Properties

Label 784.3.s.c.129.2
Level $784$
Weight $3$
Character 784.129
Analytic conductor $21.362$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,3,Mod(129,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.129"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 784.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-6,0,6,0,0,0,0,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.3624527258\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 129.2
Root \(0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 784.129
Dual form 784.3.s.c.705.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.621320 + 0.358719i) q^{3} +(5.74264 - 3.31552i) q^{5} +(-4.24264 - 7.34847i) q^{9} +(-2.37868 + 4.11999i) q^{11} -15.2913i q^{13} +4.75736 q^{15} +(3.25736 + 1.88064i) q^{17} +(3.62132 - 2.09077i) q^{19} +(-13.8640 - 24.0131i) q^{23} +(9.48528 - 16.4290i) q^{25} -12.5446i q^{27} +3.51472 q^{29} +(-42.3198 - 24.4334i) q^{31} +(-2.95584 + 1.70656i) q^{33} +(1.47056 + 2.54709i) q^{37} +(5.48528 - 9.50079i) q^{39} +27.9590i q^{41} +10.4853 q^{43} +(-48.7279 - 28.1331i) q^{45} +(45.6213 - 26.3395i) q^{47} +(1.34924 + 2.33696i) q^{51} +(-27.9853 + 48.4719i) q^{53} +31.5462i q^{55} +3.00000 q^{57} +(33.5330 + 19.3603i) q^{59} +(78.3823 - 45.2540i) q^{61} +(-50.6985 - 87.8124i) q^{65} +(-17.3198 + 29.9988i) q^{67} -19.8931i q^{69} -36.4264 q^{71} +(-45.5589 - 26.3034i) q^{73} +(11.7868 - 6.80511i) q^{75} +(-16.8934 - 29.2602i) q^{79} +(-33.6838 + 58.3420i) q^{81} -127.577i q^{83} +24.9411 q^{85} +(2.18377 + 1.26080i) q^{87} +(43.5883 - 25.1657i) q^{89} +(-17.5294 - 30.3619i) q^{93} +(13.8640 - 24.0131i) q^{95} -101.792i q^{97} +40.3675 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} + 6 q^{5} - 18 q^{11} + 36 q^{15} + 30 q^{17} + 6 q^{19} - 30 q^{23} + 4 q^{25} + 48 q^{29} - 42 q^{31} + 90 q^{33} - 62 q^{37} - 12 q^{39} + 8 q^{43} - 144 q^{45} + 174 q^{47} - 54 q^{51}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.621320 + 0.358719i 0.207107 + 0.119573i 0.599966 0.800025i \(-0.295181\pi\)
−0.392859 + 0.919599i \(0.628514\pi\)
\(4\) 0 0
\(5\) 5.74264 3.31552i 1.14853 0.663103i 0.200000 0.979796i \(-0.435906\pi\)
0.948528 + 0.316693i \(0.102572\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −4.24264 7.34847i −0.471405 0.816497i
\(10\) 0 0
\(11\) −2.37868 + 4.11999i −0.216244 + 0.374545i −0.953657 0.300897i \(-0.902714\pi\)
0.737413 + 0.675442i \(0.236047\pi\)
\(12\) 0 0
\(13\) 15.2913i 1.17625i −0.808769 0.588126i \(-0.799866\pi\)
0.808769 0.588126i \(-0.200134\pi\)
\(14\) 0 0
\(15\) 4.75736 0.317157
\(16\) 0 0
\(17\) 3.25736 + 1.88064i 0.191609 + 0.110626i 0.592736 0.805397i \(-0.298048\pi\)
−0.401126 + 0.916023i \(0.631381\pi\)
\(18\) 0 0
\(19\) 3.62132 2.09077i 0.190596 0.110041i −0.401666 0.915786i \(-0.631569\pi\)
0.592261 + 0.805746i \(0.298235\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −13.8640 24.0131i −0.602781 1.04405i −0.992398 0.123070i \(-0.960726\pi\)
0.389617 0.920977i \(-0.372607\pi\)
\(24\) 0 0
\(25\) 9.48528 16.4290i 0.379411 0.657160i
\(26\) 0 0
\(27\) 12.5446i 0.464616i
\(28\) 0 0
\(29\) 3.51472 0.121197 0.0605986 0.998162i \(-0.480699\pi\)
0.0605986 + 0.998162i \(0.480699\pi\)
\(30\) 0 0
\(31\) −42.3198 24.4334i −1.36516 0.788173i −0.374850 0.927085i \(-0.622306\pi\)
−0.990305 + 0.138913i \(0.955639\pi\)
\(32\) 0 0
\(33\) −2.95584 + 1.70656i −0.0895710 + 0.0517139i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.47056 + 2.54709i 0.0397449 + 0.0688403i 0.885214 0.465185i \(-0.154012\pi\)
−0.845469 + 0.534025i \(0.820679\pi\)
\(38\) 0 0
\(39\) 5.48528 9.50079i 0.140648 0.243610i
\(40\) 0 0
\(41\) 27.9590i 0.681927i 0.940077 + 0.340963i \(0.110753\pi\)
−0.940077 + 0.340963i \(0.889247\pi\)
\(42\) 0 0
\(43\) 10.4853 0.243844 0.121922 0.992540i \(-0.461094\pi\)
0.121922 + 0.992540i \(0.461094\pi\)
\(44\) 0 0
\(45\) −48.7279 28.1331i −1.08284 0.625180i
\(46\) 0 0
\(47\) 45.6213 26.3395i 0.970666 0.560415i 0.0712271 0.997460i \(-0.477309\pi\)
0.899439 + 0.437046i \(0.143975\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 1.34924 + 2.33696i 0.0264557 + 0.0458227i
\(52\) 0 0
\(53\) −27.9853 + 48.4719i −0.528024 + 0.914565i 0.471442 + 0.881897i \(0.343734\pi\)
−0.999466 + 0.0326677i \(0.989600\pi\)
\(54\) 0 0
\(55\) 31.5462i 0.573567i
\(56\) 0 0
\(57\) 3.00000 0.0526316
\(58\) 0 0
\(59\) 33.5330 + 19.3603i 0.568356 + 0.328141i 0.756492 0.654002i \(-0.226911\pi\)
−0.188136 + 0.982143i \(0.560245\pi\)
\(60\) 0 0
\(61\) 78.3823 45.2540i 1.28495 0.741869i 0.307205 0.951643i \(-0.400606\pi\)
0.977750 + 0.209774i \(0.0672729\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −50.6985 87.8124i −0.779977 1.35096i
\(66\) 0 0
\(67\) −17.3198 + 29.9988i −0.258505 + 0.447743i −0.965842 0.259134i \(-0.916563\pi\)
0.707337 + 0.706877i \(0.249896\pi\)
\(68\) 0 0
\(69\) 19.8931i 0.288306i
\(70\) 0 0
\(71\) −36.4264 −0.513048 −0.256524 0.966538i \(-0.582577\pi\)
−0.256524 + 0.966538i \(0.582577\pi\)
\(72\) 0 0
\(73\) −45.5589 26.3034i −0.624094 0.360321i 0.154367 0.988014i \(-0.450666\pi\)
−0.778461 + 0.627693i \(0.783999\pi\)
\(74\) 0 0
\(75\) 11.7868 6.80511i 0.157157 0.0907348i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −16.8934 29.2602i −0.213840 0.370383i 0.739073 0.673626i \(-0.235264\pi\)
−0.952913 + 0.303243i \(0.901931\pi\)
\(80\) 0 0
\(81\) −33.6838 + 58.3420i −0.415849 + 0.720272i
\(82\) 0 0
\(83\) 127.577i 1.53708i −0.639803 0.768539i \(-0.720984\pi\)
0.639803 0.768539i \(-0.279016\pi\)
\(84\) 0 0
\(85\) 24.9411 0.293425
\(86\) 0 0
\(87\) 2.18377 + 1.26080i 0.0251008 + 0.0144919i
\(88\) 0 0
\(89\) 43.5883 25.1657i 0.489756 0.282761i −0.234717 0.972064i \(-0.575416\pi\)
0.724473 + 0.689303i \(0.242083\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −17.5294 30.3619i −0.188489 0.326472i
\(94\) 0 0
\(95\) 13.8640 24.0131i 0.145936 0.252769i
\(96\) 0 0
\(97\) 101.792i 1.04940i −0.851287 0.524700i \(-0.824177\pi\)
0.851287 0.524700i \(-0.175823\pi\)
\(98\) 0 0
\(99\) 40.3675 0.407753
\(100\) 0 0
\(101\) 51.6838 + 29.8396i 0.511720 + 0.295442i 0.733541 0.679646i \(-0.237866\pi\)
−0.221820 + 0.975088i \(0.571200\pi\)
\(102\) 0 0
\(103\) 104.077 60.0890i 1.01046 0.583388i 0.0991322 0.995074i \(-0.468393\pi\)
0.911326 + 0.411686i \(0.135060\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −56.8051 98.3893i −0.530889 0.919526i −0.999350 0.0360423i \(-0.988525\pi\)
0.468462 0.883484i \(-0.344808\pi\)
\(108\) 0 0
\(109\) 72.6543 125.841i 0.666553 1.15450i −0.312308 0.949981i \(-0.601102\pi\)
0.978862 0.204524i \(-0.0655645\pi\)
\(110\) 0 0
\(111\) 2.11008i 0.0190097i
\(112\) 0 0
\(113\) 34.5442 0.305700 0.152850 0.988249i \(-0.451155\pi\)
0.152850 + 0.988249i \(0.451155\pi\)
\(114\) 0 0
\(115\) −159.231 91.9323i −1.38462 0.799412i
\(116\) 0 0
\(117\) −112.368 + 64.8754i −0.960406 + 0.554491i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 49.1838 + 85.1888i 0.406477 + 0.704040i
\(122\) 0 0
\(123\) −10.0294 + 17.3715i −0.0815401 + 0.141232i
\(124\) 0 0
\(125\) 39.9814i 0.319851i
\(126\) 0 0
\(127\) 247.338 1.94754 0.973772 0.227526i \(-0.0730636\pi\)
0.973772 + 0.227526i \(0.0730636\pi\)
\(128\) 0 0
\(129\) 6.51472 + 3.76127i 0.0505017 + 0.0291572i
\(130\) 0 0
\(131\) −127.864 + 73.8223i −0.976061 + 0.563529i −0.901079 0.433656i \(-0.857223\pi\)
−0.0749822 + 0.997185i \(0.523890\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −41.5919 72.0393i −0.308088 0.533624i
\(136\) 0 0
\(137\) 16.2868 28.2096i 0.118882 0.205909i −0.800443 0.599409i \(-0.795402\pi\)
0.919325 + 0.393500i \(0.128736\pi\)
\(138\) 0 0
\(139\) 68.5857i 0.493422i 0.969089 + 0.246711i \(0.0793499\pi\)
−0.969089 + 0.246711i \(0.920650\pi\)
\(140\) 0 0
\(141\) 37.7939 0.268042
\(142\) 0 0
\(143\) 63.0000 + 36.3731i 0.440559 + 0.254357i
\(144\) 0 0
\(145\) 20.1838 11.6531i 0.139198 0.0803662i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −46.1985 80.0181i −0.310057 0.537034i 0.668317 0.743876i \(-0.267015\pi\)
−0.978374 + 0.206842i \(0.933681\pi\)
\(150\) 0 0
\(151\) −45.8934 + 79.4897i −0.303930 + 0.526422i −0.977022 0.213136i \(-0.931632\pi\)
0.673093 + 0.739558i \(0.264965\pi\)
\(152\) 0 0
\(153\) 31.9155i 0.208598i
\(154\) 0 0
\(155\) −324.037 −2.09056
\(156\) 0 0
\(157\) −7.32338 4.22815i −0.0466457 0.0269309i 0.476496 0.879177i \(-0.341907\pi\)
−0.523142 + 0.852246i \(0.675240\pi\)
\(158\) 0 0
\(159\) −34.7756 + 20.0777i −0.218715 + 0.126275i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 110.989 + 192.238i 0.680913 + 1.17938i 0.974703 + 0.223506i \(0.0717503\pi\)
−0.293789 + 0.955870i \(0.594916\pi\)
\(164\) 0 0
\(165\) −11.3162 + 19.6003i −0.0685832 + 0.118790i
\(166\) 0 0
\(167\) 168.841i 1.01102i 0.862820 + 0.505511i \(0.168696\pi\)
−0.862820 + 0.505511i \(0.831304\pi\)
\(168\) 0 0
\(169\) −64.8234 −0.383570
\(170\) 0 0
\(171\) −30.7279 17.7408i −0.179695 0.103747i
\(172\) 0 0
\(173\) 142.323 82.1704i 0.822678 0.474974i −0.0286608 0.999589i \(-0.509124\pi\)
0.851339 + 0.524616i \(0.175791\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 13.8898 + 24.0579i 0.0784736 + 0.135920i
\(178\) 0 0
\(179\) 92.5919 160.374i 0.517273 0.895943i −0.482526 0.875882i \(-0.660280\pi\)
0.999799 0.0200614i \(-0.00638618\pi\)
\(180\) 0 0
\(181\) 155.086i 0.856830i 0.903582 + 0.428415i \(0.140928\pi\)
−0.903582 + 0.428415i \(0.859072\pi\)
\(182\) 0 0
\(183\) 64.9340 0.354831
\(184\) 0 0
\(185\) 16.8898 + 9.75135i 0.0912964 + 0.0527100i
\(186\) 0 0
\(187\) −15.4964 + 8.94687i −0.0828686 + 0.0478442i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 124.048 + 214.857i 0.649465 + 1.12491i 0.983251 + 0.182257i \(0.0583402\pi\)
−0.333786 + 0.942649i \(0.608326\pi\)
\(192\) 0 0
\(193\) −77.1690 + 133.661i −0.399840 + 0.692543i −0.993706 0.112021i \(-0.964268\pi\)
0.593866 + 0.804564i \(0.297601\pi\)
\(194\) 0 0
\(195\) 72.7461i 0.373057i
\(196\) 0 0
\(197\) −181.103 −0.919303 −0.459651 0.888099i \(-0.652026\pi\)
−0.459651 + 0.888099i \(0.652026\pi\)
\(198\) 0 0
\(199\) 301.989 + 174.353i 1.51753 + 0.876147i 0.999788 + 0.0206121i \(0.00656150\pi\)
0.517744 + 0.855535i \(0.326772\pi\)
\(200\) 0 0
\(201\) −21.5223 + 12.4259i −0.107076 + 0.0618204i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 92.6985 + 160.558i 0.452188 + 0.783212i
\(206\) 0 0
\(207\) −117.640 + 203.758i −0.568307 + 0.984337i
\(208\) 0 0
\(209\) 19.8931i 0.0951823i
\(210\) 0 0
\(211\) −364.073 −1.72547 −0.862733 0.505660i \(-0.831249\pi\)
−0.862733 + 0.505660i \(0.831249\pi\)
\(212\) 0 0
\(213\) −22.6325 13.0669i −0.106256 0.0613468i
\(214\) 0 0
\(215\) 60.2132 34.7641i 0.280061 0.161694i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −18.8711 32.6857i −0.0861694 0.149250i
\(220\) 0 0
\(221\) 28.7574 49.8092i 0.130124 0.225381i
\(222\) 0 0
\(223\) 123.231i 0.552603i 0.961071 + 0.276302i \(0.0891089\pi\)
−0.961071 + 0.276302i \(0.910891\pi\)
\(224\) 0 0
\(225\) −160.971 −0.715425
\(226\) 0 0
\(227\) −66.1432 38.1878i −0.291380 0.168228i 0.347184 0.937797i \(-0.387138\pi\)
−0.638564 + 0.769569i \(0.720471\pi\)
\(228\) 0 0
\(229\) −309.419 + 178.643i −1.35117 + 0.780101i −0.988414 0.151782i \(-0.951499\pi\)
−0.362760 + 0.931883i \(0.618166\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 136.537 + 236.488i 0.585994 + 1.01497i 0.994751 + 0.102328i \(0.0326291\pi\)
−0.408757 + 0.912643i \(0.634038\pi\)
\(234\) 0 0
\(235\) 174.658 302.516i 0.743225 1.28730i
\(236\) 0 0
\(237\) 24.2400i 0.102278i
\(238\) 0 0
\(239\) 265.103 1.10922 0.554608 0.832112i \(-0.312868\pi\)
0.554608 + 0.832112i \(0.312868\pi\)
\(240\) 0 0
\(241\) 75.8970 + 43.8191i 0.314925 + 0.181822i 0.649128 0.760679i \(-0.275134\pi\)
−0.334203 + 0.942501i \(0.608467\pi\)
\(242\) 0 0
\(243\) −139.632 + 80.6168i −0.574619 + 0.331757i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −31.9706 55.3746i −0.129435 0.224189i
\(248\) 0 0
\(249\) 45.7645 79.2664i 0.183793 0.318339i
\(250\) 0 0
\(251\) 495.655i 1.97472i −0.158491 0.987360i \(-0.550663\pi\)
0.158491 0.987360i \(-0.449337\pi\)
\(252\) 0 0
\(253\) 131.912 0.521390
\(254\) 0 0
\(255\) 15.4964 + 8.94687i 0.0607703 + 0.0350858i
\(256\) 0 0
\(257\) −346.875 + 200.268i −1.34971 + 0.779254i −0.988208 0.153119i \(-0.951068\pi\)
−0.361499 + 0.932372i \(0.617735\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −14.9117 25.8278i −0.0571329 0.0989571i
\(262\) 0 0
\(263\) −16.1726 + 28.0118i −0.0614928 + 0.106509i −0.895133 0.445799i \(-0.852919\pi\)
0.833640 + 0.552308i \(0.186253\pi\)
\(264\) 0 0
\(265\) 371.142i 1.40054i
\(266\) 0 0
\(267\) 36.1097 0.135242
\(268\) 0 0
\(269\) 265.838 + 153.482i 0.988246 + 0.570564i 0.904749 0.425944i \(-0.140058\pi\)
0.0834963 + 0.996508i \(0.473391\pi\)
\(270\) 0 0
\(271\) −65.8051 + 37.9926i −0.242823 + 0.140194i −0.616474 0.787376i \(-0.711439\pi\)
0.373650 + 0.927570i \(0.378106\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 45.1249 + 78.1586i 0.164091 + 0.284213i
\(276\) 0 0
\(277\) −139.206 + 241.111i −0.502547 + 0.870438i 0.497448 + 0.867494i \(0.334270\pi\)
−0.999996 + 0.00294398i \(0.999063\pi\)
\(278\) 0 0
\(279\) 414.648i 1.48619i
\(280\) 0 0
\(281\) 394.690 1.40459 0.702296 0.711885i \(-0.252158\pi\)
0.702296 + 0.711885i \(0.252158\pi\)
\(282\) 0 0
\(283\) 126.783 + 73.1981i 0.447996 + 0.258650i 0.706983 0.707230i \(-0.250056\pi\)
−0.258988 + 0.965881i \(0.583389\pi\)
\(284\) 0 0
\(285\) 17.2279 9.94655i 0.0604488 0.0349002i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −137.426 238.030i −0.475524 0.823632i
\(290\) 0 0
\(291\) 36.5147 63.2453i 0.125480 0.217338i
\(292\) 0 0
\(293\) 299.678i 1.02279i −0.859345 0.511396i \(-0.829128\pi\)
0.859345 0.511396i \(-0.170872\pi\)
\(294\) 0 0
\(295\) 256.757 0.870364
\(296\) 0 0
\(297\) 51.6838 + 29.8396i 0.174019 + 0.100470i
\(298\) 0 0
\(299\) −367.191 + 211.998i −1.22806 + 0.709023i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 21.4081 + 37.0799i 0.0706539 + 0.122376i
\(304\) 0 0
\(305\) 300.081 519.755i 0.983871 1.70412i
\(306\) 0 0
\(307\) 20.9886i 0.0683666i −0.999416 0.0341833i \(-0.989117\pi\)
0.999416 0.0341833i \(-0.0108830\pi\)
\(308\) 0 0
\(309\) 86.2203 0.279030
\(310\) 0 0
\(311\) 157.651 + 91.0197i 0.506916 + 0.292668i 0.731565 0.681772i \(-0.238790\pi\)
−0.224649 + 0.974440i \(0.572124\pi\)
\(312\) 0 0
\(313\) 84.8087 48.9643i 0.270954 0.156435i −0.358367 0.933581i \(-0.616666\pi\)
0.629321 + 0.777145i \(0.283333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 240.985 + 417.399i 0.760206 + 1.31672i 0.942744 + 0.333517i \(0.108235\pi\)
−0.182538 + 0.983199i \(0.558431\pi\)
\(318\) 0 0
\(319\) −8.36039 + 14.4806i −0.0262081 + 0.0453938i
\(320\) 0 0
\(321\) 81.5084i 0.253920i
\(322\) 0 0
\(323\) 15.7279 0.0486933
\(324\) 0 0
\(325\) −251.220 145.042i −0.772986 0.446283i
\(326\) 0 0
\(327\) 90.2832 52.1250i 0.276095 0.159404i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 112.504 + 194.862i 0.339890 + 0.588707i 0.984412 0.175879i \(-0.0562768\pi\)
−0.644522 + 0.764586i \(0.722944\pi\)
\(332\) 0 0
\(333\) 12.4781 21.6128i 0.0374719 0.0649032i
\(334\) 0 0
\(335\) 229.696i 0.685661i
\(336\) 0 0
\(337\) −264.368 −0.784473 −0.392237 0.919864i \(-0.628299\pi\)
−0.392237 + 0.919864i \(0.628299\pi\)
\(338\) 0 0
\(339\) 21.4630 + 12.3917i 0.0633126 + 0.0365536i
\(340\) 0 0
\(341\) 201.331 116.238i 0.590412 0.340875i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −65.9558 114.239i −0.191176 0.331127i
\(346\) 0 0
\(347\) −95.6285 + 165.633i −0.275586 + 0.477330i −0.970283 0.241973i \(-0.922205\pi\)
0.694697 + 0.719303i \(0.255539\pi\)
\(348\) 0 0
\(349\) 135.448i 0.388104i −0.980991 0.194052i \(-0.937837\pi\)
0.980991 0.194052i \(-0.0621630\pi\)
\(350\) 0 0
\(351\) −191.823 −0.546505
\(352\) 0 0
\(353\) 301.802 + 174.245i 0.854962 + 0.493612i 0.862322 0.506360i \(-0.169009\pi\)
−0.00736010 + 0.999973i \(0.502343\pi\)
\(354\) 0 0
\(355\) −209.184 + 120.772i −0.589250 + 0.340204i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 152.415 + 263.991i 0.424555 + 0.735351i 0.996379 0.0850256i \(-0.0270972\pi\)
−0.571824 + 0.820377i \(0.693764\pi\)
\(360\) 0 0
\(361\) −171.757 + 297.492i −0.475782 + 0.824079i
\(362\) 0 0
\(363\) 70.5727i 0.194415i
\(364\) 0 0
\(365\) −348.838 −0.955720
\(366\) 0 0
\(367\) −82.2761 47.5021i −0.224186 0.129434i 0.383701 0.923457i \(-0.374649\pi\)
−0.607887 + 0.794024i \(0.707983\pi\)
\(368\) 0 0
\(369\) 205.456 118.620i 0.556791 0.321463i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −126.779 219.588i −0.339891 0.588708i 0.644521 0.764586i \(-0.277057\pi\)
−0.984412 + 0.175879i \(0.943723\pi\)
\(374\) 0 0
\(375\) −14.3421 + 24.8412i −0.0382456 + 0.0662433i
\(376\) 0 0
\(377\) 53.7446i 0.142559i
\(378\) 0 0
\(379\) −508.250 −1.34103 −0.670514 0.741897i \(-0.733926\pi\)
−0.670514 + 0.741897i \(0.733926\pi\)
\(380\) 0 0
\(381\) 153.676 + 88.7250i 0.403350 + 0.232874i
\(382\) 0 0
\(383\) 413.753 238.881i 1.08030 0.623709i 0.149320 0.988789i \(-0.452292\pi\)
0.930976 + 0.365080i \(0.118958\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −44.4853 77.0508i −0.114949 0.199098i
\(388\) 0 0
\(389\) −85.1102 + 147.415i −0.218792 + 0.378959i −0.954439 0.298406i \(-0.903545\pi\)
0.735647 + 0.677365i \(0.236878\pi\)
\(390\) 0 0
\(391\) 104.292i 0.266732i
\(392\) 0 0
\(393\) −105.926 −0.269532
\(394\) 0 0
\(395\) −194.025 112.021i −0.491204 0.283597i
\(396\) 0 0
\(397\) −211.786 + 122.275i −0.533467 + 0.307997i −0.742427 0.669927i \(-0.766325\pi\)
0.208960 + 0.977924i \(0.432992\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 208.786 + 361.629i 0.520664 + 0.901817i 0.999711 + 0.0240277i \(0.00764899\pi\)
−0.479047 + 0.877789i \(0.659018\pi\)
\(402\) 0 0
\(403\) −373.617 + 647.124i −0.927090 + 1.60577i
\(404\) 0 0
\(405\) 446.716i 1.10300i
\(406\) 0 0
\(407\) −13.9920 −0.0343784
\(408\) 0 0
\(409\) −266.919 154.106i −0.652614 0.376787i 0.136843 0.990593i \(-0.456304\pi\)
−0.789457 + 0.613806i \(0.789638\pi\)
\(410\) 0 0
\(411\) 20.2386 11.6848i 0.0492424 0.0284301i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −422.985 732.631i −1.01924 1.76538i
\(416\) 0 0
\(417\) −24.6030 + 42.6137i −0.0590001 + 0.102191i
\(418\) 0 0
\(419\) 103.142i 0.246163i −0.992397 0.123081i \(-0.960722\pi\)
0.992397 0.123081i \(-0.0392776\pi\)
\(420\) 0 0
\(421\) −165.220 −0.392447 −0.196224 0.980559i \(-0.562868\pi\)
−0.196224 + 0.980559i \(0.562868\pi\)
\(422\) 0 0
\(423\) −387.110 223.498i −0.915153 0.528364i
\(424\) 0 0
\(425\) 61.7939 35.6767i 0.145398 0.0839453i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 26.0955 + 45.1987i 0.0608286 + 0.105358i
\(430\) 0 0
\(431\) 297.268 514.883i 0.689717 1.19463i −0.282212 0.959352i \(-0.591068\pi\)
0.971929 0.235273i \(-0.0755984\pi\)
\(432\) 0 0
\(433\) 40.6267i 0.0938261i 0.998899 + 0.0469131i \(0.0149384\pi\)
−0.998899 + 0.0469131i \(0.985062\pi\)
\(434\) 0 0
\(435\) 16.7208 0.0384386
\(436\) 0 0
\(437\) −100.412 57.9727i −0.229775 0.132661i
\(438\) 0 0
\(439\) 126.959 73.3001i 0.289201 0.166971i −0.348380 0.937353i \(-0.613268\pi\)
0.637582 + 0.770383i \(0.279935\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 53.6802 + 92.9768i 0.121174 + 0.209880i 0.920231 0.391376i \(-0.128001\pi\)
−0.799057 + 0.601256i \(0.794667\pi\)
\(444\) 0 0
\(445\) 166.875 289.035i 0.374999 0.649518i
\(446\) 0 0
\(447\) 66.2892i 0.148298i
\(448\) 0 0
\(449\) 135.161 0.301028 0.150514 0.988608i \(-0.451907\pi\)
0.150514 + 0.988608i \(0.451907\pi\)
\(450\) 0 0
\(451\) −115.191 66.5055i −0.255412 0.147462i
\(452\) 0 0
\(453\) −57.0290 + 32.9257i −0.125892 + 0.0726837i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −79.8675 138.335i −0.174765 0.302702i 0.765315 0.643656i \(-0.222583\pi\)
−0.940080 + 0.340954i \(0.889250\pi\)
\(458\) 0 0
\(459\) 23.5919 40.8623i 0.0513984 0.0890247i
\(460\) 0 0
\(461\) 310.250i 0.672993i −0.941685 0.336497i \(-0.890758\pi\)
0.941685 0.336497i \(-0.109242\pi\)
\(462\) 0 0
\(463\) 326.014 0.704135 0.352067 0.935975i \(-0.385479\pi\)
0.352067 + 0.935975i \(0.385479\pi\)
\(464\) 0 0
\(465\) −201.331 116.238i −0.432969 0.249975i
\(466\) 0 0
\(467\) 515.769 297.779i 1.10443 0.637643i 0.167048 0.985949i \(-0.446576\pi\)
0.937381 + 0.348306i \(0.113243\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −3.03344 5.25408i −0.00644043 0.0111551i
\(472\) 0 0
\(473\) −24.9411 + 43.1993i −0.0527297 + 0.0913304i
\(474\) 0 0
\(475\) 79.3262i 0.167002i
\(476\) 0 0
\(477\) 474.926 0.995652
\(478\) 0 0
\(479\) 438.798 + 253.340i 0.916071 + 0.528894i 0.882379 0.470539i \(-0.155940\pi\)
0.0336914 + 0.999432i \(0.489274\pi\)
\(480\) 0 0
\(481\) 38.9483 22.4868i 0.0809735 0.0467501i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −337.492 584.554i −0.695861 1.20527i
\(486\) 0 0
\(487\) 105.651 182.992i 0.216942 0.375755i −0.736930 0.675970i \(-0.763725\pi\)
0.953872 + 0.300215i \(0.0970584\pi\)
\(488\) 0 0
\(489\) 159.255i 0.325676i
\(490\) 0 0
\(491\) 784.161 1.59707 0.798534 0.601949i \(-0.205609\pi\)
0.798534 + 0.601949i \(0.205609\pi\)
\(492\) 0 0
\(493\) 11.4487 + 6.60991i 0.0232225 + 0.0134075i
\(494\) 0 0
\(495\) 231.816 133.839i 0.468316 0.270382i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −85.7462 148.517i −0.171836 0.297629i 0.767226 0.641377i \(-0.221637\pi\)
−0.939062 + 0.343748i \(0.888303\pi\)
\(500\) 0 0
\(501\) −60.5665 + 104.904i −0.120891 + 0.209390i
\(502\) 0 0
\(503\) 20.0883i 0.0399370i −0.999801 0.0199685i \(-0.993643\pi\)
0.999801 0.0199685i \(-0.00635659\pi\)
\(504\) 0 0
\(505\) 395.735 0.783634
\(506\) 0 0
\(507\) −40.2761 23.2534i −0.0794400 0.0458647i
\(508\) 0 0
\(509\) 412.890 238.382i 0.811178 0.468334i −0.0361865 0.999345i \(-0.511521\pi\)
0.847365 + 0.531011i \(0.178188\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −26.2279 45.4281i −0.0511266 0.0885538i
\(514\) 0 0
\(515\) 398.452 690.139i 0.773693 1.34008i
\(516\) 0 0
\(517\) 250.613i 0.484744i
\(518\) 0 0
\(519\) 117.905 0.227176
\(520\) 0 0
\(521\) −739.823 427.137i −1.42001 0.819841i −0.423707 0.905799i \(-0.639271\pi\)
−0.996299 + 0.0859587i \(0.972605\pi\)
\(522\) 0 0
\(523\) −513.554 + 296.501i −0.981940 + 0.566923i −0.902855 0.429945i \(-0.858533\pi\)
−0.0790845 + 0.996868i \(0.525200\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −91.9005 159.176i −0.174384 0.302043i
\(528\) 0 0
\(529\) −119.919 + 207.706i −0.226690 + 0.392638i
\(530\) 0 0
\(531\) 328.555i 0.618748i
\(532\) 0 0
\(533\) 427.529 0.802118
\(534\) 0 0
\(535\) −652.422 376.676i −1.21948 0.704068i
\(536\) 0 0
\(537\) 115.058 66.4290i 0.214262 0.123704i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −427.595 740.617i −0.790380 1.36898i −0.925732 0.378180i \(-0.876550\pi\)
0.135352 0.990798i \(-0.456783\pi\)
\(542\) 0 0
\(543\) −55.6325 + 96.3583i −0.102454 + 0.177455i
\(544\) 0 0
\(545\) 963.546i 1.76797i
\(546\) 0 0
\(547\) −415.897 −0.760323 −0.380161 0.924920i \(-0.624132\pi\)
−0.380161 + 0.924920i \(0.624132\pi\)
\(548\) 0 0
\(549\) −665.095 383.993i −1.21147 0.699441i
\(550\) 0 0
\(551\) 12.7279 7.34847i 0.0230997 0.0133366i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 6.99600 + 12.1174i 0.0126054 + 0.0218332i
\(556\) 0 0
\(557\) 292.110 505.950i 0.524435 0.908348i −0.475160 0.879899i \(-0.657610\pi\)
0.999595 0.0284485i \(-0.00905667\pi\)
\(558\) 0 0
\(559\) 160.333i 0.286822i
\(560\) 0 0
\(561\) −12.8377 −0.0228835
\(562\) 0 0
\(563\) 789.076 + 455.573i 1.40156 + 0.809189i 0.994552 0.104237i \(-0.0332402\pi\)
0.407004 + 0.913426i \(0.366573\pi\)
\(564\) 0 0
\(565\) 198.375 114.532i 0.351106 0.202711i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −350.000 606.217i −0.615113 1.06541i −0.990365 0.138485i \(-0.955777\pi\)
0.375251 0.926923i \(-0.377556\pi\)
\(570\) 0 0
\(571\) −281.231 + 487.107i −0.492525 + 0.853077i −0.999963 0.00861055i \(-0.997259\pi\)
0.507438 + 0.861688i \(0.330592\pi\)
\(572\) 0 0
\(573\) 177.993i 0.310634i
\(574\) 0 0
\(575\) −526.014 −0.914807
\(576\) 0 0
\(577\) 573.014 + 330.830i 0.993092 + 0.573362i 0.906197 0.422856i \(-0.138972\pi\)
0.0868946 + 0.996218i \(0.472306\pi\)
\(578\) 0 0
\(579\) −95.8934 + 55.3641i −0.165619 + 0.0956202i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −133.136 230.598i −0.228364 0.395538i
\(584\) 0 0
\(585\) −430.191 + 745.113i −0.735369 + 1.27370i
\(586\) 0 0
\(587\) 823.029i 1.40209i −0.713116 0.701046i \(-0.752717\pi\)
0.713116 0.701046i \(-0.247283\pi\)
\(588\) 0 0
\(589\) −204.338 −0.346924
\(590\) 0 0
\(591\) −112.523 64.9650i −0.190394 0.109924i
\(592\) 0 0
\(593\) 538.890 311.128i 0.908752 0.524668i 0.0287225 0.999587i \(-0.490856\pi\)
0.880029 + 0.474919i \(0.157523\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 125.088 + 216.659i 0.209527 + 0.362912i
\(598\) 0 0
\(599\) −256.422 + 444.137i −0.428084 + 0.741463i −0.996703 0.0811377i \(-0.974145\pi\)
0.568619 + 0.822601i \(0.307478\pi\)
\(600\) 0 0
\(601\) 680.160i 1.13171i −0.824504 0.565857i \(-0.808546\pi\)
0.824504 0.565857i \(-0.191454\pi\)
\(602\) 0 0
\(603\) 293.927 0.487441
\(604\) 0 0
\(605\) 564.889 + 326.139i 0.933701 + 0.539073i
\(606\) 0 0
\(607\) 33.5482 19.3690i 0.0552688 0.0319095i −0.472111 0.881539i \(-0.656508\pi\)
0.527380 + 0.849630i \(0.323175\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −402.765 697.609i −0.659189 1.14175i
\(612\) 0 0
\(613\) −200.552 + 347.366i −0.327164 + 0.566665i −0.981948 0.189151i \(-0.939426\pi\)
0.654784 + 0.755816i \(0.272760\pi\)
\(614\) 0 0
\(615\) 133.011i 0.216278i
\(616\) 0 0
\(617\) −959.044 −1.55437 −0.777183 0.629275i \(-0.783352\pi\)
−0.777183 + 0.629275i \(0.783352\pi\)
\(618\) 0 0
\(619\) −869.951 502.267i −1.40541 0.811416i −0.410473 0.911873i \(-0.634636\pi\)
−0.994941 + 0.100457i \(0.967970\pi\)
\(620\) 0 0
\(621\) −301.235 + 173.918i −0.485081 + 0.280061i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 369.691 + 640.323i 0.591505 + 1.02452i
\(626\) 0 0
\(627\) −7.13604 + 12.3600i −0.0113812 + 0.0197129i
\(628\) 0 0
\(629\) 11.0624i 0.0175873i
\(630\) 0 0
\(631\) 386.514 0.612542 0.306271 0.951944i \(-0.400919\pi\)
0.306271 + 0.951944i \(0.400919\pi\)
\(632\) 0 0
\(633\) −226.206 130.600i −0.357356 0.206319i
\(634\) 0 0
\(635\) 1420.37 820.053i 2.23681 1.29142i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 154.544 + 267.678i 0.241853 + 0.418902i
\(640\) 0 0
\(641\) 496.074 859.225i 0.773906 1.34044i −0.161502 0.986872i \(-0.551634\pi\)
0.935407 0.353572i \(-0.115033\pi\)
\(642\) 0 0
\(643\) 944.986i 1.46965i 0.678256 + 0.734826i \(0.262736\pi\)
−0.678256 + 0.734826i \(0.737264\pi\)
\(644\) 0 0
\(645\) 49.8823 0.0773368
\(646\) 0 0
\(647\) 2.50357 + 1.44544i 0.00386951 + 0.00223406i 0.501934 0.864906i \(-0.332622\pi\)
−0.498064 + 0.867140i \(0.665956\pi\)
\(648\) 0 0
\(649\) −159.529 + 92.1039i −0.245807 + 0.141917i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 161.529 + 279.777i 0.247365 + 0.428449i 0.962794 0.270237i \(-0.0871019\pi\)
−0.715429 + 0.698686i \(0.753769\pi\)
\(654\) 0 0
\(655\) −489.518 + 847.870i −0.747356 + 1.29446i
\(656\) 0 0
\(657\) 446.384i 0.679428i
\(658\) 0 0
\(659\) −295.955 −0.449098 −0.224549 0.974463i \(-0.572091\pi\)
−0.224549 + 0.974463i \(0.572091\pi\)
\(660\) 0 0
\(661\) −17.9710 10.3756i −0.0271876 0.0156968i 0.486345 0.873767i \(-0.338330\pi\)
−0.513532 + 0.858070i \(0.671663\pi\)
\(662\) 0 0
\(663\) 35.7351 20.6316i 0.0538990 0.0311186i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −48.7279 84.3992i −0.0730554 0.126536i
\(668\) 0 0
\(669\) −44.2052 + 76.5656i −0.0660765 + 0.114448i
\(670\) 0 0
\(671\) 430.579i 0.641698i
\(672\) 0 0
\(673\) 627.044 0.931714 0.465857 0.884860i \(-0.345746\pi\)
0.465857 + 0.884860i \(0.345746\pi\)
\(674\) 0 0
\(675\) −206.095 118.989i −0.305327 0.176280i
\(676\) 0 0
\(677\) 94.6097 54.6230i 0.139749 0.0806838i −0.428496 0.903544i \(-0.640956\pi\)
0.568244 + 0.822860i \(0.307623\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −27.3974 47.4537i −0.0402311 0.0696824i
\(682\) 0 0
\(683\) 396.783 687.248i 0.580941 1.00622i −0.414427 0.910083i \(-0.636018\pi\)
0.995368 0.0961370i \(-0.0306487\pi\)
\(684\) 0 0
\(685\) 215.996i 0.315323i
\(686\) 0 0
\(687\) −256.331 −0.373116
\(688\) 0 0
\(689\) 741.198 + 427.931i 1.07576 + 0.621090i
\(690\) 0 0
\(691\) 159.253 91.9447i 0.230467 0.133060i −0.380320 0.924855i \(-0.624186\pi\)
0.610788 + 0.791794i \(0.290853\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 227.397 + 393.863i 0.327190 + 0.566710i
\(696\) 0 0
\(697\) −52.5807 + 91.0725i −0.0754386 + 0.130664i
\(698\) 0 0
\(699\) 195.913i 0.280277i
\(700\) 0 0
\(701\) −1043.82 −1.48905 −0.744525 0.667595i \(-0.767324\pi\)
−0.744525 + 0.667595i \(0.767324\pi\)
\(702\) 0 0
\(703\) 10.6508 + 6.14922i 0.0151504 + 0.00874711i
\(704\) 0 0
\(705\) 217.037 125.306i 0.307854 0.177740i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 490.279 + 849.188i 0.691507 + 1.19773i 0.971344 + 0.237678i \(0.0763864\pi\)
−0.279836 + 0.960048i \(0.590280\pi\)
\(710\) 0 0
\(711\) −143.345 + 248.281i −0.201611 + 0.349200i
\(712\) 0 0
\(713\) 1354.97i 1.90038i
\(714\) 0 0
\(715\) 482.382 0.674660
\(716\) 0 0
\(717\) 164.714 + 95.0975i 0.229726 + 0.132632i
\(718\) 0 0
\(719\) −674.187 + 389.242i −0.937673 + 0.541366i −0.889230 0.457460i \(-0.848759\pi\)
−0.0484429 + 0.998826i \(0.515426\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 31.4376 + 54.4514i 0.0434821 + 0.0753132i
\(724\) 0 0
\(725\) 33.3381 57.7433i 0.0459836 0.0796459i
\(726\) 0 0
\(727\) 735.255i 1.01135i −0.862723 0.505677i \(-0.831243\pi\)
0.862723 0.505677i \(-0.168757\pi\)
\(728\) 0 0
\(729\) 490.632 0.673021
\(730\) 0 0
\(731\) 34.1543 + 19.7190i 0.0467227 + 0.0269754i
\(732\) 0 0
\(733\) 414.705 239.430i 0.565764 0.326644i −0.189692 0.981844i \(-0.560749\pi\)
0.755456 + 0.655200i \(0.227415\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −82.3965 142.715i −0.111800 0.193643i
\(738\) 0 0
\(739\) −9.95227 + 17.2378i −0.0134672 + 0.0233259i −0.872680 0.488292i \(-0.837620\pi\)
0.859213 + 0.511618i \(0.170954\pi\)
\(740\) 0 0
\(741\) 45.8739i 0.0619080i
\(742\) 0 0
\(743\) −43.3095 −0.0582901 −0.0291450 0.999575i \(-0.509278\pi\)
−0.0291450 + 0.999575i \(0.509278\pi\)
\(744\) 0 0
\(745\) −530.603 306.344i −0.712218 0.411199i
\(746\) 0 0
\(747\) −937.499 + 541.265i −1.25502 + 0.724585i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 112.665 + 195.142i 0.150020 + 0.259842i 0.931235 0.364420i \(-0.118733\pi\)
−0.781215 + 0.624263i \(0.785400\pi\)
\(752\) 0 0
\(753\) 177.801 307.961i 0.236124 0.408978i
\(754\) 0 0
\(755\) 608.641i 0.806147i
\(756\) 0 0
\(757\) 935.779 1.23617 0.618084 0.786112i \(-0.287909\pi\)
0.618084 + 0.786112i \(0.287909\pi\)
\(758\) 0 0
\(759\) 81.9594 + 47.3193i 0.107983 + 0.0623443i
\(760\) 0 0
\(761\) −1214.79 + 701.357i −1.59630 + 0.921625i −0.604110 + 0.796901i \(0.706471\pi\)
−0.992191 + 0.124724i \(0.960195\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −105.816 183.279i −0.138322 0.239581i
\(766\) 0 0
\(767\) 296.044 512.763i 0.385976 0.668530i
\(768\) 0 0
\(769\) 1.72330i 0.00224097i −0.999999 0.00112048i \(-0.999643\pi\)
0.999999 0.00112048i \(-0.000356661\pi\)
\(770\) 0 0
\(771\) −287.360 −0.372711
\(772\) 0 0
\(773\) −194.213 112.129i −0.251245 0.145057i 0.369089 0.929394i \(-0.379670\pi\)
−0.620334 + 0.784337i \(0.713003\pi\)
\(774\) 0 0
\(775\) −802.831 + 463.514i −1.03591 + 0.598083i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 58.4558 + 101.248i 0.0750396 + 0.129972i
\(780\) 0 0
\(781\) 86.6468 150.077i 0.110943 0.192160i
\(782\) 0 0
\(783\) 44.0908i 0.0563101i
\(784\) 0 0
\(785\) −56.0740 −0.0714319
\(786\) 0 0
\(787\) 60.7979 + 35.1017i 0.0772528 + 0.0446019i 0.538129 0.842863i \(-0.319131\pi\)
−0.460876 + 0.887465i \(0.652465\pi\)
\(788\) 0 0
\(789\) −20.0968 + 11.6029i −0.0254712 + 0.0147058i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −691.992 1198.57i −0.872625 1.51143i
\(794\) 0 0
\(795\) −133.136 + 230.598i −0.167467 + 0.290061i
\(796\) 0 0
\(797\) 1305.38i 1.63787i −0.573889 0.818933i \(-0.694566\pi\)
0.573889 0.818933i \(-0.305434\pi\)
\(798\) 0 0
\(799\) 198.140 0.247985
\(800\) 0 0
\(801\) −369.859 213.538i −0.461747 0.266590i
\(802\) 0 0
\(803\) 216.740 125.135i 0.269913 0.155834i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 110.114 + 190.723i 0.136448 + 0.236335i
\(808\) 0 0
\(809\) −381.382 + 660.573i −0.471424 + 0.816531i −0.999466 0.0326879i \(-0.989593\pi\)
0.528041 + 0.849219i \(0.322927\pi\)
\(810\) 0 0
\(811\) 1214.98i 1.49813i 0.662498 + 0.749064i \(0.269496\pi\)
−0.662498 + 0.749064i \(0.730504\pi\)
\(812\) 0 0
\(813\) −54.5147 −0.0670538
\(814\) 0 0
\(815\) 1274.74 + 735.970i 1.56410 + 0.903031i
\(816\) 0 0
\(817\) 37.9706 21.9223i 0.0464756 0.0268327i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 291.684 + 505.211i 0.355279 + 0.615361i 0.987166 0.159700i \(-0.0510527\pi\)
−0.631887 + 0.775061i \(0.717719\pi\)
\(822\) 0 0
\(823\) 515.371 892.648i 0.626210 1.08463i −0.362096 0.932141i \(-0.617939\pi\)
0.988306 0.152486i \(-0.0487280\pi\)
\(824\) 0 0
\(825\) 64.7487i 0.0784833i
\(826\) 0 0
\(827\) −152.102 −0.183920 −0.0919599 0.995763i \(-0.529313\pi\)
−0.0919599 + 0.995763i \(0.529313\pi\)
\(828\) 0 0
\(829\) −532.095 307.205i −0.641852 0.370573i 0.143476 0.989654i \(-0.454172\pi\)
−0.785327 + 0.619081i \(0.787505\pi\)
\(830\) 0 0
\(831\) −172.983 + 99.8715i −0.208162 + 0.120182i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 559.794 + 969.592i 0.670412 + 1.16119i
\(836\) 0 0
\(837\) −306.507 + 530.886i −0.366197 + 0.634272i
\(838\) 0 0
\(839\) 1546.14i 1.84284i −0.388568 0.921420i \(-0.627030\pi\)
0.388568 0.921420i \(-0.372970\pi\)
\(840\) 0 0
\(841\) −828.647 −0.985311
\(842\) 0 0
\(843\) 245.229 + 141.583i 0.290901 + 0.167952i
\(844\) 0 0
\(845\) −372.257 + 214.923i −0.440541 + 0.254347i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 52.5152 + 90.9589i 0.0618553 + 0.107137i
\(850\) 0 0
\(851\) 40.7756 70.6255i 0.0479150 0.0829912i
\(852\) 0 0
\(853\) 1235.15i 1.44800i 0.689798 + 0.724002i \(0.257699\pi\)
−0.689798 + 0.724002i \(0.742301\pi\)
\(854\) 0 0
\(855\) −235.279 −0.275180
\(856\) 0 0
\(857\) 953.219 + 550.341i 1.11227 + 0.642172i 0.939417 0.342775i \(-0.111367\pi\)
0.172857 + 0.984947i \(0.444700\pi\)
\(858\) 0 0
\(859\) 512.488 295.885i 0.596610 0.344453i −0.171096 0.985254i \(-0.554731\pi\)
0.767707 + 0.640801i \(0.221398\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −32.3635 56.0553i −0.0375012 0.0649540i 0.846666 0.532125i \(-0.178606\pi\)
−0.884167 + 0.467171i \(0.845273\pi\)
\(864\) 0 0
\(865\) 544.875 943.751i 0.629913 1.09104i
\(866\) 0 0
\(867\) 197.190i 0.227440i
\(868\) 0 0
\(869\) 160.736 0.184967
\(870\) 0 0
\(871\) 458.720 + 264.842i 0.526659 + 0.304067i
\(872\) 0 0
\(873\) −748.014 + 431.866i −0.856832 + 0.494692i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 152.096 + 263.438i 0.173427 + 0.300385i 0.939616 0.342231i \(-0.111182\pi\)
−0.766188 + 0.642616i \(0.777849\pi\)
\(878\) 0 0
\(879\) 107.500 186.196i 0.122299 0.211827i
\(880\) 0 0
\(881\) 863.732i 0.980400i −0.871610 0.490200i \(-0.836924\pi\)
0.871610 0.490200i \(-0.163076\pi\)
\(882\) 0 0
\(883\) 567.456 0.642645 0.321323 0.946970i \(-0.395873\pi\)
0.321323 + 0.946970i \(0.395873\pi\)
\(884\) 0 0
\(885\) 159.529 + 92.1039i 0.180258 + 0.104072i
\(886\) 0 0
\(887\) −770.555 + 444.880i −0.868721 + 0.501556i −0.866923 0.498442i \(-0.833906\pi\)
−0.00179783 + 0.999998i \(0.500572\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −160.246 277.554i −0.179849 0.311508i
\(892\) 0 0
\(893\) 110.140 190.767i 0.123337 0.213625i
\(894\) 0 0
\(895\) 1227.96i 1.37202i
\(896\) 0 0
\(897\) −304.191 −0.339120
\(898\) 0 0
\(899\) −148.742 85.8764i −0.165453 0.0955243i
\(900\) 0 0
\(901\) −182.316 + 105.260i −0.202349 + 0.116826i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 514.191 + 890.605i 0.568167 + 0.984094i
\(906\) 0 0
\(907\) 186.989 323.874i 0.206162 0.357083i −0.744340 0.667800i \(-0.767236\pi\)
0.950502 + 0.310717i \(0.100569\pi\)
\(908\) 0 0
\(909\) 506.395i 0.557091i
\(910\) 0 0
\(911\) −1133.75 −1.24451 −0.622256 0.782814i \(-0.713784\pi\)
−0.622256 + 0.782814i \(0.713784\pi\)
\(912\) 0 0
\(913\) 525.618 + 303.466i 0.575704 + 0.332383i
\(914\) 0 0
\(915\) 372.893 215.290i 0.407533 0.235289i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 228.151 + 395.169i 0.248260 + 0.429999i 0.963043 0.269347i \(-0.0868078\pi\)
−0.714783 + 0.699346i \(0.753475\pi\)
\(920\) 0 0
\(921\) 7.52900 13.0406i 0.00817481 0.0141592i
\(922\) 0 0
\(923\) 557.007i 0.603474i
\(924\) 0 0
\(925\) 55.7948 0.0603187
\(926\) 0 0
\(927\) −883.124 509.872i −0.952669 0.550024i
\(928\) 0 0
\(929\) 824.058 475.770i 0.887037 0.512131i 0.0140650 0.999901i \(-0.495523\pi\)
0.872972 + 0.487770i \(0.162189\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 65.3011 + 113.105i 0.0699904 + 0.121227i
\(934\) 0 0
\(935\) −59.3269 + 102.757i −0.0634513 + 0.109901i
\(936\) 0 0
\(937\) 1295.71i 1.38283i 0.722460 + 0.691413i \(0.243011\pi\)
−0.722460 + 0.691413i \(0.756989\pi\)
\(938\) 0 0
\(939\) 70.2578 0.0748219
\(940\) 0 0
\(941\) 1175.10 + 678.446i 1.24878 + 0.720984i 0.970866 0.239622i \(-0.0770234\pi\)
0.277915 + 0.960606i \(0.410357\pi\)
\(942\) 0 0
\(943\) 671.382 387.622i 0.711964 0.411052i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −354.731 614.412i −0.374584 0.648799i 0.615681 0.787996i \(-0.288881\pi\)
−0.990265 + 0.139197i \(0.955548\pi\)
\(948\) 0 0
\(949\) −402.213 + 696.654i −0.423828 + 0.734092i
\(950\) 0 0
\(951\) 345.784i 0.363601i
\(952\) 0 0
\(953\) 936.603 0.982794 0.491397 0.870936i \(-0.336486\pi\)
0.491397 + 0.870936i \(0.336486\pi\)
\(954\) 0 0
\(955\) 1424.72 + 822.564i 1.49186 + 0.861324i
\(956\) 0 0
\(957\) −10.3890 + 5.99807i −0.0108558 + 0.00626757i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 713.477 + 1235.78i 0.742432 + 1.28593i
\(962\) 0 0
\(963\) −482.007 + 834.861i −0.500527 + 0.866938i
\(964\) 0 0
\(965\) 1023.42i 1.06054i
\(966\) 0 0
\(967\) −1374.37 −1.42127 −0.710635 0.703561i \(-0.751592\pi\)
−0.710635 + 0.703561i \(0.751592\pi\)
\(968\) 0 0
\(969\) 9.77208 + 5.64191i 0.0100847 + 0.00582241i
\(970\) 0 0
\(971\) −27.2466 + 15.7309i −0.0280604 + 0.0162007i −0.513965 0.857811i \(-0.671824\pi\)
0.485904 + 0.874012i \(0.338490\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −104.059 180.235i −0.106727 0.184857i
\(976\) 0 0
\(977\) 270.949 469.297i 0.277327 0.480345i −0.693392 0.720560i \(-0.743885\pi\)
0.970720 + 0.240215i \(0.0772181\pi\)
\(978\) 0 0
\(979\) 239.445i 0.244581i
\(980\) 0 0
\(981\) −1232.98 −1.25687
\(982\) 0 0
\(983\) 19.4161 + 11.2099i 0.0197519 + 0.0114038i 0.509843 0.860267i \(-0.329703\pi\)
−0.490092 + 0.871671i \(0.663037\pi\)
\(984\) 0 0
\(985\) −1040.01 + 600.448i −1.05584 + 0.609592i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −145.368 251.784i −0.146984 0.254584i
\(990\) 0 0
\(991\) 339.017 587.195i 0.342096 0.592528i −0.642726 0.766097i \(-0.722196\pi\)
0.984822 + 0.173568i \(0.0555298\pi\)
\(992\) 0 0
\(993\) 161.429i 0.162567i
\(994\) 0 0
\(995\) 2312.28 2.32390
\(996\) 0 0
\(997\) −758.779 438.081i −0.761062 0.439400i 0.0686147 0.997643i \(-0.478142\pi\)
−0.829677 + 0.558244i \(0.811475\pi\)
\(998\) 0 0
\(999\) 31.9523 18.4477i 0.0319843 0.0184661i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.3.s.c.129.2 4
4.3 odd 2 98.3.d.a.31.1 4
7.2 even 3 112.3.s.b.33.1 4
7.3 odd 6 784.3.c.e.97.3 4
7.4 even 3 784.3.c.e.97.2 4
7.5 odd 6 inner 784.3.s.c.705.2 4
7.6 odd 2 112.3.s.b.17.1 4
12.11 even 2 882.3.n.b.325.2 4
21.2 odd 6 1008.3.cg.l.145.2 4
21.20 even 2 1008.3.cg.l.577.2 4
28.3 even 6 98.3.b.b.97.3 4
28.11 odd 6 98.3.b.b.97.4 4
28.19 even 6 98.3.d.a.19.1 4
28.23 odd 6 14.3.d.a.5.1 yes 4
28.27 even 2 14.3.d.a.3.1 4
56.13 odd 2 448.3.s.c.129.2 4
56.27 even 2 448.3.s.d.129.1 4
56.37 even 6 448.3.s.c.257.2 4
56.51 odd 6 448.3.s.d.257.1 4
84.11 even 6 882.3.c.f.685.1 4
84.23 even 6 126.3.n.c.19.2 4
84.47 odd 6 882.3.n.b.19.2 4
84.59 odd 6 882.3.c.f.685.2 4
84.83 odd 2 126.3.n.c.73.2 4
140.23 even 12 350.3.i.a.299.3 8
140.27 odd 4 350.3.i.a.199.3 8
140.79 odd 6 350.3.k.a.201.2 4
140.83 odd 4 350.3.i.a.199.2 8
140.107 even 12 350.3.i.a.299.2 8
140.139 even 2 350.3.k.a.101.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.3.d.a.3.1 4 28.27 even 2
14.3.d.a.5.1 yes 4 28.23 odd 6
98.3.b.b.97.3 4 28.3 even 6
98.3.b.b.97.4 4 28.11 odd 6
98.3.d.a.19.1 4 28.19 even 6
98.3.d.a.31.1 4 4.3 odd 2
112.3.s.b.17.1 4 7.6 odd 2
112.3.s.b.33.1 4 7.2 even 3
126.3.n.c.19.2 4 84.23 even 6
126.3.n.c.73.2 4 84.83 odd 2
350.3.i.a.199.2 8 140.83 odd 4
350.3.i.a.199.3 8 140.27 odd 4
350.3.i.a.299.2 8 140.107 even 12
350.3.i.a.299.3 8 140.23 even 12
350.3.k.a.101.2 4 140.139 even 2
350.3.k.a.201.2 4 140.79 odd 6
448.3.s.c.129.2 4 56.13 odd 2
448.3.s.c.257.2 4 56.37 even 6
448.3.s.d.129.1 4 56.27 even 2
448.3.s.d.257.1 4 56.51 odd 6
784.3.c.e.97.2 4 7.4 even 3
784.3.c.e.97.3 4 7.3 odd 6
784.3.s.c.129.2 4 1.1 even 1 trivial
784.3.s.c.705.2 4 7.5 odd 6 inner
882.3.c.f.685.1 4 84.11 even 6
882.3.c.f.685.2 4 84.59 odd 6
882.3.n.b.19.2 4 84.47 odd 6
882.3.n.b.325.2 4 12.11 even 2
1008.3.cg.l.145.2 4 21.2 odd 6
1008.3.cg.l.577.2 4 21.20 even 2