Properties

Label 2-7865-1.1-c1-0-249
Degree $2$
Conductor $7865$
Sign $1$
Analytic cond. $62.8023$
Root an. cond. $7.92479$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.31·2-s − 0.519·3-s + 3.36·4-s + 5-s − 1.20·6-s + 2·7-s + 3.16·8-s − 2.73·9-s + 2.31·10-s − 1.74·12-s + 13-s + 4.63·14-s − 0.519·15-s + 0.593·16-s + 3.43·17-s − 6.32·18-s − 2.63·19-s + 3.36·20-s − 1.03·21-s + 6.43·23-s − 1.64·24-s + 25-s + 2.31·26-s + 2.97·27-s + 6.73·28-s + 9.22·29-s − 1.20·30-s + ⋯
L(s)  = 1  + 1.63·2-s − 0.299·3-s + 1.68·4-s + 0.447·5-s − 0.491·6-s + 0.755·7-s + 1.11·8-s − 0.910·9-s + 0.732·10-s − 0.504·12-s + 0.277·13-s + 1.23·14-s − 0.134·15-s + 0.148·16-s + 0.834·17-s − 1.49·18-s − 0.603·19-s + 0.752·20-s − 0.226·21-s + 1.34·23-s − 0.335·24-s + 0.200·25-s + 0.454·26-s + 0.572·27-s + 1.27·28-s + 1.71·29-s − 0.219·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7865\)    =    \(5 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(62.8023\)
Root analytic conductor: \(7.92479\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7865,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.988644141\)
\(L(\frac12)\) \(\approx\) \(5.988644141\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good2 \( 1 - 2.31T + 2T^{2} \)
3 \( 1 + 0.519T + 3T^{2} \)
7 \( 1 - 2T + 7T^{2} \)
17 \( 1 - 3.43T + 17T^{2} \)
19 \( 1 + 2.63T + 19T^{2} \)
23 \( 1 - 6.43T + 23T^{2} \)
29 \( 1 - 9.22T + 29T^{2} \)
31 \( 1 - 4.84T + 31T^{2} \)
37 \( 1 + 10.1T + 37T^{2} \)
41 \( 1 - 3.47T + 41T^{2} \)
43 \( 1 + 2.84T + 43T^{2} \)
47 \( 1 - 11.0T + 47T^{2} \)
53 \( 1 - 4.57T + 53T^{2} \)
59 \( 1 + 1.78T + 59T^{2} \)
61 \( 1 + 13.2T + 61T^{2} \)
67 \( 1 - 14.2T + 67T^{2} \)
71 \( 1 + 11.9T + 71T^{2} \)
73 \( 1 - 6.51T + 73T^{2} \)
79 \( 1 - 5.67T + 79T^{2} \)
83 \( 1 + 17.7T + 83T^{2} \)
89 \( 1 - 4.40T + 89T^{2} \)
97 \( 1 - 16.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.60390769307827636256974707083, −6.81304371354469923971238770437, −6.16556524860153782475095181839, −5.67952185704732901435611267210, −4.88192918617937146528386140062, −4.67850371703265775881194305884, −3.50583393761436298341281587019, −2.92070868146695278613125627450, −2.13563494240061160160820528758, −0.993178432515267622774235963937, 0.993178432515267622774235963937, 2.13563494240061160160820528758, 2.92070868146695278613125627450, 3.50583393761436298341281587019, 4.67850371703265775881194305884, 4.88192918617937146528386140062, 5.67952185704732901435611267210, 6.16556524860153782475095181839, 6.81304371354469923971238770437, 7.60390769307827636256974707083

Graph of the $Z$-function along the critical line