062 1.24385 0.621923 0.783079i \(-0.286352\pi\)
0.621923 + 0.783079i \(0.286352\pi\)
\(252\) −1.22117 −0.0769266
\(253\) 0 0
\(254\) −11.8919 −0.746165
\(255\) 10.6278 0.665538
\(256\) −13.1265 −0.820405
\(257\) 10.5662 0.659103 0.329552 0.944138i \(-0.393102\pi\)
0.329552 + 0.944138i \(0.393102\pi\)
\(258\) 1.10936 0.0690658
\(259\) −42.4232 −2.63605
\(260\) −1.40745 −0.0872865
\(261\) 1.29344 0.0800620
\(262\) 14.7650 0.912184
\(263\) −1.89308 −0.116732 −0.0583662 0.998295i \(-0.518589\pi\)
−0.0583662 + 0.998295i \(0.518589\pi\)
\(264\) 0 0
\(265\) −8.25370 −0.507021
\(266\) 23.8427 1.46189
\(267\) −23.8886 −1.46196
\(268\) −13.3991 −0.818480
\(269\) 12.0263 0.733254 0.366627 0.930368i \(-0.380513\pi\)
0.366627 + 0.930368i \(0.380513\pi\)
\(270\) 3.87074 0.235566
\(271\) 23.5822 1.43252 0.716259 0.697835i \(-0.245853\pi\)
0.716259 + 0.697835i \(0.245853\pi\)
\(272\) 4.74268 0.287567
\(273\) 8.57952 0.519256
\(274\) 11.5572 0.698195
\(275\) 0 0
\(276\) −5.65740 −0.340535
\(277\) −0.275729 −0.0165669 −0.00828346 0.999966i \(-0.502637\pi\)
−0.00828346 + 0.999966i \(0.502637\pi\)
\(278\) 0.623105 0.0373713
\(279\) 1.49683 0.0896131
\(280\) −12.6188 −0.754116
\(281\) −19.7025 −1.17535 −0.587677 0.809096i \(-0.699957\pi\)
−0.587677 + 0.809096i \(0.699957\pi\)
\(282\) 1.51167 0.0900185
\(283\) −16.1023 −0.957180 −0.478590 0.878039i \(-0.658852\pi\)
−0.478590 + 0.878039i \(0.658852\pi\)
\(284\) −6.34379 −0.376434
\(285\) −11.4817 −0.680115
\(286\) 0 0
\(287\) 29.8741 1.76341
\(288\) −1.05659 −0.0622600
\(289\) 18.5149 1.08911
\(290\) 5.52066 0.324184
\(291\) −8.47451 −0.496785
\(292\) 19.4584 1.13872
\(293\) −7.53151 −0.439996 −0.219998 0.975500i \(-0.570605\pi\)
−0.219998 + 0.975500i \(0.570605\pi\)
\(294\) 22.1630 1.29257
\(295\) −2.21329 −0.128863
\(296\) −23.1297 −1.34438
\(297\) 0 0
\(298\) 9.98499 0.578415
\(299\) 2.25396 0.130350
\(300\) 2.50999 0.144914
\(301\) 3.88776 0.224087
\(302\) 2.31724 0.133342
\(303\) 19.1695 1.10126
\(304\) −5.12373 −0.293866
\(305\) 4.19995 0.240489
\(306\) −0.827341 −0.0472959
\(307\) 15.0655 0.859836 0.429918 0.902868i \(-0.358542\pi\)
0.429918 + 0.902868i \(0.358542\pi\)
\(308\) 0 0
\(309\) 17.7954 1.01235
\(310\) 6.38877 0.362858
\(311\) 1.91004 0.108308 0.0541541 0.998533i \(-0.482754\pi\)
0.0541541 + 0.998533i \(0.482754\pi\)
\(312\) 4.67766 0.264821
\(313\) 33.8248 1.91189 0.955946 0.293541i \(-0.0948338\pi\)
0.955946 + 0.293541i \(0.0948338\pi\)
\(314\) 4.94908 0.279293
\(315\) −0.867648 −0.0488864
\(316\) −9.47664 −0.533103
\(317\) −16.5773 −0.931075 −0.465537 0.885028i \(-0.654139\pi\)
−0.465537 + 0.885028i \(0.654139\pi\)
\(318\) 11.3305 0.635381
\(319\) 0 0
\(320\) −2.91807 −0.163125
\(321\) 15.5914 0.870226
\(322\) 8.34705 0.465163
\(323\) −38.3683 −2.13487
\(324\) 13.3828 0.743489
\(325\) −1.00000 −0.0554700
\(326\) 10.0423 0.556190
\(327\) −18.5485 −1.02574
\(328\) 16.2877 0.899339
\(329\) 5.29765 0.292069
\(330\) 0 0
\(331\) −3.63821 −0.199974 −0.0999869 0.994989i \(-0.531880\pi\)
−0.0999869 + 0.994989i \(0.531880\pi\)
\(332\) −7.86394 −0.431590
\(333\) −1.59036 −0.0871512
\(334\) −13.9133 −0.761299
\(335\) −9.52010 −0.520139
\(336\) −6.82782 −0.372488
\(337\) −27.7343 −1.51079 −0.755393 0.655272i \(-0.772554\pi\)
−0.755393 + 0.655272i \(0.772554\pi\)
\(338\) −0.769771 −0.0418700
\(339\) −6.75613 −0.366943
\(340\) 8.38762 0.454883
\(341\) 0 0
\(342\) 0.893813 0.0483319
\(343\) 43.9941 2.37546
\(344\) 2.11966 0.114284
\(345\) −4.01960 −0.216408
\(346\) 7.55378 0.406094
\(347\) 27.0546 1.45237 0.726183 0.687502i \(-0.241293\pi\)
0.726183 + 0.687502i \(0.241293\pi\)
\(348\) 18.0012 0.964963
\(349\) 32.8638 1.75916 0.879580 0.475750i \(-0.157823\pi\)
0.879580 + 0.475750i \(0.157823\pi\)
\(350\) −3.70329 −0.197949
\(351\) −5.02843 −0.268398
\(352\) 0 0
\(353\) −7.74548 −0.412250 −0.206125 0.978526i \(-0.566085\pi\)
−0.206125 + 0.978526i \(0.566085\pi\)
\(354\) 3.03835 0.161486
\(355\) −4.50728 −0.239222
\(356\) −18.8533 −0.999222
\(357\) −51.1291 −2.70604
\(358\) 5.71381 0.301984
\(359\) −28.2495 −1.49095 −0.745476 0.666532i \(-0.767778\pi\)
−0.745476 + 0.666532i \(0.767778\pi\)
\(360\) −0.473052 −0.0249320
\(361\) 22.4510 1.18163
\(362\) −0.496246 −0.0260821
\(363\) 0 0
\(364\) 6.77110 0.354902
\(365\) 13.8253 0.723649
\(366\) −5.76559 −0.301372
\(367\) 12.2235 0.638059 0.319030 0.947745i \(-0.396643\pi\)
0.319030 + 0.947745i \(0.396643\pi\)
\(368\) −1.79376 −0.0935062
\(369\) 1.11992 0.0583007
\(370\) −6.78796 −0.352889
\(371\) 39.7077 2.06152
\(372\) 20.8318 1.08008
\(373\) 10.0129 0.518448 0.259224 0.965817i \(-0.416533\pi\)
0.259224 + 0.965817i \(0.416533\pi\)
\(374\) 0 0
\(375\) 1.78335 0.0920920
\(376\) 2.88834 0.148955
\(377\) −7.17182 −0.369367
\(378\) −18.6217 −0.957798
\(379\) 0.466922 0.0239842 0.0119921 0.999928i \(-0.496183\pi\)
0.0119921 + 0.999928i \(0.496183\pi\)
\(380\) −9.06152 −0.464846
\(381\) −27.5504 −1.41145
\(382\) 13.4394 0.687620
\(383\) 30.7149 1.56946 0.784729 0.619838i \(-0.212802\pi\)
0.784729 + 0.619838i \(0.212802\pi\)
\(384\) −16.8898 −0.861903
\(385\) 0 0
\(386\) −3.73885 −0.190303
\(387\) 0.145744 0.00740860
\(388\) −6.68823 −0.339543
\(389\) 12.8144 0.649718 0.324859 0.945762i \(-0.394683\pi\)
0.324859 + 0.945762i \(0.394683\pi\)
\(390\) 1.37277 0.0695131
\(391\) −13.4323 −0.679301
\(392\) 42.3469 2.13884
\(393\) 34.2065 1.72549
\(394\) −15.5441 −0.783100
\(395\) −6.73319 −0.338783
\(396\) 0 0
\(397\) 5.19520 0.260740 0.130370 0.991465i \(-0.458384\pi\)
0.130370 + 0.991465i \(0.458384\pi\)
\(398\) −2.82737 −0.141723
\(399\) 55.2371 2.76531
\(400\) 0.795827 0.0397913
\(401\) 5.73954 0.286619 0.143309 0.989678i \(-0.454226\pi\)
0.143309 + 0.989678i \(0.454226\pi\)
\(402\) 13.0689 0.651820
\(403\) −8.29957 −0.413431
\(404\) 15.1289 0.752689
\(405\) 9.50853 0.472482
\(406\) −26.5593 −1.31812
\(407\) 0 0
\(408\) −27.8762 −1.38008
\(409\) −13.8462 −0.684649 −0.342324 0.939582i \(-0.611214\pi\)
−0.342324 + 0.939582i \(0.611214\pi\)
\(410\) 4.78003 0.236069
\(411\) 26.7749 1.32071
\(412\) 14.0444 0.691920
\(413\) 10.6479 0.523949
\(414\) 0.312914 0.0153789
\(415\) −5.58735 −0.274272
\(416\) 5.85852 0.287238
\(417\) 1.44357 0.0706918
\(418\) 0 0
\(419\) −17.7580 −0.867537 −0.433769 0.901024i \(-0.642816\pi\)
−0.433769 + 0.901024i \(0.642816\pi\)
\(420\) −12.0753 −0.589213
\(421\) −26.7851 −1.30542 −0.652712 0.757606i \(-0.726369\pi\)
−0.652712 + 0.757606i \(0.726369\pi\)
\(422\) −11.5175 −0.560662
\(423\) 0.198598 0.00965617
\(424\) 21.6491 1.05137
\(425\) 5.95944 0.289075
\(426\) 6.18748 0.299785
\(427\) −20.2055 −0.977814
\(428\) 12.3050 0.594783
\(429\) 0 0
\(430\) 0.622065 0.0299986
\(431\) −1.26832 −0.0610929 −0.0305464 0.999533i \(-0.509725\pi\)
−0.0305464 + 0.999533i \(0.509725\pi\)
\(432\) 4.00176 0.192535
\(433\) 36.1333 1.73645 0.868227 0.496167i \(-0.165259\pi\)
0.868227 + 0.496167i \(0.165259\pi\)
\(434\) −30.7357 −1.47536
\(435\) 12.7899 0.613228
\(436\) −14.6388 −0.701072
\(437\) 14.5115 0.694180
\(438\) −18.9790 −0.906852
\(439\) 14.9325 0.712688 0.356344 0.934355i \(-0.384023\pi\)
0.356344 + 0.934355i \(0.384023\pi\)
\(440\) 0 0
\(441\) 2.91171 0.138653
\(442\) 4.58740 0.218201
\(443\) 10.7791 0.512132 0.256066 0.966659i \(-0.417573\pi\)
0.256066 + 0.966659i \(0.417573\pi\)
\(444\) −22.1335 −1.05041
\(445\) −13.3953 −0.634999
\(446\) 13.5379 0.641036
\(447\) 23.1325 1.09413
\(448\) 14.0385 0.663257
\(449\) 32.6453 1.54063 0.770313 0.637666i \(-0.220100\pi\)
0.770313 + 0.637666i \(0.220100\pi\)
\(450\) −0.138829 −0.00654445
\(451\) 0 0
\(452\) −5.33205 −0.250799
\(453\) 5.36843 0.252231
\(454\) 7.52700 0.353260
\(455\) 4.81089 0.225538
\(456\) 30.1159 1.41031
\(457\) 36.5686 1.71061 0.855303 0.518128i \(-0.173371\pi\)
0.855303 + 0.518128i \(0.173371\pi\)
\(458\) 17.9500 0.838749
\(459\) 29.9666 1.39872
\(460\) −3.17234 −0.147911
\(461\) −22.3491 −1.04090 −0.520451 0.853892i \(-0.674236\pi\)
−0.520451 + 0.853892i \(0.674236\pi\)
\(462\) 0 0
\(463\) −13.2068 −0.613771 −0.306885 0.951746i \(-0.599287\pi\)
−0.306885 + 0.951746i \(0.599287\pi\)
\(464\) 5.70752 0.264965
\(465\) 14.8011 0.686384
\(466\) 7.86537 0.364356
\(467\) −2.37755 −0.110020 −0.0550100 0.998486i \(-0.517519\pi\)
−0.0550100 + 0.998486i \(0.517519\pi\)
\(468\) 0.253835 0.0117335
\(469\) 45.8002 2.11486
\(470\) 0.847655 0.0390994
\(471\) 11.4657 0.528311
\(472\) 5.80536 0.267214
\(473\) 0 0
\(474\) 9.24315 0.424552
\(475\) −6.43825 −0.295407
\(476\) −40.3520 −1.84953
\(477\) 1.48856 0.0681565
\(478\) 12.1400 0.555271
\(479\) −33.3935 −1.52579 −0.762894 0.646524i \(-0.776222\pi\)
−0.762894 + 0.646524i \(0.776222\pi\)
\(480\) −10.4478 −0.476875
\(481\) 8.81816 0.402073
\(482\) −13.6228 −0.620499
\(483\) 19.3379 0.879904
\(484\) 0 0
\(485\) −4.75201 −0.215778
\(486\) −1.44083 −0.0653575
\(487\) 25.9415 1.17552 0.587761 0.809034i \(-0.300009\pi\)
0.587761 + 0.809034i \(0.300009\pi\)
\(488\) −11.0163 −0.498684
\(489\) 23.2652 1.05209
\(490\) 12.4277 0.561427
\(491\) −21.9490 −0.990544 −0.495272 0.868738i \(-0.664932\pi\)
−0.495272 + 0.868738i \(0.664932\pi\)
\(492\) 15.5862 0.702680
\(493\) 42.7400 1.92491
\(494\) −4.95598 −0.222980
\(495\) 0 0
\(496\) 6.60502 0.296574
\(497\) 21.6841 0.972663
\(498\) 7.67018 0.343709
\(499\) 24.2606 1.08605 0.543027 0.839715i \(-0.317278\pi\)
0.543027 + 0.839715i \(0.317278\pi\)
\(500\) 1.40745 0.0629432
\(501\) −32.2333 −1.44008
\(502\) −15.1693 −0.677038
\(503\) −29.8823 −1.33238 −0.666192 0.745780i \(-0.732077\pi\)
−0.666192 + 0.745780i \(0.732077\pi\)
\(504\) 2.27580 0.101372
\(505\) 10.7491 0.478329
\(506\) 0 0
\(507\) −1.78335 −0.0792015
\(508\) −21.7432 −0.964699
\(509\) 24.2781 1.07611 0.538055 0.842910i \(-0.319159\pi\)
0.538055 + 0.842910i \(0.319159\pi\)
\(510\) −8.18096 −0.362259
\(511\) −66.5120 −2.94232
\(512\) −8.83721 −0.390553
\(513\) −32.3743 −1.42936
\(514\) −8.13358 −0.358757
\(515\) 9.97862 0.439711
\(516\) 2.02836 0.0892936
\(517\) 0 0
\(518\) 32.6562 1.43483
\(519\) 17.5001 0.768169
\(520\) 2.62296 0.115024
\(521\) 7.59574 0.332776 0.166388 0.986060i \(-0.446790\pi\)
0.166388 + 0.986060i \(0.446790\pi\)
\(522\) −0.995654 −0.0435786
\(523\) 41.9952 1.83632 0.918161 0.396208i \(-0.129674\pi\)
0.918161 + 0.396208i \(0.129674\pi\)
\(524\) 26.9964 1.17934
\(525\) −8.57952 −0.374441
\(526\) 1.45724 0.0635387
\(527\) 49.4608 2.15455
\(528\) 0 0
\(529\) −17.9197 −0.779117
\(530\) 6.35346 0.275977
\(531\) 0.399168 0.0173224
\(532\) 43.5940 1.89004
\(533\) −6.20968 −0.268971
\(534\) 18.3888 0.795759
\(535\) 8.74273 0.377981
\(536\) 24.9708 1.07858
\(537\) 13.2374 0.571234
\(538\) −9.25746 −0.399118
\(539\) 0 0
\(540\) 7.07728 0.304558
\(541\) 38.3298 1.64792 0.823962 0.566644i \(-0.191759\pi\)
0.823962 + 0.566644i \(0.191759\pi\)
\(542\) −18.1529 −0.779734
\(543\) −1.14967 −0.0493370
\(544\) −34.9135 −1.49690
\(545\) −10.4009 −0.445527
\(546\) −6.60427 −0.282637
\(547\) −31.5937 −1.35085 −0.675424 0.737430i \(-0.736039\pi\)
−0.675424 + 0.737430i \(0.736039\pi\)
\(548\) 21.1312 0.902680
\(549\) −0.757464 −0.0323278
\(550\) 0 0
\(551\) −46.1739 −1.96707
\(552\) 10.5432 0.448750
\(553\) 32.3926 1.37748
\(554\) 0.212248 0.00901755
\(555\) −15.7259 −0.667527
\(556\) 1.13929 0.0483165
\(557\) 31.6007 1.33896 0.669482 0.742828i \(-0.266516\pi\)
0.669482 + 0.742828i \(0.266516\pi\)
\(558\) −1.15222 −0.0487773
\(559\) −0.808116 −0.0341797
\(560\) −3.82864 −0.161789
\(561\) 0 0
\(562\) 15.1664 0.639757
\(563\) −12.6455 −0.532945 −0.266473 0.963842i \(-0.585858\pi\)
−0.266473 + 0.963842i \(0.585858\pi\)
\(564\) 2.76394 0.116383
\(565\) −3.78844 −0.159381
\(566\) 12.3951 0.521003
\(567\) −45.7445 −1.92109
\(568\) 11.8224 0.496058
\(569\) 16.5839 0.695233 0.347617 0.937637i \(-0.386991\pi\)
0.347617 + 0.937637i \(0.386991\pi\)
\(570\) 8.83826 0.370194
\(571\) 38.2935 1.60253 0.801266 0.598308i \(-0.204160\pi\)
0.801266 + 0.598308i \(0.204160\pi\)
\(572\) 0 0
\(573\) 31.1355 1.30071
\(574\) −22.9962 −0.959843
\(575\) −2.25396 −0.0939965
\(576\) 0.526275 0.0219281
\(577\) 21.5547 0.897333 0.448666 0.893699i \(-0.351899\pi\)
0.448666 + 0.893699i \(0.351899\pi\)
\(578\) −14.2522 −0.592815
\(579\) −8.66192 −0.359977
\(580\) 10.0940 0.419130
\(581\) 26.8802 1.11518
\(582\) 6.52344 0.270405
\(583\) 0 0
\(584\) −36.2632 −1.50058
\(585\) 0.180351 0.00745658
\(586\) 5.79754 0.239494
\(587\) −3.46105 −0.142853 −0.0714265 0.997446i \(-0.522755\pi\)
−0.0714265 + 0.997446i \(0.522755\pi\)
\(588\) 40.5229 1.67114
\(589\) −53.4347 −2.20174
\(590\) 1.70373 0.0701413
\(591\) −36.0115 −1.48132
\(592\) −7.01773 −0.288427
\(593\) −23.4891 −0.964580 −0.482290 0.876012i \(-0.660195\pi\)
−0.482290 + 0.876012i \(0.660195\pi\)
\(594\) 0 0
\(595\) −28.6702 −1.17536
\(596\) 18.2566 0.747819
\(597\) −6.55025 −0.268084
\(598\) −1.73503 −0.0709507
\(599\) 15.3588 0.627542 0.313771 0.949499i \(-0.398408\pi\)
0.313771 + 0.949499i \(0.398408\pi\)
\(600\) −4.67766 −0.190965
\(601\) 18.8174 0.767577 0.383789 0.923421i \(-0.374619\pi\)
0.383789 + 0.923421i \(0.374619\pi\)
\(602\) −2.99269 −0.121973
\(603\) 1.71696 0.0699199
\(604\) 4.23685 0.172395
\(605\) 0 0
\(606\) −14.7561 −0.599426
\(607\) 3.94448 0.160102 0.0800508 0.996791i \(-0.474492\pi\)
0.0800508 + 0.996791i \(0.474492\pi\)
\(608\) 37.7186 1.52969
\(609\) −61.5308 −2.49335
\(610\) −3.23300 −0.130900
\(611\) −1.10118 −0.0445489
\(612\) −1.51271 −0.0611478
\(613\) 38.3168 1.54760 0.773800 0.633430i \(-0.218353\pi\)
0.773800 + 0.633430i \(0.218353\pi\)
\(614\) −11.5970 −0.468018
\(615\) 11.0741 0.446549
\(616\) 0 0
\(617\) −36.4383 −1.46695 −0.733475 0.679716i \(-0.762103\pi\)
−0.733475 + 0.679716i \(0.762103\pi\)
\(618\) −13.6984 −0.551030
\(619\) −35.2585 −1.41716 −0.708580 0.705631i \(-0.750664\pi\)
−0.708580 + 0.705631i \(0.750664\pi\)
\(620\) 11.6813 0.469131
\(621\) −11.3339 −0.454812
\(622\) −1.47029 −0.0589533
\(623\) 64.4435 2.58187
\(624\) 1.41924 0.0568151
\(625\) 1.00000 0.0400000
\(626\) −26.0374 −1.04066
\(627\) 0 0
\(628\) 9.04891 0.361091
\(629\) −52.5513 −2.09536
\(630\) 0.667890 0.0266094
\(631\) 27.3796 1.08996 0.544982 0.838448i \(-0.316536\pi\)
0.544982 + 0.838448i \(0.316536\pi\)
\(632\) 17.6609 0.702512
\(633\) −26.6829 −1.06055
\(634\) 12.7607 0.506794
\(635\) −15.4486 −0.613060
\(636\) 20.7167 0.821469
\(637\) −16.1447 −0.639676
\(638\) 0 0
\(639\) 0.812891 0.0321575
\(640\) −9.47080 −0.374366
\(641\) −23.5701 −0.930964 −0.465482 0.885057i \(-0.654119\pi\)
−0.465482 + 0.885057i \(0.654119\pi\)
\(642\) −12.0018 −0.473673
\(643\) 21.0883 0.831642 0.415821 0.909447i \(-0.363494\pi\)
0.415821 + 0.909447i \(0.363494\pi\)
\(644\) 15.2618 0.601398
\(645\) 1.44116 0.0567455
\(646\) 29.5348 1.16203
\(647\) −10.0611 −0.395543 −0.197771 0.980248i \(-0.563370\pi\)
−0.197771 + 0.980248i \(0.563370\pi\)
\(648\) −24.9405 −0.979754
\(649\) 0 0
\(650\) 0.769771 0.0301929
\(651\) −71.2064 −2.79080
\(652\) 18.3613 0.719084
\(653\) 47.4073 1.85519 0.927595 0.373587i \(-0.121872\pi\)
0.927595 + 0.373587i \(0.121872\pi\)
\(654\) 14.2781 0.558319
\(655\) 19.1810 0.749464
\(656\) 4.94183 0.192946
\(657\) −2.49340 −0.0972768
\(658\) −4.07798 −0.158976
\(659\) −3.04156 −0.118482 −0.0592412 0.998244i \(-0.518868\pi\)
−0.0592412 + 0.998244i \(0.518868\pi\)
\(660\) 0 0
\(661\) 6.50350 0.252957 0.126478 0.991969i \(-0.459633\pi\)
0.126478 + 0.991969i \(0.459633\pi\)
\(662\) 2.80059 0.108848
\(663\) 10.6278 0.412749
\(664\) 14.6554 0.568740
\(665\) 30.9737 1.20111
\(666\) 1.22421 0.0474373
\(667\) −16.1650 −0.625910
\(668\) −25.4390 −0.984266
\(669\) 31.3636 1.21259
\(670\) 7.32830 0.283117
\(671\) 0 0
\(672\) 50.2633 1.93895
\(673\) −40.1794 −1.54880 −0.774400 0.632696i \(-0.781948\pi\)
−0.774400 + 0.632696i \(0.781948\pi\)
\(674\) 21.3491 0.822337
\(675\) 5.02843 0.193544
\(676\) −1.40745 −0.0541328
\(677\) 29.1600 1.12071 0.560355 0.828252i \(-0.310665\pi\)
0.560355 + 0.828252i \(0.310665\pi\)
\(678\) 5.20068 0.199731
\(679\) 22.8614 0.877340
\(680\) −15.6314 −0.599435
\(681\) 17.4381 0.668228
\(682\) 0 0
\(683\) 9.80230 0.375075 0.187537 0.982257i \(-0.439949\pi\)
0.187537 + 0.982257i \(0.439949\pi\)
\(684\) 1.63425 0.0624872
\(685\) 15.0138 0.573648
\(686\) −33.8654 −1.29299
\(687\) 41.5854 1.58658
\(688\) 0.643121 0.0245187
\(689\) −8.25370 −0.314441
\(690\) 3.09417 0.117793
\(691\) −2.41002 −0.0916815 −0.0458407 0.998949i \(-0.514597\pi\)
−0.0458407 + 0.998949i \(0.514597\pi\)
\(692\) 13.8114 0.525029
\(693\) 0 0
\(694\) −20.8258 −0.790538
\(695\) 0.809467 0.0307048
\(696\) −33.5473 −1.27161
\(697\) 37.0062 1.40171
\(698\) −25.2976 −0.957529
\(699\) 18.2219 0.689217
\(700\) −6.77110 −0.255924
\(701\) −24.3491 −0.919654 −0.459827 0.888009i \(-0.652089\pi\)
−0.459827 + 0.888009i \(0.652089\pi\)
\(702\) 3.87074 0.146092
\(703\) 56.7735 2.14125
\(704\) 0 0
\(705\) 1.96379 0.0739606
\(706\) 5.96225 0.224392
\(707\) −51.7128 −1.94486
\(708\) 5.55532 0.208782
\(709\) 49.7851 1.86972 0.934858 0.355021i \(-0.115526\pi\)
0.934858 + 0.355021i \(0.115526\pi\)
\(710\) 3.46958 0.130211
\(711\) 1.21433 0.0455411
\(712\) 35.1354 1.31675
\(713\) −18.7069 −0.700578
\(714\) 39.3577 1.47293
\(715\) 0 0
\(716\) 10.4471 0.390428
\(717\) 28.1251 1.05035
\(718\) 21.7457 0.811541
\(719\) −40.9306 −1.52645 −0.763227 0.646131i \(-0.776386\pi\)
−0.763227 + 0.646131i \(0.776386\pi\)
\(720\) −0.143528 −0.00534897
\(721\) −48.0061 −1.78784
\(722\) −17.2821 −0.643175
\(723\) −31.5603 −1.17374
\(724\) −0.907338 −0.0337210
\(725\) 7.17182 0.266355
\(726\) 0 0
\(727\) 0.403973 0.0149825 0.00749127 0.999972i \(-0.497615\pi\)
0.00749127 + 0.999972i \(0.497615\pi\)
\(728\) −12.6188 −0.467683
\(729\) 25.1876 0.932872
\(730\) −10.6423 −0.393890
\(731\) 4.81592 0.178123
\(732\) −10.5418 −0.389637
\(733\) −9.15898 −0.338295 −0.169147 0.985591i \(-0.554101\pi\)
−0.169147 + 0.985591i \(0.554101\pi\)
\(734\) −9.40927 −0.347302
\(735\) 28.7917 1.06200
\(736\) 13.2049 0.486737
\(737\) 0 0
\(738\) −0.862081 −0.0317337
\(739\) −9.62485 −0.354056 −0.177028 0.984206i \(-0.556648\pi\)
−0.177028 + 0.984206i \(0.556648\pi\)
\(740\) −12.4111 −0.456243
\(741\) −11.4817 −0.421790
\(742\) −30.5658 −1.12211
\(743\) 52.8702 1.93962 0.969810 0.243863i \(-0.0784147\pi\)
0.969810 + 0.243863i \(0.0784147\pi\)
\(744\) −38.8226 −1.42331
\(745\) 12.9714 0.475234
\(746\) −7.70763 −0.282196
\(747\) 1.00768 0.0368692
\(748\) 0 0
\(749\) −42.0603 −1.53685
\(750\) −1.37277 −0.0501266
\(751\) 21.8046 0.795660 0.397830 0.917459i \(-0.369763\pi\)
0.397830 + 0.917459i \(0.369763\pi\)
\(752\) 0.876347 0.0319571
\(753\) −35.1431 −1.28069
\(754\) 5.52066 0.201050
\(755\) 3.01030 0.109556
\(756\) −34.0480 −1.23831
\(757\) 44.3404 1.61158 0.805789 0.592203i \(-0.201741\pi\)
0.805789 + 0.592203i \(0.201741\pi\)
\(758\) −0.359423 −0.0130548
\(759\) 0 0
\(760\) 16.8873 0.612565
\(761\) −13.9311 −0.505001 −0.252500 0.967597i \(-0.581253\pi\)
−0.252500 + 0.967597i \(0.581253\pi\)
\(762\) 21.2075 0.768266
\(763\) 50.0378 1.81149
\(764\) 24.5727 0.889008
\(765\) −1.07479 −0.0388591
\(766\) −23.6435 −0.854273
\(767\) −2.21329 −0.0799172
\(768\) 23.4092 0.844705
\(769\) 6.09027 0.219621 0.109810 0.993953i \(-0.464976\pi\)
0.109810 + 0.993953i \(0.464976\pi\)
\(770\) 0 0
\(771\) −18.8433 −0.678626
\(772\) −6.83613 −0.246038
\(773\) −9.22521 −0.331808 −0.165904 0.986142i \(-0.553054\pi\)
−0.165904 + 0.986142i \(0.553054\pi\)
\(774\) −0.112190 −0.00403258
\(775\) 8.29957 0.298130
\(776\) 12.4643 0.447443
\(777\) 75.6556 2.71413
\(778\) −9.86418 −0.353648
\(779\) −39.9794 −1.43241
\(780\) 2.50999 0.0898719
\(781\) 0 0
\(782\) 10.3398 0.369751
\(783\) 36.0630 1.28879
\(784\) 12.8484 0.458871
\(785\) 6.42928 0.229471
\(786\) −26.3312 −0.939203
\(787\) 21.7516 0.775361 0.387681 0.921794i \(-0.373276\pi\)
0.387681 + 0.921794i \(0.373276\pi\)
\(788\) −28.4209 −1.01245
\(789\) 3.37604 0.120190
\(790\) 5.18301 0.184403
\(791\) 18.2258 0.648034
\(792\) 0 0
\(793\) 4.19995 0.149145
\(794\) −3.99911 −0.141923
\(795\) 14.7193 0.522039
\(796\) −5.16956 −0.183230
\(797\) −4.56935 −0.161855 −0.0809274 0.996720i \(-0.525788\pi\)
−0.0809274 + 0.996720i \(0.525788\pi\)
\(798\) −42.5199 −1.50519
\(799\) 6.56240 0.232161
\(800\) −5.85852 −0.207130
\(801\) 2.41585 0.0853600
\(802\) −4.41813 −0.156010
\(803\) 0 0
\(804\) 23.8953 0.842723
\(805\) 10.8435 0.382185
\(806\) 6.38877 0.225035
\(807\) −21.4471 −0.754972
\(808\) −28.1945 −0.991878
\(809\) 20.7922 0.731013 0.365507 0.930809i \(-0.380896\pi\)
0.365507 + 0.930809i \(0.380896\pi\)
\(810\) −7.31939 −0.257177
\(811\) −25.6999 −0.902444 −0.451222 0.892412i \(-0.649012\pi\)
−0.451222 + 0.892412i \(0.649012\pi\)
\(812\) −48.5611 −1.70416
\(813\) −42.0554 −1.47495
\(814\) 0 0
\(815\) 13.0458 0.456974
\(816\) −8.45788 −0.296085
\(817\) −5.20285 −0.182025
\(818\) 10.6584 0.372661
\(819\) −0.867648 −0.0303181
\(820\) 8.73982 0.305208
\(821\) −21.0166 −0.733483 −0.366742 0.930323i \(-0.619527\pi\)
−0.366742 + 0.930323i \(0.619527\pi\)
\(822\) −20.6106 −0.718876
\(823\) −27.2129 −0.948581 −0.474291 0.880368i \(-0.657295\pi\)
−0.474291 + 0.880368i \(0.657295\pi\)
\(824\) −26.1735 −0.911798
\(825\) 0 0
\(826\) −8.19644 −0.285191
\(827\) 48.8435 1.69845 0.849227 0.528027i \(-0.177068\pi\)
0.849227 + 0.528027i \(0.177068\pi\)
\(828\) 0.572133 0.0198830
\(829\) 8.83979 0.307019 0.153509 0.988147i \(-0.450942\pi\)
0.153509 + 0.988147i \(0.450942\pi\)
\(830\) 4.30098 0.149289
\(831\) 0.491722 0.0170576
\(832\) −2.91807 −0.101166
\(833\) 96.2133 3.33359
\(834\) −1.11122 −0.0384783
\(835\) −18.0745 −0.625495
\(836\) 0 0
\(837\) 41.7338 1.44253
\(838\) 13.6696 0.472209
\(839\) −3.79104 −0.130881 −0.0654407 0.997856i \(-0.520845\pi\)
−0.0654407 + 0.997856i \(0.520845\pi\)
\(840\) 22.5037 0.776453
\(841\) 22.4349 0.773619
\(842\) 20.6184 0.710556
\(843\) 35.1365 1.21017
\(844\) −21.0586 −0.724867
\(845\) −1.00000 −0.0344010
\(846\) −0.152875 −0.00525595
\(847\) 0 0
\(848\) 6.56852 0.225564
\(849\) 28.7160 0.985531
\(850\) −4.58740 −0.157347
\(851\) 19.8757 0.681332
\(852\) 11.3132 0.387584
\(853\) −22.7928 −0.780412 −0.390206 0.920728i \(-0.627596\pi\)
−0.390206 + 0.920728i \(0.627596\pi\)
\(854\) 15.5536 0.532234
\(855\) 1.16114 0.0397102
\(856\) −22.9318 −0.783793
\(857\) −1.99257 −0.0680649 −0.0340324 0.999421i \(-0.510835\pi\)
−0.0340324 + 0.999421i \(0.510835\pi\)
\(858\) 0 0
\(859\) −36.1048 −1.23188 −0.615941 0.787793i \(-0.711224\pi\)
−0.615941 + 0.787793i \(0.711224\pi\)
\(860\) 1.13739 0.0387845
\(861\) −53.2761 −1.81564
\(862\) 0.976317 0.0332535
\(863\) 40.2320 1.36951 0.684757 0.728771i \(-0.259908\pi\)
0.684757 + 0.728771i \(0.259908\pi\)
\(864\) −29.4592 −1.00222
\(865\) 9.81302 0.333653
\(866\) −27.8144 −0.945170
\(867\) −33.0186 −1.12137
\(868\) −56.1973 −1.90746
\(869\) 0 0
\(870\) −9.84529 −0.333786
\(871\) −9.52010 −0.322576
\(872\) 27.2812 0.923859
\(873\) 0.857028 0.0290060
\(874\) −11.1706 −0.377850
\(875\) −4.81089 −0.162638
\(876\) −34.7013 −1.17245
\(877\) −24.2151 −0.817686 −0.408843 0.912605i \(-0.634068\pi\)
−0.408843 + 0.912605i \(0.634068\pi\)
\(878\) −11.4946 −0.387923
\(879\) 13.4314 0.453028
\(880\) 0 0
\(881\) 4.32854 0.145832 0.0729162 0.997338i \(-0.476769\pi\)
0.0729162 + 0.997338i \(0.476769\pi\)
\(882\) −2.24135 −0.0754701
\(883\) 5.54148 0.186486 0.0932428 0.995643i \(-0.470277\pi\)
0.0932428 + 0.995643i \(0.470277\pi\)
\(884\) 8.38762 0.282106
\(885\) 3.94708 0.132680
\(886\) −8.29747 −0.278759
\(887\) 15.4014 0.517129 0.258564 0.965994i \(-0.416751\pi\)
0.258564 + 0.965994i \(0.416751\pi\)
\(888\) 41.2484 1.38420
\(889\) 74.3217 2.49267
\(890\) 10.3113 0.345637
\(891\) 0 0
\(892\) 24.7527 0.828781
\(893\) −7.08965 −0.237246
\(894\) −17.8068 −0.595547
\(895\) 7.42273 0.248115
\(896\) 45.5630 1.52215
\(897\) −4.01960 −0.134211
\(898\) −25.1294 −0.838579
\(899\) 59.5230 1.98520
\(900\) −0.253835 −0.00846116
\(901\) 49.1874 1.63867
\(902\) 0 0
\(903\) −6.93325 −0.230724
\(904\) 9.93693 0.330497
\(905\) −0.644667 −0.0214295
\(906\) −4.13246 −0.137292
\(907\) −54.7316 −1.81733 −0.908666 0.417524i \(-0.862898\pi\)
−0.908666 + 0.417524i \(0.862898\pi\)
\(908\) 13.7624 0.456721
\(909\) −1.93861 −0.0642996
\(910\) −3.70329 −0.122763
\(911\) −1.26545 −0.0419263 −0.0209632 0.999780i \(-0.506673\pi\)
−0.0209632 + 0.999780i \(0.506673\pi\)
\(912\) 9.13742 0.302570
\(913\) 0 0
\(914\) −28.1494 −0.931101
\(915\) −7.49000 −0.247612
\(916\) 32.8199 1.08440
\(917\) −92.2778 −3.04728
\(918\) −23.0674 −0.761339
\(919\) 30.2491 0.997824 0.498912 0.866653i \(-0.333733\pi\)
0.498912 + 0.866653i \(0.333733\pi\)
\(920\) 5.91203 0.194914
\(921\) −26.8672 −0.885304
\(922\) 17.2037 0.566573
\(923\) −4.50728 −0.148359
\(924\) 0 0
\(925\) −8.81816 −0.289939
\(926\) 10.1662 0.334082
\(927\) −1.79965 −0.0591083
\(928\) −42.0162 −1.37925
\(929\) −54.3209 −1.78221 −0.891105 0.453798i \(-0.850069\pi\)
−0.891105 + 0.453798i \(0.850069\pi\)
\(930\) −11.3934 −0.373606
\(931\) −103.943 −3.40661
\(932\) 14.3811 0.471067
\(933\) −3.40627 −0.111516
\(934\) 1.83017 0.0598850
\(935\) 0 0
\(936\) −0.473052 −0.0154622
\(937\) −20.4888 −0.669340 −0.334670 0.942335i \(-0.608625\pi\)
−0.334670 + 0.942335i \(0.608625\pi\)
\(938\) −35.2557 −1.15114
\(939\) −60.3217 −1.96852
\(940\) 1.54985 0.0505507
\(941\) −12.9168 −0.421076 −0.210538 0.977586i \(-0.567522\pi\)
−0.210538 + 0.977586i \(0.567522\pi\)
\(942\) −8.82595 −0.287565
\(943\) −13.9963 −0.455784
\(944\) 1.76139 0.0573285
\(945\) −24.1912 −0.786941
\(946\) 0 0
\(947\) −13.1625 −0.427723 −0.213862 0.976864i \(-0.568604\pi\)
−0.213862 + 0.976864i \(0.568604\pi\)
\(948\) 16.9002 0.548893
\(949\) 13.8253 0.448788
\(950\) 4.95598 0.160793
\(951\) 29.5632 0.958653
\(952\) 75.2008 2.43727
\(953\) −53.8137 −1.74320 −0.871598 0.490222i \(-0.836916\pi\)
−0.871598 + 0.490222i \(0.836916\pi\)
\(954\) −1.14585 −0.0370983
\(955\) 17.4590 0.564959
\(956\) 22.1968 0.717897
\(957\) 0 0
\(958\) 25.7054 0.830502
\(959\) −72.2298 −2.33242
\(960\) 5.20395 0.167957
\(961\) 37.8829 1.22203
\(962\) −6.78796 −0.218853
\(963\) −1.57676 −0.0508103
\(964\) −24.9079 −0.802229
\(965\) −4.85709 −0.156355
\(966\) −14.8857 −0.478941
\(967\) −18.8913 −0.607503 −0.303751 0.952751i \(-0.598239\pi\)
−0.303751 + 0.952751i \(0.598239\pi\)
\(968\) 0 0
\(969\) 68.4243 2.19810
\(970\) 3.65796 0.117450
\(971\) 27.1116 0.870054 0.435027 0.900417i \(-0.356739\pi\)
0.435027 + 0.900417i \(0.356739\pi\)
\(972\) −2.63442 −0.0844992
\(973\) −3.89426 −0.124844
\(974\) −19.9690 −0.639849
\(975\) 1.78335 0.0571130
\(976\) −3.34243 −0.106989
\(977\) 1.49840 0.0479379 0.0239690 0.999713i \(-0.492370\pi\)
0.0239690 + 0.999713i \(0.492370\pi\)
\(978\) −17.9089 −0.572664
\(979\) 0 0
\(980\) 22.7229 0.725856
\(981\) 1.87582 0.0598902
\(982\) 16.8957 0.539163
\(983\) 11.5045 0.366936 0.183468 0.983026i \(-0.441268\pi\)
0.183468 + 0.983026i \(0.441268\pi\)
\(984\) −29.0468 −0.925977
\(985\) −20.1931 −0.643407
\(986\) −32.9000 −1.04775
\(987\) −9.44758 −0.300720
\(988\) −9.06152 −0.288285
\(989\) −1.82146 −0.0579190
\(990\) 0 0
\(991\) −40.3643 −1.28221 −0.641107 0.767452i \(-0.721525\pi\)
−0.641107 + 0.767452i \(0.721525\pi\)
\(992\) −48.6232 −1.54379
\(993\) 6.48821 0.205897
\(994\) −16.6918 −0.529431
\(995\) −3.67299 −0.116442
\(996\) 14.0242 0.444373
\(997\) 36.1786 1.14579 0.572893 0.819630i \(-0.305821\pi\)
0.572893 + 0.819630i \(0.305821\pi\)
\(998\) −18.6751 −0.591150
\(999\) −44.3415 −1.40290
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7865.2.a.u.1.3 yes 8
11.10 odd 2 7865.2.a.t.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7865.2.a.t.1.6 8 11.10 odd 2
7865.2.a.u.1.3 yes 8 1.1 even 1 trivial