Properties

Label 7865.2.a.n
Level $7865$
Weight $2$
Character orbit 7865.a
Self dual yes
Analytic conductor $62.802$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7865,2,Mod(1,7865)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7865, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7865.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7865 = 5 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7865.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,2,4,4,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.8023411897\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.6224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} - 2x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + 1) q^{2} + (\beta_{3} + \beta_1) q^{3} + ( - \beta_{2} - \beta_1 + 1) q^{4} + q^{5} + (\beta_1 - 2) q^{6} + 2 q^{7} - \beta_{2} q^{8} + (2 \beta_{2} + 2 \beta_1 + 2) q^{9} + ( - \beta_{3} + 1) q^{10}+ \cdots + (3 \beta_{3} - 3) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 2 q^{3} + 4 q^{4} + 4 q^{5} - 8 q^{6} + 8 q^{7} + 8 q^{9} + 2 q^{10} - 6 q^{12} + 4 q^{13} + 4 q^{14} + 2 q^{15} - 4 q^{16} + 2 q^{17} + 4 q^{19} + 4 q^{20} + 4 q^{21} - 10 q^{23} + 2 q^{24}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 6x^{2} - 2x + 5 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 5\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.37033
2.44579
−1.87228
0.796815
−2.03032 1.66000 2.12221 1.00000 −3.37033 2.00000 −0.248119 −0.244414 −2.03032
1.2 0.134632 3.31116 −1.98187 1.00000 0.445787 2.00000 −0.536087 7.96375 0.134632
1.3 1.57942 −2.45170 0.494582 1.00000 −3.87228 2.00000 −2.37769 3.01084 1.57942
1.4 2.31627 −0.519450 3.36509 1.00000 −1.20318 2.00000 3.16190 −2.73017 2.31627
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(11\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7865.2.a.n yes 4
11.b odd 2 1 7865.2.a.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7865.2.a.m 4 11.b odd 2 1
7865.2.a.n yes 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7865))\):

\( T_{2}^{4} - 2T_{2}^{3} - 4T_{2}^{2} + 8T_{2} - 1 \) Copy content Toggle raw display
\( T_{3}^{4} - 2T_{3}^{3} - 8T_{3}^{2} + 10T_{3} + 7 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 2 T^{3} + \cdots - 1 \) Copy content Toggle raw display
$3$ \( T^{4} - 2 T^{3} + \cdots + 7 \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( (T - 2)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T - 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 2 T^{3} + \cdots - 5 \) Copy content Toggle raw display
$19$ \( T^{4} - 4 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$23$ \( T^{4} + 10 T^{3} + \cdots - 533 \) Copy content Toggle raw display
$29$ \( T^{4} - 16 T^{3} + \cdots - 691 \) Copy content Toggle raw display
$31$ \( T^{4} - 14 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$37$ \( T^{4} + 18 T^{3} + \cdots - 7444 \) Copy content Toggle raw display
$41$ \( T^{4} + 6 T^{3} + \cdots - 100 \) Copy content Toggle raw display
$43$ \( T^{4} - 18 T^{3} + \cdots - 925 \) Copy content Toggle raw display
$47$ \( T^{4} - 18 T^{3} + \cdots - 12244 \) Copy content Toggle raw display
$53$ \( T^{4} + 6 T^{3} + \cdots + 631 \) Copy content Toggle raw display
$59$ \( T^{4} - 2 T^{3} + \cdots + 76 \) Copy content Toggle raw display
$61$ \( T^{4} - 4 T^{3} + \cdots + 1561 \) Copy content Toggle raw display
$67$ \( T^{4} - 18 T^{3} + \cdots - 292 \) Copy content Toggle raw display
$71$ \( T^{4} + 30 T^{3} + \cdots - 4228 \) Copy content Toggle raw display
$73$ \( T^{4} + 8 T^{3} + \cdots + 14000 \) Copy content Toggle raw display
$79$ \( T^{4} - 24 T^{3} + \cdots + 605 \) Copy content Toggle raw display
$83$ \( T^{4} + 30 T^{3} + \cdots - 2708 \) Copy content Toggle raw display
$89$ \( T^{4} - 24 T^{3} + \cdots + 416 \) Copy content Toggle raw display
$97$ \( T^{4} - 12 T^{3} + \cdots - 1184 \) Copy content Toggle raw display
show more
show less