Properties

Label 126.3.n.c.19.2
Level $126$
Weight $3$
Character 126.19
Analytic conductor $3.433$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(19,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.2
Root \(0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 126.19
Dual form 126.3.n.c.73.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 1.22474i) q^{2} +(-1.00000 - 1.73205i) q^{4} +(5.74264 + 3.31552i) q^{5} +(6.24264 + 3.16693i) q^{7} -2.82843 q^{8} +(8.12132 - 4.68885i) q^{10} +(-2.37868 - 4.11999i) q^{11} -15.2913i q^{13} +(8.29289 - 5.40629i) q^{14} +(-2.00000 + 3.46410i) q^{16} +(3.25736 - 1.88064i) q^{17} +(3.62132 + 2.09077i) q^{19} -13.2621i q^{20} -6.72792 q^{22} +(-13.8640 + 24.0131i) q^{23} +(9.48528 + 16.4290i) q^{25} +(-18.7279 - 10.8126i) q^{26} +(-0.757359 - 13.9795i) q^{28} -3.51472 q^{29} +(-42.3198 + 24.4334i) q^{31} +(2.82843 + 4.89898i) q^{32} -5.31925i q^{34} +(25.3492 + 38.8841i) q^{35} +(1.47056 - 2.54709i) q^{37} +(5.12132 - 2.95680i) q^{38} +(-16.2426 - 9.37769i) q^{40} -27.9590i q^{41} -10.4853 q^{43} +(-4.75736 + 8.23999i) q^{44} +(19.6066 + 33.9596i) q^{46} +(-45.6213 - 26.3395i) q^{47} +(28.9411 + 39.5400i) q^{49} +26.8284 q^{50} +(-26.4853 + 15.2913i) q^{52} +(27.9853 + 48.4719i) q^{53} -31.5462i q^{55} +(-17.6569 - 8.95743i) q^{56} +(-2.48528 + 4.30463i) q^{58} +(-33.5330 + 19.3603i) q^{59} +(-78.3823 - 45.2540i) q^{61} +69.1080i q^{62} +8.00000 q^{64} +(50.6985 - 87.8124i) q^{65} +(17.3198 + 29.9988i) q^{67} +(-6.51472 - 3.76127i) q^{68} +(65.5477 - 3.55114i) q^{70} -36.4264 q^{71} +(45.5589 - 26.3034i) q^{73} +(-2.07969 - 3.60213i) q^{74} -8.36308i q^{76} +(-1.80152 - 33.2528i) q^{77} +(16.8934 - 29.2602i) q^{79} +(-22.9706 + 13.2621i) q^{80} +(-34.2426 - 19.7700i) q^{82} -127.577i q^{83} +24.9411 q^{85} +(-7.41421 + 12.8418i) q^{86} +(6.72792 + 11.6531i) q^{88} +(43.5883 + 25.1657i) q^{89} +(48.4264 - 95.4580i) q^{91} +55.4558 q^{92} +(-64.5183 + 37.2497i) q^{94} +(13.8640 + 24.0131i) q^{95} -101.792i q^{97} +(68.8909 - 7.48650i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 6 q^{5} + 8 q^{7} + 24 q^{10} - 18 q^{11} + 36 q^{14} - 8 q^{16} + 30 q^{17} + 6 q^{19} + 24 q^{22} - 30 q^{23} + 4 q^{25} - 24 q^{26} - 20 q^{28} - 48 q^{29} - 42 q^{31} + 42 q^{35} - 62 q^{37}+ \cdots + 120 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 1.22474i 0.353553 0.612372i
\(3\) 0 0
\(4\) −1.00000 1.73205i −0.250000 0.433013i
\(5\) 5.74264 + 3.31552i 1.14853 + 0.663103i 0.948528 0.316693i \(-0.102572\pi\)
0.200000 + 0.979796i \(0.435906\pi\)
\(6\) 0 0
\(7\) 6.24264 + 3.16693i 0.891806 + 0.452418i
\(8\) −2.82843 −0.353553
\(9\) 0 0
\(10\) 8.12132 4.68885i 0.812132 0.468885i
\(11\) −2.37868 4.11999i −0.216244 0.374545i 0.737413 0.675442i \(-0.236047\pi\)
−0.953657 + 0.300897i \(0.902714\pi\)
\(12\) 0 0
\(13\) 15.2913i 1.17625i −0.808769 0.588126i \(-0.799866\pi\)
0.808769 0.588126i \(-0.200134\pi\)
\(14\) 8.29289 5.40629i 0.592350 0.386163i
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) 3.25736 1.88064i 0.191609 0.110626i −0.401126 0.916023i \(-0.631381\pi\)
0.592736 + 0.805397i \(0.298048\pi\)
\(18\) 0 0
\(19\) 3.62132 + 2.09077i 0.190596 + 0.110041i 0.592261 0.805746i \(-0.298235\pi\)
−0.401666 + 0.915786i \(0.631569\pi\)
\(20\) 13.2621i 0.663103i
\(21\) 0 0
\(22\) −6.72792 −0.305815
\(23\) −13.8640 + 24.0131i −0.602781 + 1.04405i 0.389617 + 0.920977i \(0.372607\pi\)
−0.992398 + 0.123070i \(0.960726\pi\)
\(24\) 0 0
\(25\) 9.48528 + 16.4290i 0.379411 + 0.657160i
\(26\) −18.7279 10.8126i −0.720305 0.415868i
\(27\) 0 0
\(28\) −0.757359 13.9795i −0.0270485 0.499268i
\(29\) −3.51472 −0.121197 −0.0605986 0.998162i \(-0.519301\pi\)
−0.0605986 + 0.998162i \(0.519301\pi\)
\(30\) 0 0
\(31\) −42.3198 + 24.4334i −1.36516 + 0.788173i −0.990305 0.138913i \(-0.955639\pi\)
−0.374850 + 0.927085i \(0.622306\pi\)
\(32\) 2.82843 + 4.89898i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 5.31925i 0.156448i
\(35\) 25.3492 + 38.8841i 0.724264 + 1.11097i
\(36\) 0 0
\(37\) 1.47056 2.54709i 0.0397449 0.0688403i −0.845469 0.534025i \(-0.820679\pi\)
0.885214 + 0.465185i \(0.154012\pi\)
\(38\) 5.12132 2.95680i 0.134772 0.0778104i
\(39\) 0 0
\(40\) −16.2426 9.37769i −0.406066 0.234442i
\(41\) 27.9590i 0.681927i −0.940077 0.340963i \(-0.889247\pi\)
0.940077 0.340963i \(-0.110753\pi\)
\(42\) 0 0
\(43\) −10.4853 −0.243844 −0.121922 0.992540i \(-0.538906\pi\)
−0.121922 + 0.992540i \(0.538906\pi\)
\(44\) −4.75736 + 8.23999i −0.108122 + 0.187272i
\(45\) 0 0
\(46\) 19.6066 + 33.9596i 0.426230 + 0.738253i
\(47\) −45.6213 26.3395i −0.970666 0.560415i −0.0712271 0.997460i \(-0.522691\pi\)
−0.899439 + 0.437046i \(0.856025\pi\)
\(48\) 0 0
\(49\) 28.9411 + 39.5400i 0.590635 + 0.806939i
\(50\) 26.8284 0.536569
\(51\) 0 0
\(52\) −26.4853 + 15.2913i −0.509332 + 0.294063i
\(53\) 27.9853 + 48.4719i 0.528024 + 0.914565i 0.999466 + 0.0326677i \(0.0104003\pi\)
−0.471442 + 0.881897i \(0.656266\pi\)
\(54\) 0 0
\(55\) 31.5462i 0.573567i
\(56\) −17.6569 8.95743i −0.315301 0.159954i
\(57\) 0 0
\(58\) −2.48528 + 4.30463i −0.0428497 + 0.0742178i
\(59\) −33.5330 + 19.3603i −0.568356 + 0.328141i −0.756492 0.654002i \(-0.773089\pi\)
0.188136 + 0.982143i \(0.439755\pi\)
\(60\) 0 0
\(61\) −78.3823 45.2540i −1.28495 0.741869i −0.307205 0.951643i \(-0.599394\pi\)
−0.977750 + 0.209774i \(0.932727\pi\)
\(62\) 69.1080i 1.11464i
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) 50.6985 87.8124i 0.779977 1.35096i
\(66\) 0 0
\(67\) 17.3198 + 29.9988i 0.258505 + 0.447743i 0.965842 0.259134i \(-0.0834370\pi\)
−0.707337 + 0.706877i \(0.750104\pi\)
\(68\) −6.51472 3.76127i −0.0958047 0.0553129i
\(69\) 0 0
\(70\) 65.5477 3.55114i 0.936396 0.0507306i
\(71\) −36.4264 −0.513048 −0.256524 0.966538i \(-0.582577\pi\)
−0.256524 + 0.966538i \(0.582577\pi\)
\(72\) 0 0
\(73\) 45.5589 26.3034i 0.624094 0.360321i −0.154367 0.988014i \(-0.549334\pi\)
0.778461 + 0.627693i \(0.216001\pi\)
\(74\) −2.07969 3.60213i −0.0281039 0.0486774i
\(75\) 0 0
\(76\) 8.36308i 0.110041i
\(77\) −1.80152 33.2528i −0.0233963 0.431854i
\(78\) 0 0
\(79\) 16.8934 29.2602i 0.213840 0.370383i −0.739073 0.673626i \(-0.764736\pi\)
0.952913 + 0.303243i \(0.0980694\pi\)
\(80\) −22.9706 + 13.2621i −0.287132 + 0.165776i
\(81\) 0 0
\(82\) −34.2426 19.7700i −0.417593 0.241098i
\(83\) 127.577i 1.53708i −0.639803 0.768539i \(-0.720984\pi\)
0.639803 0.768539i \(-0.279016\pi\)
\(84\) 0 0
\(85\) 24.9411 0.293425
\(86\) −7.41421 + 12.8418i −0.0862118 + 0.149323i
\(87\) 0 0
\(88\) 6.72792 + 11.6531i 0.0764537 + 0.132422i
\(89\) 43.5883 + 25.1657i 0.489756 + 0.282761i 0.724473 0.689303i \(-0.242083\pi\)
−0.234717 + 0.972064i \(0.575416\pi\)
\(90\) 0 0
\(91\) 48.4264 95.4580i 0.532158 1.04899i
\(92\) 55.4558 0.602781
\(93\) 0 0
\(94\) −64.5183 + 37.2497i −0.686365 + 0.396273i
\(95\) 13.8640 + 24.0131i 0.145936 + 0.252769i
\(96\) 0 0
\(97\) 101.792i 1.04940i −0.851287 0.524700i \(-0.824177\pi\)
0.851287 0.524700i \(-0.175823\pi\)
\(98\) 68.8909 7.48650i 0.702968 0.0763928i
\(99\) 0 0
\(100\) 18.9706 32.8580i 0.189706 0.328580i
\(101\) 51.6838 29.8396i 0.511720 0.295442i −0.221820 0.975088i \(-0.571200\pi\)
0.733541 + 0.679646i \(0.237866\pi\)
\(102\) 0 0
\(103\) 104.077 + 60.0890i 1.01046 + 0.583388i 0.911326 0.411686i \(-0.135060\pi\)
0.0991322 + 0.995074i \(0.468393\pi\)
\(104\) 43.2503i 0.415868i
\(105\) 0 0
\(106\) 79.1543 0.746739
\(107\) −56.8051 + 98.3893i −0.530889 + 0.919526i 0.468462 + 0.883484i \(0.344808\pi\)
−0.999350 + 0.0360423i \(0.988525\pi\)
\(108\) 0 0
\(109\) 72.6543 + 125.841i 0.666553 + 1.15450i 0.978862 + 0.204524i \(0.0655645\pi\)
−0.312308 + 0.949981i \(0.601102\pi\)
\(110\) −38.6360 22.3065i −0.351237 0.202787i
\(111\) 0 0
\(112\) −23.4558 + 15.2913i −0.209427 + 0.136529i
\(113\) −34.5442 −0.305700 −0.152850 0.988249i \(-0.548845\pi\)
−0.152850 + 0.988249i \(0.548845\pi\)
\(114\) 0 0
\(115\) −159.231 + 91.9323i −1.38462 + 0.799412i
\(116\) 3.51472 + 6.08767i 0.0302993 + 0.0524799i
\(117\) 0 0
\(118\) 54.7592i 0.464061i
\(119\) 26.2904 1.42432i 0.220927 0.0119691i
\(120\) 0 0
\(121\) 49.1838 85.1888i 0.406477 0.704040i
\(122\) −110.849 + 63.9988i −0.908600 + 0.524581i
\(123\) 0 0
\(124\) 84.6396 + 48.8667i 0.682578 + 0.394086i
\(125\) 39.9814i 0.319851i
\(126\) 0 0
\(127\) −247.338 −1.94754 −0.973772 0.227526i \(-0.926936\pi\)
−0.973772 + 0.227526i \(0.926936\pi\)
\(128\) 5.65685 9.79796i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −71.6985 124.185i −0.551527 0.955272i
\(131\) 127.864 + 73.8223i 0.976061 + 0.563529i 0.901079 0.433656i \(-0.142777\pi\)
0.0749822 + 0.997185i \(0.476110\pi\)
\(132\) 0 0
\(133\) 15.9853 + 24.5204i 0.120190 + 0.184364i
\(134\) 48.9878 0.365581
\(135\) 0 0
\(136\) −9.21320 + 5.31925i −0.0677441 + 0.0391121i
\(137\) −16.2868 28.2096i −0.118882 0.205909i 0.800443 0.599409i \(-0.204598\pi\)
−0.919325 + 0.393500i \(0.871264\pi\)
\(138\) 0 0
\(139\) 68.5857i 0.493422i −0.969089 0.246711i \(-0.920650\pi\)
0.969089 0.246711i \(-0.0793499\pi\)
\(140\) 42.0000 82.7903i 0.300000 0.591359i
\(141\) 0 0
\(142\) −25.7574 + 44.6131i −0.181390 + 0.314176i
\(143\) −63.0000 + 36.3731i −0.440559 + 0.254357i
\(144\) 0 0
\(145\) −20.1838 11.6531i −0.139198 0.0803662i
\(146\) 74.3973i 0.509571i
\(147\) 0 0
\(148\) −5.88225 −0.0397449
\(149\) 46.1985 80.0181i 0.310057 0.537034i −0.668317 0.743876i \(-0.732985\pi\)
0.978374 + 0.206842i \(0.0663185\pi\)
\(150\) 0 0
\(151\) 45.8934 + 79.4897i 0.303930 + 0.526422i 0.977022 0.213136i \(-0.0683678\pi\)
−0.673093 + 0.739558i \(0.735035\pi\)
\(152\) −10.2426 5.91359i −0.0673858 0.0389052i
\(153\) 0 0
\(154\) −42.0000 21.3068i −0.272727 0.138356i
\(155\) −324.037 −2.09056
\(156\) 0 0
\(157\) 7.32338 4.22815i 0.0466457 0.0269309i −0.476496 0.879177i \(-0.658093\pi\)
0.523142 + 0.852246i \(0.324760\pi\)
\(158\) −23.8909 41.3802i −0.151208 0.261900i
\(159\) 0 0
\(160\) 37.5108i 0.234442i
\(161\) −162.595 + 105.999i −1.00991 + 0.658378i
\(162\) 0 0
\(163\) −110.989 + 192.238i −0.680913 + 1.17938i 0.293789 + 0.955870i \(0.405084\pi\)
−0.974703 + 0.223506i \(0.928250\pi\)
\(164\) −48.4264 + 27.9590i −0.295283 + 0.170482i
\(165\) 0 0
\(166\) −156.250 90.2109i −0.941264 0.543439i
\(167\) 168.841i 1.01102i 0.862820 + 0.505511i \(0.168696\pi\)
−0.862820 + 0.505511i \(0.831304\pi\)
\(168\) 0 0
\(169\) −64.8234 −0.383570
\(170\) 17.6360 30.5465i 0.103741 0.179685i
\(171\) 0 0
\(172\) 10.4853 + 18.1610i 0.0609609 + 0.105587i
\(173\) 142.323 + 82.1704i 0.822678 + 0.474974i 0.851339 0.524616i \(-0.175791\pi\)
−0.0286608 + 0.999589i \(0.509124\pi\)
\(174\) 0 0
\(175\) 7.18377 + 132.599i 0.0410501 + 0.757711i
\(176\) 19.0294 0.108122
\(177\) 0 0
\(178\) 61.6432 35.5897i 0.346310 0.199942i
\(179\) 92.5919 + 160.374i 0.517273 + 0.895943i 0.999799 + 0.0200614i \(0.00638618\pi\)
−0.482526 + 0.875882i \(0.660280\pi\)
\(180\) 0 0
\(181\) 155.086i 0.856830i 0.903582 + 0.428415i \(0.140928\pi\)
−0.903582 + 0.428415i \(0.859072\pi\)
\(182\) −82.6690 126.809i −0.454226 0.696753i
\(183\) 0 0
\(184\) 39.2132 67.9193i 0.213115 0.369126i
\(185\) 16.8898 9.75135i 0.0912964 0.0527100i
\(186\) 0 0
\(187\) −15.4964 8.94687i −0.0828686 0.0478442i
\(188\) 105.358i 0.560415i
\(189\) 0 0
\(190\) 39.2132 0.206385
\(191\) 124.048 214.857i 0.649465 1.12491i −0.333786 0.942649i \(-0.608326\pi\)
0.983251 0.182257i \(-0.0583402\pi\)
\(192\) 0 0
\(193\) −77.1690 133.661i −0.399840 0.692543i 0.593866 0.804564i \(-0.297601\pi\)
−0.993706 + 0.112021i \(0.964268\pi\)
\(194\) −124.669 71.9777i −0.642624 0.371019i
\(195\) 0 0
\(196\) 39.5442 89.6675i 0.201756 0.457487i
\(197\) 181.103 0.919303 0.459651 0.888099i \(-0.347974\pi\)
0.459651 + 0.888099i \(0.347974\pi\)
\(198\) 0 0
\(199\) 301.989 174.353i 1.51753 0.876147i 0.517744 0.855535i \(-0.326772\pi\)
0.999788 0.0206121i \(-0.00656150\pi\)
\(200\) −26.8284 46.4682i −0.134142 0.232341i
\(201\) 0 0
\(202\) 84.3992i 0.417818i
\(203\) −21.9411 11.1309i −0.108084 0.0548318i
\(204\) 0 0
\(205\) 92.6985 160.558i 0.452188 0.783212i
\(206\) 147.187 84.9786i 0.714502 0.412518i
\(207\) 0 0
\(208\) 52.9706 + 30.5826i 0.254666 + 0.147032i
\(209\) 19.8931i 0.0951823i
\(210\) 0 0
\(211\) 364.073 1.72547 0.862733 0.505660i \(-0.168751\pi\)
0.862733 + 0.505660i \(0.168751\pi\)
\(212\) 55.9706 96.9439i 0.264012 0.457282i
\(213\) 0 0
\(214\) 80.3345 + 139.143i 0.375395 + 0.650203i
\(215\) −60.2132 34.7641i −0.280061 0.161694i
\(216\) 0 0
\(217\) −341.566 + 18.5048i −1.57404 + 0.0852757i
\(218\) 205.497 0.942649
\(219\) 0 0
\(220\) −54.6396 + 31.5462i −0.248362 + 0.143392i
\(221\) −28.7574 49.8092i −0.130124 0.225381i
\(222\) 0 0
\(223\) 123.231i 0.552603i −0.961071 0.276302i \(-0.910891\pi\)
0.961071 0.276302i \(-0.0891089\pi\)
\(224\) 2.14214 + 39.5400i 0.00956311 + 0.176518i
\(225\) 0 0
\(226\) −24.4264 + 42.3078i −0.108081 + 0.187203i
\(227\) 66.1432 38.1878i 0.291380 0.168228i −0.347184 0.937797i \(-0.612862\pi\)
0.638564 + 0.769569i \(0.279529\pi\)
\(228\) 0 0
\(229\) 309.419 + 178.643i 1.35117 + 0.780101i 0.988414 0.151782i \(-0.0485012\pi\)
0.362760 + 0.931883i \(0.381834\pi\)
\(230\) 260.024i 1.13054i
\(231\) 0 0
\(232\) 9.94113 0.0428497
\(233\) −136.537 + 236.488i −0.585994 + 1.01497i 0.408757 + 0.912643i \(0.365962\pi\)
−0.994751 + 0.102328i \(0.967371\pi\)
\(234\) 0 0
\(235\) −174.658 302.516i −0.743225 1.28730i
\(236\) 67.0660 + 38.7206i 0.284178 + 0.164070i
\(237\) 0 0
\(238\) 16.8457 33.2061i 0.0707801 0.139522i
\(239\) 265.103 1.10922 0.554608 0.832112i \(-0.312868\pi\)
0.554608 + 0.832112i \(0.312868\pi\)
\(240\) 0 0
\(241\) −75.8970 + 43.8191i −0.314925 + 0.181822i −0.649128 0.760679i \(-0.724866\pi\)
0.334203 + 0.942501i \(0.391533\pi\)
\(242\) −69.5563 120.475i −0.287423 0.497831i
\(243\) 0 0
\(244\) 181.016i 0.741869i
\(245\) 35.1030 + 323.019i 0.143278 + 1.31844i
\(246\) 0 0
\(247\) 31.9706 55.3746i 0.129435 0.224189i
\(248\) 119.698 69.1080i 0.482655 0.278661i
\(249\) 0 0
\(250\) −48.9670 28.2711i −0.195868 0.113084i
\(251\) 495.655i 1.97472i −0.158491 0.987360i \(-0.550663\pi\)
0.158491 0.987360i \(-0.449337\pi\)
\(252\) 0 0
\(253\) 131.912 0.521390
\(254\) −174.894 + 302.926i −0.688561 + 1.19262i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −346.875 200.268i −1.34971 0.779254i −0.361499 0.932372i \(-0.617735\pi\)
−0.988208 + 0.153119i \(0.951068\pi\)
\(258\) 0 0
\(259\) 17.2466 11.2434i 0.0665894 0.0434108i
\(260\) −202.794 −0.779977
\(261\) 0 0
\(262\) 180.827 104.400i 0.690179 0.398475i
\(263\) −16.1726 28.0118i −0.0614928 0.106509i 0.833640 0.552308i \(-0.186253\pi\)
−0.895133 + 0.445799i \(0.852919\pi\)
\(264\) 0 0
\(265\) 371.142i 1.40054i
\(266\) 41.3345 2.23936i 0.155393 0.00841863i
\(267\) 0 0
\(268\) 34.6396 59.9976i 0.129252 0.223872i
\(269\) 265.838 153.482i 0.988246 0.570564i 0.0834963 0.996508i \(-0.473391\pi\)
0.904749 + 0.425944i \(0.140058\pi\)
\(270\) 0 0
\(271\) −65.8051 37.9926i −0.242823 0.140194i 0.373650 0.927570i \(-0.378106\pi\)
−0.616474 + 0.787376i \(0.711439\pi\)
\(272\) 15.0451i 0.0553129i
\(273\) 0 0
\(274\) −46.0660 −0.168124
\(275\) 45.1249 78.1586i 0.164091 0.284213i
\(276\) 0 0
\(277\) −139.206 241.111i −0.502547 0.870438i −0.999996 0.00294398i \(-0.999063\pi\)
0.497448 0.867494i \(-0.334270\pi\)
\(278\) −84.0000 48.4974i −0.302158 0.174451i
\(279\) 0 0
\(280\) −71.6985 109.981i −0.256066 0.392789i
\(281\) −394.690 −1.40459 −0.702296 0.711885i \(-0.747842\pi\)
−0.702296 + 0.711885i \(0.747842\pi\)
\(282\) 0 0
\(283\) 126.783 73.1981i 0.447996 0.258650i −0.258988 0.965881i \(-0.583389\pi\)
0.706983 + 0.707230i \(0.250056\pi\)
\(284\) 36.4264 + 63.0924i 0.128262 + 0.222156i
\(285\) 0 0
\(286\) 102.879i 0.359715i
\(287\) 88.5442 174.538i 0.308516 0.608146i
\(288\) 0 0
\(289\) −137.426 + 238.030i −0.475524 + 0.823632i
\(290\) −28.5442 + 16.4800i −0.0984281 + 0.0568275i
\(291\) 0 0
\(292\) −91.1177 52.6069i −0.312047 0.180160i
\(293\) 299.678i 1.02279i 0.859345 + 0.511396i \(0.170872\pi\)
−0.859345 + 0.511396i \(0.829128\pi\)
\(294\) 0 0
\(295\) −256.757 −0.870364
\(296\) −4.15938 + 7.20426i −0.0140520 + 0.0243387i
\(297\) 0 0
\(298\) −65.3345 113.163i −0.219243 0.379741i
\(299\) 367.191 + 211.998i 1.22806 + 0.709023i
\(300\) 0 0
\(301\) −65.4558 33.2061i −0.217461 0.110319i
\(302\) 129.806 0.429822
\(303\) 0 0
\(304\) −14.4853 + 8.36308i −0.0476490 + 0.0275101i
\(305\) −300.081 519.755i −0.983871 1.70412i
\(306\) 0 0
\(307\) 20.9886i 0.0683666i 0.999416 + 0.0341833i \(0.0108830\pi\)
−0.999416 + 0.0341833i \(0.989117\pi\)
\(308\) −55.7939 + 36.3731i −0.181149 + 0.118094i
\(309\) 0 0
\(310\) −229.128 + 396.862i −0.739124 + 1.28020i
\(311\) −157.651 + 91.0197i −0.506916 + 0.292668i −0.731565 0.681772i \(-0.761210\pi\)
0.224649 + 0.974440i \(0.427876\pi\)
\(312\) 0 0
\(313\) −84.8087 48.9643i −0.270954 0.156435i 0.358367 0.933581i \(-0.383334\pi\)
−0.629321 + 0.777145i \(0.716667\pi\)
\(314\) 11.9590i 0.0380861i
\(315\) 0 0
\(316\) −67.5736 −0.213840
\(317\) −240.985 + 417.399i −0.760206 + 1.31672i 0.182538 + 0.983199i \(0.441569\pi\)
−0.942744 + 0.333517i \(0.891765\pi\)
\(318\) 0 0
\(319\) 8.36039 + 14.4806i 0.0262081 + 0.0453938i
\(320\) 45.9411 + 26.5241i 0.143566 + 0.0828879i
\(321\) 0 0
\(322\) 14.8492 + 274.090i 0.0461157 + 0.851213i
\(323\) 15.7279 0.0486933
\(324\) 0 0
\(325\) 251.220 145.042i 0.772986 0.446283i
\(326\) 156.962 + 271.866i 0.481478 + 0.833945i
\(327\) 0 0
\(328\) 79.0800i 0.241098i
\(329\) −201.382 308.907i −0.612104 0.938928i
\(330\) 0 0
\(331\) −112.504 + 194.862i −0.339890 + 0.588707i −0.984412 0.175879i \(-0.943723\pi\)
0.644522 + 0.764586i \(0.277056\pi\)
\(332\) −220.971 + 127.577i −0.665574 + 0.384269i
\(333\) 0 0
\(334\) 206.787 + 119.388i 0.619122 + 0.357450i
\(335\) 229.696i 0.685661i
\(336\) 0 0
\(337\) −264.368 −0.784473 −0.392237 0.919864i \(-0.628299\pi\)
−0.392237 + 0.919864i \(0.628299\pi\)
\(338\) −45.8370 + 79.3921i −0.135613 + 0.234888i
\(339\) 0 0
\(340\) −24.9411 43.1993i −0.0733563 0.127057i
\(341\) 201.331 + 116.238i 0.590412 + 0.340875i
\(342\) 0 0
\(343\) 55.4487 + 338.488i 0.161658 + 0.986847i
\(344\) 29.6569 0.0862118
\(345\) 0 0
\(346\) 201.276 116.207i 0.581722 0.335857i
\(347\) −95.6285 165.633i −0.275586 0.477330i 0.694697 0.719303i \(-0.255539\pi\)
−0.970283 + 0.241973i \(0.922205\pi\)
\(348\) 0 0
\(349\) 135.448i 0.388104i −0.980991 0.194052i \(-0.937837\pi\)
0.980991 0.194052i \(-0.0621630\pi\)
\(350\) 167.480 + 84.9637i 0.478515 + 0.242753i
\(351\) 0 0
\(352\) 13.4558 23.3062i 0.0382268 0.0662108i
\(353\) 301.802 174.245i 0.854962 0.493612i −0.00736010 0.999973i \(-0.502343\pi\)
0.862322 + 0.506360i \(0.169009\pi\)
\(354\) 0 0
\(355\) −209.184 120.772i −0.589250 0.340204i
\(356\) 100.663i 0.282761i
\(357\) 0 0
\(358\) 261.889 0.731535
\(359\) 152.415 263.991i 0.424555 0.735351i −0.571824 0.820377i \(-0.693764\pi\)
0.996379 + 0.0850256i \(0.0270972\pi\)
\(360\) 0 0
\(361\) −171.757 297.492i −0.475782 0.824079i
\(362\) 189.941 + 109.663i 0.524699 + 0.302935i
\(363\) 0 0
\(364\) −213.765 + 11.5810i −0.587265 + 0.0318159i
\(365\) 348.838 0.955720
\(366\) 0 0
\(367\) −82.2761 + 47.5021i −0.224186 + 0.129434i −0.607887 0.794024i \(-0.707983\pi\)
0.383701 + 0.923457i \(0.374649\pi\)
\(368\) −55.4558 96.0523i −0.150695 0.261012i
\(369\) 0 0
\(370\) 27.5810i 0.0745432i
\(371\) 21.1949 + 391.220i 0.0571291 + 1.05450i
\(372\) 0 0
\(373\) −126.779 + 219.588i −0.339891 + 0.588708i −0.984412 0.175879i \(-0.943723\pi\)
0.644521 + 0.764586i \(0.277057\pi\)
\(374\) −21.9153 + 12.6528i −0.0585970 + 0.0338310i
\(375\) 0 0
\(376\) 129.037 + 74.4993i 0.343182 + 0.198136i
\(377\) 53.7446i 0.142559i
\(378\) 0 0
\(379\) 508.250 1.34103 0.670514 0.741897i \(-0.266074\pi\)
0.670514 + 0.741897i \(0.266074\pi\)
\(380\) 27.7279 48.0262i 0.0729682 0.126385i
\(381\) 0 0
\(382\) −175.430 303.854i −0.459241 0.795428i
\(383\) −413.753 238.881i −1.08030 0.623709i −0.149320 0.988789i \(-0.547708\pi\)
−0.930976 + 0.365080i \(0.881042\pi\)
\(384\) 0 0
\(385\) 99.9045 196.932i 0.259492 0.511511i
\(386\) −218.267 −0.565459
\(387\) 0 0
\(388\) −176.309 + 101.792i −0.454404 + 0.262350i
\(389\) 85.1102 + 147.415i 0.218792 + 0.378959i 0.954439 0.298406i \(-0.0964550\pi\)
−0.735647 + 0.677365i \(0.763122\pi\)
\(390\) 0 0
\(391\) 104.292i 0.266732i
\(392\) −81.8579 111.836i −0.208821 0.285296i
\(393\) 0 0
\(394\) 128.059 221.804i 0.325023 0.562956i
\(395\) 194.025 112.021i 0.491204 0.283597i
\(396\) 0 0
\(397\) 211.786 + 122.275i 0.533467 + 0.307997i 0.742427 0.669927i \(-0.233675\pi\)
−0.208960 + 0.977924i \(0.567008\pi\)
\(398\) 493.146i 1.23906i
\(399\) 0 0
\(400\) −75.8823 −0.189706
\(401\) −208.786 + 361.629i −0.520664 + 0.901817i 0.479047 + 0.877789i \(0.340982\pi\)
−0.999711 + 0.0240277i \(0.992351\pi\)
\(402\) 0 0
\(403\) 373.617 + 647.124i 0.927090 + 1.60577i
\(404\) −103.368 59.6793i −0.255860 0.147721i
\(405\) 0 0
\(406\) −29.1472 + 19.0016i −0.0717911 + 0.0468019i
\(407\) −13.9920 −0.0343784
\(408\) 0 0
\(409\) 266.919 154.106i 0.652614 0.376787i −0.136843 0.990593i \(-0.543696\pi\)
0.789457 + 0.613806i \(0.210362\pi\)
\(410\) −131.095 227.064i −0.319745 0.553815i
\(411\) 0 0
\(412\) 240.356i 0.583388i
\(413\) −270.647 + 14.6627i −0.655320 + 0.0355029i
\(414\) 0 0
\(415\) 422.985 732.631i 1.01924 1.76538i
\(416\) 74.9117 43.2503i 0.180076 0.103967i
\(417\) 0 0
\(418\) −24.3640 14.0665i −0.0582870 0.0336520i
\(419\) 103.142i 0.246163i −0.992397 0.123081i \(-0.960722\pi\)
0.992397 0.123081i \(-0.0392776\pi\)
\(420\) 0 0
\(421\) −165.220 −0.392447 −0.196224 0.980559i \(-0.562868\pi\)
−0.196224 + 0.980559i \(0.562868\pi\)
\(422\) 257.439 445.897i 0.610044 1.05663i
\(423\) 0 0
\(424\) −79.1543 137.099i −0.186685 0.323347i
\(425\) 61.7939 + 35.6767i 0.145398 + 0.0839453i
\(426\) 0 0
\(427\) −345.996 530.736i −0.810295 1.24294i
\(428\) 227.220 0.530889
\(429\) 0 0
\(430\) −85.1543 + 49.1639i −0.198033 + 0.114335i
\(431\) 297.268 + 514.883i 0.689717 + 1.19463i 0.971929 + 0.235273i \(0.0755984\pi\)
−0.282212 + 0.959352i \(0.591068\pi\)
\(432\) 0 0
\(433\) 40.6267i 0.0938261i 0.998899 + 0.0469131i \(0.0149384\pi\)
−0.998899 + 0.0469131i \(0.985062\pi\)
\(434\) −218.860 + 431.416i −0.504286 + 0.994046i
\(435\) 0 0
\(436\) 145.309 251.682i 0.333277 0.577252i
\(437\) −100.412 + 57.9727i −0.229775 + 0.132661i
\(438\) 0 0
\(439\) 126.959 + 73.3001i 0.289201 + 0.166971i 0.637582 0.770383i \(-0.279935\pi\)
−0.348380 + 0.937353i \(0.613268\pi\)
\(440\) 89.2261i 0.202787i
\(441\) 0 0
\(442\) −81.3381 −0.184023
\(443\) 53.6802 92.9768i 0.121174 0.209880i −0.799057 0.601256i \(-0.794667\pi\)
0.920231 + 0.391376i \(0.128001\pi\)
\(444\) 0 0
\(445\) 166.875 + 289.035i 0.374999 + 0.649518i
\(446\) −150.926 87.1372i −0.338399 0.195375i
\(447\) 0 0
\(448\) 49.9411 + 25.3354i 0.111476 + 0.0565523i
\(449\) −135.161 −0.301028 −0.150514 0.988608i \(-0.548093\pi\)
−0.150514 + 0.988608i \(0.548093\pi\)
\(450\) 0 0
\(451\) −115.191 + 66.5055i −0.255412 + 0.147462i
\(452\) 34.5442 + 59.8322i 0.0764251 + 0.132372i
\(453\) 0 0
\(454\) 108.011i 0.237910i
\(455\) 594.588 387.622i 1.30679 0.851918i
\(456\) 0 0
\(457\) −79.8675 + 138.335i −0.174765 + 0.302702i −0.940080 0.340954i \(-0.889250\pi\)
0.765315 + 0.643656i \(0.222583\pi\)
\(458\) 437.584 252.639i 0.955424 0.551614i
\(459\) 0 0
\(460\) 318.463 + 183.865i 0.692311 + 0.399706i
\(461\) 310.250i 0.672993i 0.941685 + 0.336497i \(0.109242\pi\)
−0.941685 + 0.336497i \(0.890758\pi\)
\(462\) 0 0
\(463\) −326.014 −0.704135 −0.352067 0.935975i \(-0.614521\pi\)
−0.352067 + 0.935975i \(0.614521\pi\)
\(464\) 7.02944 12.1753i 0.0151496 0.0262400i
\(465\) 0 0
\(466\) 193.092 + 334.445i 0.414360 + 0.717693i
\(467\) −515.769 297.779i −1.10443 0.637643i −0.167048 0.985949i \(-0.553424\pi\)
−0.937381 + 0.348306i \(0.886757\pi\)
\(468\) 0 0
\(469\) 13.1173 + 242.122i 0.0279687 + 0.516252i
\(470\) −494.007 −1.05108
\(471\) 0 0
\(472\) 94.8457 54.7592i 0.200944 0.116015i
\(473\) 24.9411 + 43.1993i 0.0527297 + 0.0913304i
\(474\) 0 0
\(475\) 79.3262i 0.167002i
\(476\) −28.7574 44.1119i −0.0604146 0.0926721i
\(477\) 0 0
\(478\) 187.456 324.683i 0.392167 0.679253i
\(479\) −438.798 + 253.340i −0.916071 + 0.528894i −0.882379 0.470539i \(-0.844060\pi\)
−0.0336914 + 0.999432i \(0.510726\pi\)
\(480\) 0 0
\(481\) −38.9483 22.4868i −0.0809735 0.0467501i
\(482\) 123.939i 0.257135i
\(483\) 0 0
\(484\) −196.735 −0.406477
\(485\) 337.492 584.554i 0.695861 1.20527i
\(486\) 0 0
\(487\) −105.651 182.992i −0.216942 0.375755i 0.736930 0.675970i \(-0.236275\pi\)
−0.953872 + 0.300215i \(0.902942\pi\)
\(488\) 221.698 + 127.998i 0.454300 + 0.262290i
\(489\) 0 0
\(490\) 420.437 + 185.416i 0.858035 + 0.378401i
\(491\) 784.161 1.59707 0.798534 0.601949i \(-0.205609\pi\)
0.798534 + 0.601949i \(0.205609\pi\)
\(492\) 0 0
\(493\) −11.4487 + 6.60991i −0.0232225 + 0.0134075i
\(494\) −45.2132 78.3116i −0.0915247 0.158525i
\(495\) 0 0
\(496\) 195.467i 0.394086i
\(497\) −227.397 115.360i −0.457539 0.232112i
\(498\) 0 0
\(499\) 85.7462 148.517i 0.171836 0.297629i −0.767226 0.641377i \(-0.778363\pi\)
0.939062 + 0.343748i \(0.111697\pi\)
\(500\) −69.2498 + 39.9814i −0.138500 + 0.0799628i
\(501\) 0 0
\(502\) −607.051 350.481i −1.20926 0.698169i
\(503\) 20.0883i 0.0399370i −0.999801 0.0199685i \(-0.993643\pi\)
0.999801 0.0199685i \(-0.00635659\pi\)
\(504\) 0 0
\(505\) 395.735 0.783634
\(506\) 93.2756 161.558i 0.184339 0.319285i
\(507\) 0 0
\(508\) 247.338 + 428.402i 0.486886 + 0.843311i
\(509\) 412.890 + 238.382i 0.811178 + 0.468334i 0.847365 0.531011i \(-0.178188\pi\)
−0.0361865 + 0.999345i \(0.511521\pi\)
\(510\) 0 0
\(511\) 367.709 19.9211i 0.719587 0.0389846i
\(512\) −22.6274 −0.0441942
\(513\) 0 0
\(514\) −490.555 + 283.222i −0.954387 + 0.551016i
\(515\) 398.452 + 690.139i 0.773693 + 1.34008i
\(516\) 0 0
\(517\) 250.613i 0.484744i
\(518\) −1.57507 29.0730i −0.00304068 0.0561255i
\(519\) 0 0
\(520\) −143.397 + 248.371i −0.275763 + 0.477636i
\(521\) −739.823 + 427.137i −1.42001 + 0.819841i −0.996299 0.0859587i \(-0.972605\pi\)
−0.423707 + 0.905799i \(0.639271\pi\)
\(522\) 0 0
\(523\) −513.554 296.501i −0.981940 0.566923i −0.0790845 0.996868i \(-0.525200\pi\)
−0.902855 + 0.429945i \(0.858533\pi\)
\(524\) 295.289i 0.563529i
\(525\) 0 0
\(526\) −45.7431 −0.0869640
\(527\) −91.9005 + 159.176i −0.174384 + 0.302043i
\(528\) 0 0
\(529\) −119.919 207.706i −0.226690 0.392638i
\(530\) 454.555 + 262.437i 0.857651 + 0.495165i
\(531\) 0 0
\(532\) 26.4853 52.2077i 0.0497844 0.0981348i
\(533\) −427.529 −0.802118
\(534\) 0 0
\(535\) −652.422 + 376.676i −1.21948 + 0.704068i
\(536\) −48.9878 84.8494i −0.0913952 0.158301i
\(537\) 0 0
\(538\) 434.112i 0.806899i
\(539\) 94.0629 213.290i 0.174514 0.395715i
\(540\) 0 0
\(541\) −427.595 + 740.617i −0.790380 + 1.36898i 0.135352 + 0.990798i \(0.456783\pi\)
−0.925732 + 0.378180i \(0.876550\pi\)
\(542\) −93.0624 + 53.7296i −0.171702 + 0.0991322i
\(543\) 0 0
\(544\) 18.4264 + 10.6385i 0.0338721 + 0.0195560i
\(545\) 963.546i 1.76797i
\(546\) 0 0
\(547\) 415.897 0.760323 0.380161 0.924920i \(-0.375868\pi\)
0.380161 + 0.924920i \(0.375868\pi\)
\(548\) −32.5736 + 56.4191i −0.0594409 + 0.102955i
\(549\) 0 0
\(550\) −63.8162 110.533i −0.116030 0.200969i
\(551\) −12.7279 7.34847i −0.0230997 0.0133366i
\(552\) 0 0
\(553\) 198.124 129.161i 0.358272 0.233564i
\(554\) −393.733 −0.710709
\(555\) 0 0
\(556\) −118.794 + 68.5857i −0.213658 + 0.123356i
\(557\) −292.110 505.950i −0.524435 0.908348i −0.999595 0.0284485i \(-0.990943\pi\)
0.475160 0.879899i \(-0.342390\pi\)
\(558\) 0 0
\(559\) 160.333i 0.286822i
\(560\) −185.397 + 10.0441i −0.331066 + 0.0179360i
\(561\) 0 0
\(562\) −279.088 + 483.395i −0.496598 + 0.860134i
\(563\) −789.076 + 455.573i −1.40156 + 0.809189i −0.994552 0.104237i \(-0.966760\pi\)
−0.407004 + 0.913426i \(0.633427\pi\)
\(564\) 0 0
\(565\) −198.375 114.532i −0.351106 0.202711i
\(566\) 207.035i 0.365787i
\(567\) 0 0
\(568\) 103.029 0.181390
\(569\) 350.000 606.217i 0.615113 1.06541i −0.375251 0.926923i \(-0.622444\pi\)
0.990365 0.138485i \(-0.0442231\pi\)
\(570\) 0 0
\(571\) 281.231 + 487.107i 0.492525 + 0.853077i 0.999963 0.00861055i \(-0.00274086\pi\)
−0.507438 + 0.861688i \(0.669408\pi\)
\(572\) 126.000 + 72.7461i 0.220280 + 0.127179i
\(573\) 0 0
\(574\) −151.154 231.861i −0.263335 0.403939i
\(575\) −526.014 −0.914807
\(576\) 0 0
\(577\) −573.014 + 330.830i −0.993092 + 0.573362i −0.906197 0.422856i \(-0.861028\pi\)
−0.0868946 + 0.996218i \(0.527694\pi\)
\(578\) 194.350 + 336.625i 0.336246 + 0.582395i
\(579\) 0 0
\(580\) 46.6124i 0.0803662i
\(581\) 404.029 796.420i 0.695402 1.37077i
\(582\) 0 0
\(583\) 133.136 230.598i 0.228364 0.395538i
\(584\) −128.860 + 74.3973i −0.220651 + 0.127393i
\(585\) 0 0
\(586\) 367.029 + 211.905i 0.626330 + 0.361612i
\(587\) 823.029i 1.40209i −0.713116 0.701046i \(-0.752717\pi\)
0.713116 0.701046i \(-0.247283\pi\)
\(588\) 0 0
\(589\) −204.338 −0.346924
\(590\) −181.555 + 314.462i −0.307720 + 0.532987i
\(591\) 0 0
\(592\) 5.88225 + 10.1884i 0.00993623 + 0.0172101i
\(593\) 538.890 + 311.128i 0.908752 + 0.524668i 0.880029 0.474919i \(-0.157523\pi\)
0.0287225 + 0.999587i \(0.490856\pi\)
\(594\) 0 0
\(595\) 155.698 + 78.9868i 0.261678 + 0.132751i
\(596\) −184.794 −0.310057
\(597\) 0 0
\(598\) 519.286 299.810i 0.868372 0.501355i
\(599\) −256.422 444.137i −0.428084 0.741463i 0.568619 0.822601i \(-0.307478\pi\)
−0.996703 + 0.0811377i \(0.974145\pi\)
\(600\) 0 0
\(601\) 680.160i 1.13171i −0.824504 0.565857i \(-0.808546\pi\)
0.824504 0.565857i \(-0.191454\pi\)
\(602\) −86.9533 + 56.6864i −0.144441 + 0.0941635i
\(603\) 0 0
\(604\) 91.7868 158.979i 0.151965 0.263211i
\(605\) 564.889 326.139i 0.933701 0.539073i
\(606\) 0 0
\(607\) 33.5482 + 19.3690i 0.0552688 + 0.0319095i 0.527380 0.849630i \(-0.323175\pi\)
−0.472111 + 0.881539i \(0.656508\pi\)
\(608\) 23.6544i 0.0389052i
\(609\) 0 0
\(610\) −848.756 −1.39140
\(611\) −402.765 + 697.609i −0.659189 + 1.14175i
\(612\) 0 0
\(613\) −200.552 347.366i −0.327164 0.566665i 0.654784 0.755816i \(-0.272760\pi\)
−0.981948 + 0.189151i \(0.939426\pi\)
\(614\) 25.7056 + 14.8412i 0.0418658 + 0.0241713i
\(615\) 0 0
\(616\) 5.09545 + 94.0530i 0.00827184 + 0.152683i
\(617\) 959.044 1.55437 0.777183 0.629275i \(-0.216648\pi\)
0.777183 + 0.629275i \(0.216648\pi\)
\(618\) 0 0
\(619\) −869.951 + 502.267i −1.40541 + 0.811416i −0.994941 0.100457i \(-0.967970\pi\)
−0.410473 + 0.911873i \(0.634636\pi\)
\(620\) 324.037 + 561.248i 0.522640 + 0.905238i
\(621\) 0 0
\(622\) 257.443i 0.413895i
\(623\) 192.408 + 295.142i 0.308841 + 0.473743i
\(624\) 0 0
\(625\) 369.691 640.323i 0.591505 1.02452i
\(626\) −119.938 + 69.2460i −0.191594 + 0.110617i
\(627\) 0 0
\(628\) −14.6468 8.45631i −0.0233229 0.0134655i
\(629\) 11.0624i 0.0175873i
\(630\) 0 0
\(631\) −386.514 −0.612542 −0.306271 0.951944i \(-0.599081\pi\)
−0.306271 + 0.951944i \(0.599081\pi\)
\(632\) −47.7817 + 82.7604i −0.0756040 + 0.130950i
\(633\) 0 0
\(634\) 340.805 + 590.291i 0.537547 + 0.931058i
\(635\) −1420.37 820.053i −2.23681 1.29142i
\(636\) 0 0
\(637\) 604.617 442.547i 0.949164 0.694736i
\(638\) 23.6468 0.0370639
\(639\) 0 0
\(640\) 64.9706 37.5108i 0.101517 0.0586106i
\(641\) −496.074 859.225i −0.773906 1.34044i −0.935407 0.353572i \(-0.884967\pi\)
0.161502 0.986872i \(-0.448366\pi\)
\(642\) 0 0
\(643\) 944.986i 1.46965i −0.678256 0.734826i \(-0.737264\pi\)
0.678256 0.734826i \(-0.262736\pi\)
\(644\) 346.191 + 175.625i 0.537564 + 0.272709i
\(645\) 0 0
\(646\) 11.1213 19.2627i 0.0172157 0.0298184i
\(647\) −2.50357 + 1.44544i −0.00386951 + 0.00223406i −0.501934 0.864906i \(-0.667378\pi\)
0.498064 + 0.867140i \(0.334044\pi\)
\(648\) 0 0
\(649\) 159.529 + 92.1039i 0.245807 + 0.141917i
\(650\) 410.241i 0.631140i
\(651\) 0 0
\(652\) 443.955 0.680913
\(653\) −161.529 + 279.777i −0.247365 + 0.428449i −0.962794 0.270237i \(-0.912898\pi\)
0.715429 + 0.698686i \(0.246231\pi\)
\(654\) 0 0
\(655\) 489.518 + 847.870i 0.747356 + 1.29446i
\(656\) 96.8528 + 55.9180i 0.147641 + 0.0852409i
\(657\) 0 0
\(658\) −520.731 + 28.2114i −0.791385 + 0.0428744i
\(659\) −295.955 −0.449098 −0.224549 0.974463i \(-0.572091\pi\)
−0.224549 + 0.974463i \(0.572091\pi\)
\(660\) 0 0
\(661\) 17.9710 10.3756i 0.0271876 0.0156968i −0.486345 0.873767i \(-0.661670\pi\)
0.513532 + 0.858070i \(0.328337\pi\)
\(662\) 159.104 + 275.576i 0.240338 + 0.416278i
\(663\) 0 0
\(664\) 360.843i 0.543439i
\(665\) 10.5000 + 193.811i 0.0157895 + 0.291445i
\(666\) 0 0
\(667\) 48.7279 84.3992i 0.0730554 0.126536i
\(668\) 292.441 168.841i 0.437785 0.252756i
\(669\) 0 0
\(670\) 281.319 + 162.420i 0.419880 + 0.242418i
\(671\) 430.579i 0.641698i
\(672\) 0 0
\(673\) 627.044 0.931714 0.465857 0.884860i \(-0.345746\pi\)
0.465857 + 0.884860i \(0.345746\pi\)
\(674\) −186.936 + 323.783i −0.277353 + 0.480390i
\(675\) 0 0
\(676\) 64.8234 + 112.277i 0.0958926 + 0.166091i
\(677\) 94.6097 + 54.6230i 0.139749 + 0.0806838i 0.568244 0.822860i \(-0.307623\pi\)
−0.428496 + 0.903544i \(0.640956\pi\)
\(678\) 0 0
\(679\) 322.368 635.450i 0.474768 0.935861i
\(680\) −70.5442 −0.103741
\(681\) 0 0
\(682\) 284.724 164.386i 0.417484 0.241035i
\(683\) 396.783 + 687.248i 0.580941 + 1.00622i 0.995368 + 0.0961370i \(0.0306487\pi\)
−0.414427 + 0.910083i \(0.636018\pi\)
\(684\) 0 0
\(685\) 215.996i 0.315323i
\(686\) 453.770 + 171.437i 0.661473 + 0.249908i
\(687\) 0 0
\(688\) 20.9706 36.3221i 0.0304805 0.0527937i
\(689\) 741.198 427.931i 1.07576 0.621090i
\(690\) 0 0
\(691\) 159.253 + 91.9447i 0.230467 + 0.133060i 0.610788 0.791794i \(-0.290853\pi\)
−0.380320 + 0.924855i \(0.624186\pi\)
\(692\) 328.682i 0.474974i
\(693\) 0 0
\(694\) −270.478 −0.389738
\(695\) 227.397 393.863i 0.327190 0.566710i
\(696\) 0 0
\(697\) −52.5807 91.0725i −0.0754386 0.130664i
\(698\) −165.889 95.7763i −0.237664 0.137215i
\(699\) 0 0
\(700\) 222.485 145.042i 0.317836 0.207203i
\(701\) 1043.82 1.48905 0.744525 0.667595i \(-0.232676\pi\)
0.744525 + 0.667595i \(0.232676\pi\)
\(702\) 0 0
\(703\) 10.6508 6.14922i 0.0151504 0.00874711i
\(704\) −19.0294 32.9600i −0.0270305 0.0468181i
\(705\) 0 0
\(706\) 492.840i 0.698073i
\(707\) 417.143 22.5993i 0.590019 0.0319651i
\(708\) 0 0
\(709\) 490.279 849.188i 0.691507 1.19773i −0.279836 0.960048i \(-0.590280\pi\)
0.971344 0.237678i \(-0.0763864\pi\)
\(710\) −295.831 + 170.798i −0.416663 + 0.240560i
\(711\) 0 0
\(712\) −123.286 71.1794i −0.173155 0.0999711i
\(713\) 1354.97i 1.90038i
\(714\) 0 0
\(715\) −482.382 −0.674660
\(716\) 185.184 320.748i 0.258637 0.447972i
\(717\) 0 0
\(718\) −215.548 373.340i −0.300206 0.519972i
\(719\) 674.187 + 389.242i 0.937673 + 0.541366i 0.889230 0.457460i \(-0.151241\pi\)
0.0484429 + 0.998826i \(0.484574\pi\)
\(720\) 0 0
\(721\) 459.419 + 704.719i 0.637197 + 0.977419i
\(722\) −485.803 −0.672858
\(723\) 0 0
\(724\) 268.617 155.086i 0.371018 0.214208i
\(725\) −33.3381 57.7433i −0.0459836 0.0796459i
\(726\) 0 0
\(727\) 735.255i 1.01135i 0.862723 + 0.505677i \(0.168757\pi\)
−0.862723 + 0.505677i \(0.831243\pi\)
\(728\) −136.971 + 269.996i −0.188146 + 0.370874i
\(729\) 0 0
\(730\) 246.665 427.237i 0.337898 0.585256i
\(731\) −34.1543 + 19.7190i −0.0467227 + 0.0269754i
\(732\) 0 0
\(733\) −414.705 239.430i −0.565764 0.326644i 0.189692 0.981844i \(-0.439251\pi\)
−0.755456 + 0.655200i \(0.772585\pi\)
\(734\) 134.356i 0.183047i
\(735\) 0 0
\(736\) −156.853 −0.213115
\(737\) 82.3965 142.715i 0.111800 0.193643i
\(738\) 0 0
\(739\) 9.95227 + 17.2378i 0.0134672 + 0.0233259i 0.872680 0.488292i \(-0.162380\pi\)
−0.859213 + 0.511618i \(0.829046\pi\)
\(740\) −33.7797 19.5027i −0.0456482 0.0263550i
\(741\) 0 0
\(742\) 494.132 + 250.676i 0.665946 + 0.337838i
\(743\) −43.3095 −0.0582901 −0.0291450 0.999575i \(-0.509278\pi\)
−0.0291450 + 0.999575i \(0.509278\pi\)
\(744\) 0 0
\(745\) 530.603 306.344i 0.712218 0.411199i
\(746\) 179.293 + 310.544i 0.240339 + 0.416279i
\(747\) 0 0
\(748\) 35.7875i 0.0478442i
\(749\) −666.206 + 434.311i −0.889460 + 0.579855i
\(750\) 0 0
\(751\) −112.665 + 195.142i −0.150020 + 0.259842i −0.931235 0.364420i \(-0.881267\pi\)
0.781215 + 0.624263i \(0.214600\pi\)
\(752\) 182.485 105.358i 0.242667 0.140104i
\(753\) 0 0
\(754\) 65.8234 + 38.0031i 0.0872989 + 0.0504020i
\(755\) 608.641i 0.806147i
\(756\) 0 0
\(757\) 935.779 1.23617 0.618084 0.786112i \(-0.287909\pi\)
0.618084 + 0.786112i \(0.287909\pi\)
\(758\) 359.387 622.476i 0.474125 0.821209i
\(759\) 0 0
\(760\) −39.2132 67.9193i −0.0515963 0.0893674i
\(761\) −1214.79 701.357i −1.59630 0.921625i −0.992191 0.124724i \(-0.960195\pi\)
−0.604110 0.796901i \(-0.706471\pi\)
\(762\) 0 0
\(763\) 55.0254 + 1015.67i 0.0721172 + 1.33115i
\(764\) −496.191 −0.649465
\(765\) 0 0
\(766\) −585.136 + 337.828i −0.763885 + 0.441029i
\(767\) 296.044 + 512.763i 0.385976 + 0.668530i
\(768\) 0 0
\(769\) 1.72330i 0.00224097i −0.999999 0.00112048i \(-0.999643\pi\)
0.999999 0.00112048i \(-0.000356661\pi\)
\(770\) −170.548 261.609i −0.221491 0.339752i
\(771\) 0 0
\(772\) −154.338 + 267.321i −0.199920 + 0.346271i
\(773\) −194.213 + 112.129i −0.251245 + 0.145057i −0.620334 0.784337i \(-0.713003\pi\)
0.369089 + 0.929394i \(0.379670\pi\)
\(774\) 0 0
\(775\) −802.831 463.514i −1.03591 0.598083i
\(776\) 287.911i 0.371019i
\(777\) 0 0
\(778\) 240.728 0.309419
\(779\) 58.4558 101.248i 0.0750396 0.129972i
\(780\) 0 0
\(781\) 86.6468 + 150.077i 0.110943 + 0.192160i
\(782\) 127.731 + 73.7458i 0.163340 + 0.0943041i
\(783\) 0 0
\(784\) −194.853 + 21.1750i −0.248537 + 0.0270089i
\(785\) 56.0740 0.0714319
\(786\) 0 0
\(787\) 60.7979 35.1017i 0.0772528 0.0446019i −0.460876 0.887465i \(-0.652465\pi\)
0.538129 + 0.842863i \(0.319131\pi\)
\(788\) −181.103 313.679i −0.229826 0.398070i
\(789\) 0 0
\(790\) 316.842i 0.401066i
\(791\) −215.647 109.399i −0.272625 0.138305i
\(792\) 0 0
\(793\) −691.992 + 1198.57i −0.872625 + 1.51143i
\(794\) 299.511 172.923i 0.377218 0.217787i
\(795\) 0 0
\(796\) −603.978 348.707i −0.758766 0.438074i
\(797\) 1305.38i 1.63787i 0.573889 + 0.818933i \(0.305434\pi\)
−0.573889 + 0.818933i \(0.694566\pi\)
\(798\) 0 0
\(799\) −198.140 −0.247985
\(800\) −53.6569 + 92.9364i −0.0670711 + 0.116170i
\(801\) 0 0
\(802\) 295.269 + 511.420i 0.368165 + 0.637681i
\(803\) −216.740 125.135i −0.269913 0.155834i
\(804\) 0 0
\(805\) −1285.17 + 69.6258i −1.59648 + 0.0864917i
\(806\) 1056.75 1.31110
\(807\) 0 0
\(808\) −146.184 + 84.3992i −0.180921 + 0.104455i
\(809\) 381.382 + 660.573i 0.471424 + 0.816531i 0.999466 0.0326879i \(-0.0104067\pi\)
−0.528041 + 0.849219i \(0.677073\pi\)
\(810\) 0 0
\(811\) 1214.98i 1.49813i −0.662498 0.749064i \(-0.730504\pi\)
0.662498 0.749064i \(-0.269496\pi\)
\(812\) 2.66190 + 49.1340i 0.00327821 + 0.0605099i
\(813\) 0 0
\(814\) −9.89383 + 17.1366i −0.0121546 + 0.0210524i
\(815\) −1274.74 + 735.970i −1.56410 + 0.903031i
\(816\) 0 0
\(817\) −37.9706 21.9223i −0.0464756 0.0268327i
\(818\) 435.877i 0.532857i
\(819\) 0 0
\(820\) −370.794 −0.452188
\(821\) −291.684 + 505.211i −0.355279 + 0.615361i −0.987166 0.159700i \(-0.948947\pi\)
0.631887 + 0.775061i \(0.282281\pi\)
\(822\) 0 0
\(823\) −515.371 892.648i −0.626210 1.08463i −0.988306 0.152486i \(-0.951272\pi\)
0.362096 0.932141i \(-0.382061\pi\)
\(824\) −294.375 169.957i −0.357251 0.206259i
\(825\) 0 0
\(826\) −173.418 + 341.842i −0.209950 + 0.413852i
\(827\) −152.102 −0.183920 −0.0919599 0.995763i \(-0.529313\pi\)
−0.0919599 + 0.995763i \(0.529313\pi\)
\(828\) 0 0
\(829\) 532.095 307.205i 0.641852 0.370573i −0.143476 0.989654i \(-0.545828\pi\)
0.785327 + 0.619081i \(0.212495\pi\)
\(830\) −598.191 1036.10i −0.720712 1.24831i
\(831\) 0 0
\(832\) 122.330i 0.147032i
\(833\) 168.632 + 74.3682i 0.202439 + 0.0892776i
\(834\) 0 0
\(835\) −559.794 + 969.592i −0.670412 + 1.16119i
\(836\) −34.4558 + 19.8931i −0.0412151 + 0.0237956i
\(837\) 0 0
\(838\) −126.323 72.9326i −0.150743 0.0870317i
\(839\) 1546.14i 1.84284i −0.388568 0.921420i \(-0.627030\pi\)
0.388568 0.921420i \(-0.372970\pi\)
\(840\) 0 0
\(841\) −828.647 −0.985311
\(842\) −116.828 + 202.353i −0.138751 + 0.240324i
\(843\) 0 0
\(844\) −364.073 630.593i −0.431366 0.747148i
\(845\) −372.257 214.923i −0.440541 0.254347i
\(846\) 0 0
\(847\) 576.823 376.041i 0.681019 0.443969i
\(848\) −223.882 −0.264012
\(849\) 0 0
\(850\) 87.3898 50.4545i 0.102812 0.0593583i
\(851\) 40.7756 + 70.6255i 0.0479150 + 0.0829912i
\(852\) 0 0
\(853\) 1235.15i 1.44800i 0.689798 + 0.724002i \(0.257699\pi\)
−0.689798 + 0.724002i \(0.742301\pi\)
\(854\) −894.672 + 48.4701i −1.04763 + 0.0567566i
\(855\) 0 0
\(856\) 160.669 278.287i 0.187697 0.325102i
\(857\) 953.219 550.341i 1.11227 0.642172i 0.172857 0.984947i \(-0.444700\pi\)
0.939417 + 0.342775i \(0.111367\pi\)
\(858\) 0 0
\(859\) 512.488 + 295.885i 0.596610 + 0.344453i 0.767707 0.640801i \(-0.221398\pi\)
−0.171096 + 0.985254i \(0.554731\pi\)
\(860\) 139.056i 0.161694i
\(861\) 0 0
\(862\) 840.801 0.975407
\(863\) −32.3635 + 56.0553i −0.0375012 + 0.0649540i −0.884167 0.467171i \(-0.845273\pi\)
0.846666 + 0.532125i \(0.178606\pi\)
\(864\) 0 0
\(865\) 544.875 + 943.751i 0.629913 + 1.09104i
\(866\) 49.7574 + 28.7274i 0.0574565 + 0.0331725i
\(867\) 0 0
\(868\) 373.617 + 573.105i 0.430435 + 0.660259i
\(869\) −160.736 −0.184967
\(870\) 0 0
\(871\) 458.720 264.842i 0.526659 0.304067i
\(872\) −205.497 355.932i −0.235662 0.408179i
\(873\) 0 0
\(874\) 163.972i 0.187611i
\(875\) 126.618 249.589i 0.144706 0.285245i
\(876\) 0 0
\(877\) 152.096 263.438i 0.173427 0.300385i −0.766188 0.642616i \(-0.777849\pi\)
0.939616 + 0.342231i \(0.111182\pi\)
\(878\) 179.548 103.662i 0.204496 0.118066i
\(879\) 0 0
\(880\) 109.279 + 63.0924i 0.124181 + 0.0716959i
\(881\) 863.732i 0.980400i 0.871610 + 0.490200i \(0.163076\pi\)
−0.871610 + 0.490200i \(0.836924\pi\)
\(882\) 0 0
\(883\) −567.456 −0.642645 −0.321323 0.946970i \(-0.604127\pi\)
−0.321323 + 0.946970i \(0.604127\pi\)
\(884\) −57.5147 + 99.6184i −0.0650619 + 0.112691i
\(885\) 0 0
\(886\) −75.9153 131.489i −0.0856831 0.148408i
\(887\) 770.555 + 444.880i 0.868721 + 0.501556i 0.866923 0.498442i \(-0.166094\pi\)
0.00179783 + 0.999998i \(0.499428\pi\)
\(888\) 0 0
\(889\) −1544.04 783.302i −1.73683 0.881105i
\(890\) 471.993 0.530329
\(891\) 0 0
\(892\) −213.442 + 123.231i −0.239284 + 0.138151i
\(893\) −110.140 190.767i −0.123337 0.213625i
\(894\) 0 0
\(895\) 1227.96i 1.37202i
\(896\) 66.3431 43.2503i 0.0740437 0.0482704i
\(897\) 0 0
\(898\) −95.5736 + 165.538i −0.106429 + 0.184341i
\(899\) 148.742 85.8764i 0.165453 0.0955243i
\(900\) 0 0
\(901\) 182.316 + 105.260i 0.202349 + 0.116826i
\(902\) 188.106i 0.208543i
\(903\) 0 0
\(904\) 97.7056 0.108081
\(905\) −514.191 + 890.605i −0.568167 + 0.984094i
\(906\) 0 0
\(907\) −186.989 323.874i −0.206162 0.357083i 0.744340 0.667800i \(-0.232764\pi\)
−0.950502 + 0.310717i \(0.899431\pi\)
\(908\) −132.286 76.3756i −0.145690 0.0841141i
\(909\) 0 0
\(910\) −54.3015 1002.31i −0.0596720 1.10144i
\(911\) −1133.75 −1.24451 −0.622256 0.782814i \(-0.713784\pi\)
−0.622256 + 0.782814i \(0.713784\pi\)
\(912\) 0 0
\(913\) −525.618 + 303.466i −0.575704 + 0.332383i
\(914\) 112.950 + 195.635i 0.123577 + 0.214042i
\(915\) 0 0
\(916\) 714.572i 0.780101i
\(917\) 564.419 + 865.782i 0.615506 + 0.944146i
\(918\) 0 0
\(919\) −228.151 + 395.169i −0.248260 + 0.429999i −0.963043 0.269347i \(-0.913192\pi\)
0.714783 + 0.699346i \(0.246525\pi\)
\(920\) 450.375 260.024i 0.489538 0.282635i
\(921\) 0 0
\(922\) 379.977 + 219.380i 0.412122 + 0.237939i
\(923\) 557.007i 0.603474i
\(924\) 0 0
\(925\) 55.7948 0.0603187
\(926\) −230.527 + 399.284i −0.248949 + 0.431193i
\(927\) 0 0
\(928\) −9.94113 17.2185i −0.0107124 0.0185545i
\(929\) 824.058 + 475.770i 0.887037 + 0.512131i 0.872972 0.487770i \(-0.162189\pi\)
0.0140650 + 0.999901i \(0.495523\pi\)
\(930\) 0 0
\(931\) 22.1360 + 203.696i 0.0237766 + 0.218793i
\(932\) 546.146 0.585994
\(933\) 0 0
\(934\) −729.407 + 421.123i −0.780949 + 0.450881i
\(935\) −59.3269 102.757i −0.0634513 0.109901i
\(936\) 0 0
\(937\) 1295.71i 1.38283i 0.722460 + 0.691413i \(0.243011\pi\)
−0.722460 + 0.691413i \(0.756989\pi\)
\(938\) 305.813 + 155.141i 0.326027 + 0.165395i
\(939\) 0 0
\(940\) −349.316 + 605.033i −0.371613 + 0.643652i
\(941\) 1175.10 678.446i 1.24878 0.720984i 0.277915 0.960606i \(-0.410357\pi\)
0.970866 + 0.239622i \(0.0770234\pi\)
\(942\) 0 0
\(943\) 671.382 + 387.622i 0.711964 + 0.411052i
\(944\) 154.882i 0.164070i
\(945\) 0 0
\(946\) 70.5442 0.0745710
\(947\) −354.731 + 614.412i −0.374584 + 0.648799i −0.990265 0.139197i \(-0.955548\pi\)
0.615681 + 0.787996i \(0.288881\pi\)
\(948\) 0 0
\(949\) −402.213 696.654i −0.423828 0.734092i
\(950\) 97.1543 + 56.0921i 0.102268 + 0.0590443i
\(951\) 0 0
\(952\) −74.3604 + 4.02858i −0.0781097 + 0.00423170i
\(953\) −936.603 −0.982794 −0.491397 0.870936i \(-0.663514\pi\)
−0.491397 + 0.870936i \(0.663514\pi\)
\(954\) 0 0
\(955\) 1424.72 822.564i 1.49186 0.861324i
\(956\) −265.103 459.171i −0.277304 0.480305i
\(957\) 0 0
\(958\) 716.554i 0.747969i
\(959\) −12.3350 227.681i −0.0128623 0.237415i
\(960\) 0 0
\(961\) 713.477 1235.78i 0.742432 1.28593i
\(962\) −55.0812 + 31.8011i −0.0572569 + 0.0330573i
\(963\) 0 0
\(964\) 151.794 + 87.6383i 0.157463 + 0.0909111i
\(965\) 1023.42i 1.06054i
\(966\) 0 0
\(967\) 1374.37 1.42127 0.710635 0.703561i \(-0.248408\pi\)
0.710635 + 0.703561i \(0.248408\pi\)
\(968\) −139.113 + 240.950i −0.143711 + 0.248916i
\(969\) 0 0
\(970\) −477.286 826.684i −0.492048 0.852252i
\(971\) 27.2466 + 15.7309i 0.0280604 + 0.0162007i 0.513965 0.857811i \(-0.328176\pi\)
−0.485904 + 0.874012i \(0.661510\pi\)
\(972\) 0 0
\(973\) 217.206 428.156i 0.223233 0.440037i
\(974\) −298.825 −0.306802
\(975\) 0 0
\(976\) 313.529 181.016i 0.321239 0.185467i
\(977\) −270.949 469.297i −0.277327 0.480345i 0.693392 0.720560i \(-0.256115\pi\)
−0.970720 + 0.240215i \(0.922782\pi\)
\(978\) 0 0
\(979\) 239.445i 0.244581i
\(980\) 524.382 383.819i 0.535083 0.391652i
\(981\) 0 0
\(982\) 554.485 960.397i 0.564649 0.978001i
\(983\) −19.4161 + 11.2099i −0.0197519 + 0.0114038i −0.509843 0.860267i \(-0.670297\pi\)
0.490092 + 0.871671i \(0.336963\pi\)
\(984\) 0 0
\(985\) 1040.01 + 600.448i 1.05584 + 0.609592i
\(986\) 18.6957i 0.0189611i
\(987\) 0 0
\(988\) −127.882 −0.129435
\(989\) 145.368 251.784i 0.146984 0.254584i
\(990\) 0 0
\(991\) −339.017 587.195i −0.342096 0.592528i 0.642726 0.766097i \(-0.277804\pi\)
−0.984822 + 0.173568i \(0.944470\pi\)
\(992\) −239.397 138.216i −0.241328 0.139331i
\(993\) 0 0
\(994\) −302.080 + 196.932i −0.303904 + 0.198120i
\(995\) 2312.28 2.32390
\(996\) 0 0
\(997\) 758.779 438.081i 0.761062 0.439400i −0.0686147 0.997643i \(-0.521858\pi\)
0.829677 + 0.558244i \(0.188525\pi\)
\(998\) −121.263 210.034i −0.121506 0.210455i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.n.c.19.2 4
3.2 odd 2 14.3.d.a.5.1 yes 4
4.3 odd 2 1008.3.cg.l.145.2 4
7.2 even 3 882.3.c.f.685.1 4
7.3 odd 6 inner 126.3.n.c.73.2 4
7.4 even 3 882.3.n.b.325.2 4
7.5 odd 6 882.3.c.f.685.2 4
7.6 odd 2 882.3.n.b.19.2 4
12.11 even 2 112.3.s.b.33.1 4
15.2 even 4 350.3.i.a.299.2 8
15.8 even 4 350.3.i.a.299.3 8
15.14 odd 2 350.3.k.a.201.2 4
21.2 odd 6 98.3.b.b.97.4 4
21.5 even 6 98.3.b.b.97.3 4
21.11 odd 6 98.3.d.a.31.1 4
21.17 even 6 14.3.d.a.3.1 4
21.20 even 2 98.3.d.a.19.1 4
24.5 odd 2 448.3.s.d.257.1 4
24.11 even 2 448.3.s.c.257.2 4
28.3 even 6 1008.3.cg.l.577.2 4
84.11 even 6 784.3.s.c.129.2 4
84.23 even 6 784.3.c.e.97.2 4
84.47 odd 6 784.3.c.e.97.3 4
84.59 odd 6 112.3.s.b.17.1 4
84.83 odd 2 784.3.s.c.705.2 4
105.17 odd 12 350.3.i.a.199.3 8
105.38 odd 12 350.3.i.a.199.2 8
105.59 even 6 350.3.k.a.101.2 4
168.59 odd 6 448.3.s.c.129.2 4
168.101 even 6 448.3.s.d.129.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.3.d.a.3.1 4 21.17 even 6
14.3.d.a.5.1 yes 4 3.2 odd 2
98.3.b.b.97.3 4 21.5 even 6
98.3.b.b.97.4 4 21.2 odd 6
98.3.d.a.19.1 4 21.20 even 2
98.3.d.a.31.1 4 21.11 odd 6
112.3.s.b.17.1 4 84.59 odd 6
112.3.s.b.33.1 4 12.11 even 2
126.3.n.c.19.2 4 1.1 even 1 trivial
126.3.n.c.73.2 4 7.3 odd 6 inner
350.3.i.a.199.2 8 105.38 odd 12
350.3.i.a.199.3 8 105.17 odd 12
350.3.i.a.299.2 8 15.2 even 4
350.3.i.a.299.3 8 15.8 even 4
350.3.k.a.101.2 4 105.59 even 6
350.3.k.a.201.2 4 15.14 odd 2
448.3.s.c.129.2 4 168.59 odd 6
448.3.s.c.257.2 4 24.11 even 2
448.3.s.d.129.1 4 168.101 even 6
448.3.s.d.257.1 4 24.5 odd 2
784.3.c.e.97.2 4 84.23 even 6
784.3.c.e.97.3 4 84.47 odd 6
784.3.s.c.129.2 4 84.11 even 6
784.3.s.c.705.2 4 84.83 odd 2
882.3.c.f.685.1 4 7.2 even 3
882.3.c.f.685.2 4 7.5 odd 6
882.3.n.b.19.2 4 7.6 odd 2
882.3.n.b.325.2 4 7.4 even 3
1008.3.cg.l.145.2 4 4.3 odd 2
1008.3.cg.l.577.2 4 28.3 even 6