# Properties

 Label 14.3.d.a.3.1 Level $14$ Weight $3$ Character 14.3 Analytic conductor $0.381$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$14 = 2 \cdot 7$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 14.d (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.381472370104$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\sqrt{2}, \sqrt{-3})$$ Defining polynomial: $$x^{4} + 2x^{2} + 4$$ x^4 + 2*x^2 + 4 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 3.1 Root $$-0.707107 - 1.22474i$$ of defining polynomial Character $$\chi$$ $$=$$ 14.3 Dual form 14.3.d.a.5.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.707107 - 1.22474i) q^{2} +(0.621320 + 0.358719i) q^{3} +(-1.00000 + 1.73205i) q^{4} +(-5.74264 + 3.31552i) q^{5} -1.01461i q^{6} +(6.24264 - 3.16693i) q^{7} +2.82843 q^{8} +(-4.24264 - 7.34847i) q^{9} +O(q^{10})$$ $$q+(-0.707107 - 1.22474i) q^{2} +(0.621320 + 0.358719i) q^{3} +(-1.00000 + 1.73205i) q^{4} +(-5.74264 + 3.31552i) q^{5} -1.01461i q^{6} +(6.24264 - 3.16693i) q^{7} +2.82843 q^{8} +(-4.24264 - 7.34847i) q^{9} +(8.12132 + 4.68885i) q^{10} +(2.37868 - 4.11999i) q^{11} +(-1.24264 + 0.717439i) q^{12} +15.2913i q^{13} +(-8.29289 - 5.40629i) q^{14} -4.75736 q^{15} +(-2.00000 - 3.46410i) q^{16} +(-3.25736 - 1.88064i) q^{17} +(-6.00000 + 10.3923i) q^{18} +(3.62132 - 2.09077i) q^{19} -13.2621i q^{20} +(5.01472 + 0.271680i) q^{21} -6.72792 q^{22} +(13.8640 + 24.0131i) q^{23} +(1.75736 + 1.01461i) q^{24} +(9.48528 - 16.4290i) q^{25} +(18.7279 - 10.8126i) q^{26} -12.5446i q^{27} +(-0.757359 + 13.9795i) q^{28} +3.51472 q^{29} +(3.36396 + 5.82655i) q^{30} +(-42.3198 - 24.4334i) q^{31} +(-2.82843 + 4.89898i) q^{32} +(2.95584 - 1.70656i) q^{33} +5.31925i q^{34} +(-25.3492 + 38.8841i) q^{35} +16.9706 q^{36} +(1.47056 + 2.54709i) q^{37} +(-5.12132 - 2.95680i) q^{38} +(-5.48528 + 9.50079i) q^{39} +(-16.2426 + 9.37769i) q^{40} -27.9590i q^{41} +(-3.21320 - 6.33386i) q^{42} -10.4853 q^{43} +(4.75736 + 8.23999i) q^{44} +(48.7279 + 28.1331i) q^{45} +(19.6066 - 33.9596i) q^{46} +(45.6213 - 26.3395i) q^{47} -2.86976i q^{48} +(28.9411 - 39.5400i) q^{49} -26.8284 q^{50} +(-1.34924 - 2.33696i) q^{51} +(-26.4853 - 15.2913i) q^{52} +(-27.9853 + 48.4719i) q^{53} +(-15.3640 + 8.87039i) q^{54} +31.5462i q^{55} +(17.6569 - 8.95743i) q^{56} +3.00000 q^{57} +(-2.48528 - 4.30463i) q^{58} +(33.5330 + 19.3603i) q^{59} +(4.75736 - 8.23999i) q^{60} +(-78.3823 + 45.2540i) q^{61} +69.1080i q^{62} +(-49.7574 - 32.4377i) q^{63} +8.00000 q^{64} +(-50.6985 - 87.8124i) q^{65} +(-4.18019 - 2.41344i) q^{66} +(17.3198 - 29.9988i) q^{67} +(6.51472 - 3.76127i) q^{68} +19.8931i q^{69} +(65.5477 + 3.55114i) q^{70} +36.4264 q^{71} +(-12.0000 - 20.7846i) q^{72} +(45.5589 + 26.3034i) q^{73} +(2.07969 - 3.60213i) q^{74} +(11.7868 - 6.80511i) q^{75} +8.36308i q^{76} +(1.80152 - 33.2528i) q^{77} +15.5147 q^{78} +(16.8934 + 29.2602i) q^{79} +(22.9706 + 13.2621i) q^{80} +(-33.6838 + 58.3420i) q^{81} +(-34.2426 + 19.7700i) q^{82} -127.577i q^{83} +(-5.48528 + 8.41407i) q^{84} +24.9411 q^{85} +(7.41421 + 12.8418i) q^{86} +(2.18377 + 1.26080i) q^{87} +(6.72792 - 11.6531i) q^{88} +(-43.5883 + 25.1657i) q^{89} -79.5724i q^{90} +(48.4264 + 95.4580i) q^{91} -55.4558 q^{92} +(-17.5294 - 30.3619i) q^{93} +(-64.5183 - 37.2497i) q^{94} +(-13.8640 + 24.0131i) q^{95} +(-3.51472 + 2.02922i) q^{96} +101.792i q^{97} +(-68.8909 - 7.48650i) q^{98} -40.3675 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 6 q^{3} - 4 q^{4} - 6 q^{5} + 8 q^{7}+O(q^{10})$$ 4 * q - 6 * q^3 - 4 * q^4 - 6 * q^5 + 8 * q^7 $$4 q - 6 q^{3} - 4 q^{4} - 6 q^{5} + 8 q^{7} + 24 q^{10} + 18 q^{11} + 12 q^{12} - 36 q^{14} - 36 q^{15} - 8 q^{16} - 30 q^{17} - 24 q^{18} + 6 q^{19} + 54 q^{21} + 24 q^{22} + 30 q^{23} + 24 q^{24} + 4 q^{25} + 24 q^{26} - 20 q^{28} + 48 q^{29} - 12 q^{30} - 42 q^{31} - 90 q^{33} - 42 q^{35} - 62 q^{37} - 12 q^{38} + 12 q^{39} - 48 q^{40} + 72 q^{42} - 8 q^{43} + 36 q^{44} + 144 q^{45} + 36 q^{46} + 174 q^{47} - 20 q^{49} - 96 q^{50} + 54 q^{51} - 72 q^{52} - 78 q^{53} - 36 q^{54} + 48 q^{56} + 12 q^{57} + 24 q^{58} - 78 q^{59} + 36 q^{60} - 42 q^{61} - 216 q^{63} + 32 q^{64} - 84 q^{65} - 144 q^{66} - 58 q^{67} + 60 q^{68} + 84 q^{70} - 24 q^{71} - 48 q^{72} + 318 q^{73} + 96 q^{74} + 132 q^{75} + 126 q^{77} + 96 q^{78} + 110 q^{79} + 24 q^{80} + 18 q^{81} - 120 q^{82} + 12 q^{84} - 36 q^{85} + 24 q^{86} - 144 q^{87} - 24 q^{88} - 378 q^{89} + 24 q^{91} - 120 q^{92} - 138 q^{93} - 12 q^{94} - 30 q^{95} - 48 q^{96} - 120 q^{98} + 144 q^{99}+O(q^{100})$$ 4 * q - 6 * q^3 - 4 * q^4 - 6 * q^5 + 8 * q^7 + 24 * q^10 + 18 * q^11 + 12 * q^12 - 36 * q^14 - 36 * q^15 - 8 * q^16 - 30 * q^17 - 24 * q^18 + 6 * q^19 + 54 * q^21 + 24 * q^22 + 30 * q^23 + 24 * q^24 + 4 * q^25 + 24 * q^26 - 20 * q^28 + 48 * q^29 - 12 * q^30 - 42 * q^31 - 90 * q^33 - 42 * q^35 - 62 * q^37 - 12 * q^38 + 12 * q^39 - 48 * q^40 + 72 * q^42 - 8 * q^43 + 36 * q^44 + 144 * q^45 + 36 * q^46 + 174 * q^47 - 20 * q^49 - 96 * q^50 + 54 * q^51 - 72 * q^52 - 78 * q^53 - 36 * q^54 + 48 * q^56 + 12 * q^57 + 24 * q^58 - 78 * q^59 + 36 * q^60 - 42 * q^61 - 216 * q^63 + 32 * q^64 - 84 * q^65 - 144 * q^66 - 58 * q^67 + 60 * q^68 + 84 * q^70 - 24 * q^71 - 48 * q^72 + 318 * q^73 + 96 * q^74 + 132 * q^75 + 126 * q^77 + 96 * q^78 + 110 * q^79 + 24 * q^80 + 18 * q^81 - 120 * q^82 + 12 * q^84 - 36 * q^85 + 24 * q^86 - 144 * q^87 - 24 * q^88 - 378 * q^89 + 24 * q^91 - 120 * q^92 - 138 * q^93 - 12 * q^94 - 30 * q^95 - 48 * q^96 - 120 * q^98 + 144 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/14\mathbb{Z}\right)^\times$$.

 $$n$$ $$3$$ $$\chi(n)$$ $$e\left(\frac{1}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.707107 1.22474i −0.353553 0.612372i
$$3$$ 0.621320 + 0.358719i 0.207107 + 0.119573i 0.599966 0.800025i $$-0.295181\pi$$
−0.392859 + 0.919599i $$0.628514\pi$$
$$4$$ −1.00000 + 1.73205i −0.250000 + 0.433013i
$$5$$ −5.74264 + 3.31552i −1.14853 + 0.663103i −0.948528 0.316693i $$-0.897428\pi$$
−0.200000 + 0.979796i $$0.564094\pi$$
$$6$$ 1.01461i 0.169102i
$$7$$ 6.24264 3.16693i 0.891806 0.452418i
$$8$$ 2.82843 0.353553
$$9$$ −4.24264 7.34847i −0.471405 0.816497i
$$10$$ 8.12132 + 4.68885i 0.812132 + 0.468885i
$$11$$ 2.37868 4.11999i 0.216244 0.374545i −0.737413 0.675442i $$-0.763953\pi$$
0.953657 + 0.300897i $$0.0972861\pi$$
$$12$$ −1.24264 + 0.717439i −0.103553 + 0.0597866i
$$13$$ 15.2913i 1.17625i 0.808769 + 0.588126i $$0.200134\pi$$
−0.808769 + 0.588126i $$0.799866\pi$$
$$14$$ −8.29289 5.40629i −0.592350 0.386163i
$$15$$ −4.75736 −0.317157
$$16$$ −2.00000 3.46410i −0.125000 0.216506i
$$17$$ −3.25736 1.88064i −0.191609 0.110626i 0.401126 0.916023i $$-0.368619\pi$$
−0.592736 + 0.805397i $$0.701952\pi$$
$$18$$ −6.00000 + 10.3923i −0.333333 + 0.577350i
$$19$$ 3.62132 2.09077i 0.190596 0.110041i −0.401666 0.915786i $$-0.631569\pi$$
0.592261 + 0.805746i $$0.298235\pi$$
$$20$$ 13.2621i 0.663103i
$$21$$ 5.01472 + 0.271680i 0.238796 + 0.0129371i
$$22$$ −6.72792 −0.305815
$$23$$ 13.8640 + 24.0131i 0.602781 + 1.04405i 0.992398 + 0.123070i $$0.0392740\pi$$
−0.389617 + 0.920977i $$0.627393\pi$$
$$24$$ 1.75736 + 1.01461i 0.0732233 + 0.0422755i
$$25$$ 9.48528 16.4290i 0.379411 0.657160i
$$26$$ 18.7279 10.8126i 0.720305 0.415868i
$$27$$ 12.5446i 0.464616i
$$28$$ −0.757359 + 13.9795i −0.0270485 + 0.499268i
$$29$$ 3.51472 0.121197 0.0605986 0.998162i $$-0.480699\pi$$
0.0605986 + 0.998162i $$0.480699\pi$$
$$30$$ 3.36396 + 5.82655i 0.112132 + 0.194218i
$$31$$ −42.3198 24.4334i −1.36516 0.788173i −0.374850 0.927085i $$-0.622306\pi$$
−0.990305 + 0.138913i $$0.955639\pi$$
$$32$$ −2.82843 + 4.89898i −0.0883883 + 0.153093i
$$33$$ 2.95584 1.70656i 0.0895710 0.0517139i
$$34$$ 5.31925i 0.156448i
$$35$$ −25.3492 + 38.8841i −0.724264 + 1.11097i
$$36$$ 16.9706 0.471405
$$37$$ 1.47056 + 2.54709i 0.0397449 + 0.0688403i 0.885214 0.465185i $$-0.154012\pi$$
−0.845469 + 0.534025i $$0.820679\pi$$
$$38$$ −5.12132 2.95680i −0.134772 0.0778104i
$$39$$ −5.48528 + 9.50079i −0.140648 + 0.243610i
$$40$$ −16.2426 + 9.37769i −0.406066 + 0.234442i
$$41$$ 27.9590i 0.681927i −0.940077 0.340963i $$-0.889247\pi$$
0.940077 0.340963i $$-0.110753\pi$$
$$42$$ −3.21320 6.33386i −0.0765048 0.150806i
$$43$$ −10.4853 −0.243844 −0.121922 0.992540i $$-0.538906\pi$$
−0.121922 + 0.992540i $$0.538906\pi$$
$$44$$ 4.75736 + 8.23999i 0.108122 + 0.187272i
$$45$$ 48.7279 + 28.1331i 1.08284 + 0.625180i
$$46$$ 19.6066 33.9596i 0.426230 0.738253i
$$47$$ 45.6213 26.3395i 0.970666 0.560415i 0.0712271 0.997460i $$-0.477309\pi$$
0.899439 + 0.437046i $$0.143975\pi$$
$$48$$ 2.86976i 0.0597866i
$$49$$ 28.9411 39.5400i 0.590635 0.806939i
$$50$$ −26.8284 −0.536569
$$51$$ −1.34924 2.33696i −0.0264557 0.0458227i
$$52$$ −26.4853 15.2913i −0.509332 0.294063i
$$53$$ −27.9853 + 48.4719i −0.528024 + 0.914565i 0.471442 + 0.881897i $$0.343734\pi$$
−0.999466 + 0.0326677i $$0.989600\pi$$
$$54$$ −15.3640 + 8.87039i −0.284518 + 0.164266i
$$55$$ 31.5462i 0.573567i
$$56$$ 17.6569 8.95743i 0.315301 0.159954i
$$57$$ 3.00000 0.0526316
$$58$$ −2.48528 4.30463i −0.0428497 0.0742178i
$$59$$ 33.5330 + 19.3603i 0.568356 + 0.328141i 0.756492 0.654002i $$-0.226911\pi$$
−0.188136 + 0.982143i $$0.560245\pi$$
$$60$$ 4.75736 8.23999i 0.0792893 0.137333i
$$61$$ −78.3823 + 45.2540i −1.28495 + 0.741869i −0.977750 0.209774i $$-0.932727\pi$$
−0.307205 + 0.951643i $$0.599394\pi$$
$$62$$ 69.1080i 1.11464i
$$63$$ −49.7574 32.4377i −0.789799 0.514884i
$$64$$ 8.00000 0.125000
$$65$$ −50.6985 87.8124i −0.779977 1.35096i
$$66$$ −4.18019 2.41344i −0.0633363 0.0365672i
$$67$$ 17.3198 29.9988i 0.258505 0.447743i −0.707337 0.706877i $$-0.750104\pi$$
0.965842 + 0.259134i $$0.0834370\pi$$
$$68$$ 6.51472 3.76127i 0.0958047 0.0553129i
$$69$$ 19.8931i 0.288306i
$$70$$ 65.5477 + 3.55114i 0.936396 + 0.0507306i
$$71$$ 36.4264 0.513048 0.256524 0.966538i $$-0.417423\pi$$
0.256524 + 0.966538i $$0.417423\pi$$
$$72$$ −12.0000 20.7846i −0.166667 0.288675i
$$73$$ 45.5589 + 26.3034i 0.624094 + 0.360321i 0.778461 0.627693i $$-0.216001\pi$$
−0.154367 + 0.988014i $$0.549334\pi$$
$$74$$ 2.07969 3.60213i 0.0281039 0.0486774i
$$75$$ 11.7868 6.80511i 0.157157 0.0907348i
$$76$$ 8.36308i 0.110041i
$$77$$ 1.80152 33.2528i 0.0233963 0.431854i
$$78$$ 15.5147 0.198907
$$79$$ 16.8934 + 29.2602i 0.213840 + 0.370383i 0.952913 0.303243i $$-0.0980694\pi$$
−0.739073 + 0.673626i $$0.764736\pi$$
$$80$$ 22.9706 + 13.2621i 0.287132 + 0.165776i
$$81$$ −33.6838 + 58.3420i −0.415849 + 0.720272i
$$82$$ −34.2426 + 19.7700i −0.417593 + 0.241098i
$$83$$ 127.577i 1.53708i −0.639803 0.768539i $$-0.720984\pi$$
0.639803 0.768539i $$-0.279016\pi$$
$$84$$ −5.48528 + 8.41407i −0.0653010 + 0.100167i
$$85$$ 24.9411 0.293425
$$86$$ 7.41421 + 12.8418i 0.0862118 + 0.149323i
$$87$$ 2.18377 + 1.26080i 0.0251008 + 0.0144919i
$$88$$ 6.72792 11.6531i 0.0764537 0.132422i
$$89$$ −43.5883 + 25.1657i −0.489756 + 0.282761i −0.724473 0.689303i $$-0.757917\pi$$
0.234717 + 0.972064i $$0.424584\pi$$
$$90$$ 79.5724i 0.884137i
$$91$$ 48.4264 + 95.4580i 0.532158 + 1.04899i
$$92$$ −55.4558 −0.602781
$$93$$ −17.5294 30.3619i −0.188489 0.326472i
$$94$$ −64.5183 37.2497i −0.686365 0.396273i
$$95$$ −13.8640 + 24.0131i −0.145936 + 0.252769i
$$96$$ −3.51472 + 2.02922i −0.0366117 + 0.0211377i
$$97$$ 101.792i 1.04940i 0.851287 + 0.524700i $$0.175823\pi$$
−0.851287 + 0.524700i $$0.824177\pi$$
$$98$$ −68.8909 7.48650i −0.702968 0.0763928i
$$99$$ −40.3675 −0.407753
$$100$$ 18.9706 + 32.8580i 0.189706 + 0.328580i
$$101$$ −51.6838 29.8396i −0.511720 0.295442i 0.221820 0.975088i $$-0.428800\pi$$
−0.733541 + 0.679646i $$0.762134\pi$$
$$102$$ −1.90812 + 3.30496i −0.0187070 + 0.0324015i
$$103$$ 104.077 60.0890i 1.01046 0.583388i 0.0991322 0.995074i $$-0.468393\pi$$
0.911326 + 0.411686i $$0.135060\pi$$
$$104$$ 43.2503i 0.415868i
$$105$$ −29.6985 + 15.0662i −0.282843 + 0.143488i
$$106$$ 79.1543 0.746739
$$107$$ 56.8051 + 98.3893i 0.530889 + 0.919526i 0.999350 + 0.0360423i $$0.0114751\pi$$
−0.468462 + 0.883484i $$0.655192\pi$$
$$108$$ 21.7279 + 12.5446i 0.201184 + 0.116154i
$$109$$ 72.6543 125.841i 0.666553 1.15450i −0.312308 0.949981i $$-0.601102\pi$$
0.978862 0.204524i $$-0.0655645\pi$$
$$110$$ 38.6360 22.3065i 0.351237 0.202787i
$$111$$ 2.11008i 0.0190097i
$$112$$ −23.4558 15.2913i −0.209427 0.136529i
$$113$$ 34.5442 0.305700 0.152850 0.988249i $$-0.451155\pi$$
0.152850 + 0.988249i $$0.451155\pi$$
$$114$$ −2.12132 3.67423i −0.0186081 0.0322301i
$$115$$ −159.231 91.9323i −1.38462 0.799412i
$$116$$ −3.51472 + 6.08767i −0.0302993 + 0.0524799i
$$117$$ 112.368 64.8754i 0.960406 0.554491i
$$118$$ 54.7592i 0.464061i
$$119$$ −26.2904 1.42432i −0.220927 0.0119691i
$$120$$ −13.4558 −0.112132
$$121$$ 49.1838 + 85.1888i 0.406477 + 0.704040i
$$122$$ 110.849 + 63.9988i 0.908600 + 0.524581i
$$123$$ 10.0294 17.3715i 0.0815401 0.141232i
$$124$$ 84.6396 48.8667i 0.682578 0.394086i
$$125$$ 39.9814i 0.319851i
$$126$$ −4.54416 + 83.8770i −0.0360647 + 0.665690i
$$127$$ −247.338 −1.94754 −0.973772 0.227526i $$-0.926936\pi$$
−0.973772 + 0.227526i $$0.926936\pi$$
$$128$$ −5.65685 9.79796i −0.0441942 0.0765466i
$$129$$ −6.51472 3.76127i −0.0505017 0.0291572i
$$130$$ −71.6985 + 124.185i −0.551527 + 0.955272i
$$131$$ −127.864 + 73.8223i −0.976061 + 0.563529i −0.901079 0.433656i $$-0.857223\pi$$
−0.0749822 + 0.997185i $$0.523890\pi$$
$$132$$ 6.82623i 0.0517139i
$$133$$ 15.9853 24.5204i 0.120190 0.184364i
$$134$$ −48.9878 −0.365581
$$135$$ 41.5919 + 72.0393i 0.308088 + 0.533624i
$$136$$ −9.21320 5.31925i −0.0677441 0.0391121i
$$137$$ 16.2868 28.2096i 0.118882 0.205909i −0.800443 0.599409i $$-0.795402\pi$$
0.919325 + 0.393500i $$0.128736\pi$$
$$138$$ 24.3640 14.0665i 0.176550 0.101931i
$$139$$ 68.5857i 0.493422i 0.969089 + 0.246711i $$0.0793499\pi$$
−0.969089 + 0.246711i $$0.920650\pi$$
$$140$$ −42.0000 82.7903i −0.300000 0.591359i
$$141$$ 37.7939 0.268042
$$142$$ −25.7574 44.6131i −0.181390 0.314176i
$$143$$ 63.0000 + 36.3731i 0.440559 + 0.254357i
$$144$$ −16.9706 + 29.3939i −0.117851 + 0.204124i
$$145$$ −20.1838 + 11.6531i −0.139198 + 0.0803662i
$$146$$ 74.3973i 0.509571i
$$147$$ 32.1655 14.1853i 0.218813 0.0964984i
$$148$$ −5.88225 −0.0397449
$$149$$ −46.1985 80.0181i −0.310057 0.537034i 0.668317 0.743876i $$-0.267015\pi$$
−0.978374 + 0.206842i $$0.933681\pi$$
$$150$$ −16.6690 9.62388i −0.111127 0.0641592i
$$151$$ 45.8934 79.4897i 0.303930 0.526422i −0.673093 0.739558i $$-0.735035\pi$$
0.977022 + 0.213136i $$0.0683678\pi$$
$$152$$ 10.2426 5.91359i 0.0673858 0.0389052i
$$153$$ 31.9155i 0.208598i
$$154$$ −42.0000 + 21.3068i −0.272727 + 0.138356i
$$155$$ 324.037 2.09056
$$156$$ −10.9706 19.0016i −0.0703241 0.121805i
$$157$$ 7.32338 + 4.22815i 0.0466457 + 0.0269309i 0.523142 0.852246i $$-0.324760\pi$$
−0.476496 + 0.879177i $$0.658093\pi$$
$$158$$ 23.8909 41.3802i 0.151208 0.261900i
$$159$$ −34.7756 + 20.0777i −0.218715 + 0.126275i
$$160$$ 37.5108i 0.234442i
$$161$$ 162.595 + 105.999i 1.00991 + 0.658378i
$$162$$ 95.2721 0.588099
$$163$$ −110.989 192.238i −0.680913 1.17938i −0.974703 0.223506i $$-0.928250\pi$$
0.293789 0.955870i $$-0.405084\pi$$
$$164$$ 48.4264 + 27.9590i 0.295283 + 0.170482i
$$165$$ −11.3162 + 19.6003i −0.0685832 + 0.118790i
$$166$$ −156.250 + 90.2109i −0.941264 + 0.543439i
$$167$$ 168.841i 1.01102i 0.862820 + 0.505511i $$0.168696\pi$$
−0.862820 + 0.505511i $$0.831304\pi$$
$$168$$ 14.1838 + 0.768426i 0.0844272 + 0.00457396i
$$169$$ −64.8234 −0.383570
$$170$$ −17.6360 30.5465i −0.103741 0.179685i
$$171$$ −30.7279 17.7408i −0.179695 0.103747i
$$172$$ 10.4853 18.1610i 0.0609609 0.105587i
$$173$$ −142.323 + 82.1704i −0.822678 + 0.474974i −0.851339 0.524616i $$-0.824209\pi$$
0.0286608 + 0.999589i $$0.490876\pi$$
$$174$$ 3.56608i 0.0204947i
$$175$$ 7.18377 132.599i 0.0410501 0.757711i
$$176$$ −19.0294 −0.108122
$$177$$ 13.8898 + 24.0579i 0.0784736 + 0.135920i
$$178$$ 61.6432 + 35.5897i 0.346310 + 0.199942i
$$179$$ −92.5919 + 160.374i −0.517273 + 0.895943i 0.482526 + 0.875882i $$0.339720\pi$$
−0.999799 + 0.0200614i $$0.993614\pi$$
$$180$$ −97.4558 + 56.2662i −0.541421 + 0.312590i
$$181$$ 155.086i 0.856830i −0.903582 0.428415i $$-0.859072\pi$$
0.903582 0.428415i $$-0.140928\pi$$
$$182$$ 82.6690 126.809i 0.454226 0.696753i
$$183$$ −64.9340 −0.354831
$$184$$ 39.2132 + 67.9193i 0.213115 + 0.369126i
$$185$$ −16.8898 9.75135i −0.0912964 0.0527100i
$$186$$ −24.7904 + 42.9382i −0.133282 + 0.230850i
$$187$$ −15.4964 + 8.94687i −0.0828686 + 0.0478442i
$$188$$ 105.358i 0.560415i
$$189$$ −39.7279 78.3116i −0.210201 0.414347i
$$190$$ 39.2132 0.206385
$$191$$ −124.048 214.857i −0.649465 1.12491i −0.983251 0.182257i $$-0.941660\pi$$
0.333786 0.942649i $$-0.391674\pi$$
$$192$$ 4.97056 + 2.86976i 0.0258883 + 0.0149466i
$$193$$ −77.1690 + 133.661i −0.399840 + 0.692543i −0.993706 0.112021i $$-0.964268\pi$$
0.593866 + 0.804564i $$0.297601\pi$$
$$194$$ 124.669 71.9777i 0.642624 0.371019i
$$195$$ 72.7461i 0.373057i
$$196$$ 39.5442 + 89.6675i 0.201756 + 0.457487i
$$197$$ −181.103 −0.919303 −0.459651 0.888099i $$-0.652026\pi$$
−0.459651 + 0.888099i $$0.652026\pi$$
$$198$$ 28.5442 + 49.4399i 0.144162 + 0.249697i
$$199$$ 301.989 + 174.353i 1.51753 + 0.876147i 0.999788 + 0.0206121i $$0.00656150\pi$$
0.517744 + 0.855535i $$0.326772\pi$$
$$200$$ 26.8284 46.4682i 0.134142 0.232341i
$$201$$ 21.5223 12.4259i 0.107076 0.0618204i
$$202$$ 84.3992i 0.417818i
$$203$$ 21.9411 11.1309i 0.108084 0.0548318i
$$204$$ 5.39697 0.0264557
$$205$$ 92.6985 + 160.558i 0.452188 + 0.783212i
$$206$$ −147.187 84.9786i −0.714502 0.412518i
$$207$$ 117.640 203.758i 0.568307 0.984337i
$$208$$ 52.9706 30.5826i 0.254666 0.147032i
$$209$$ 19.8931i 0.0951823i
$$210$$ 39.4523 + 25.7196i 0.187868 + 0.122474i
$$211$$ 364.073 1.72547 0.862733 0.505660i $$-0.168751\pi$$
0.862733 + 0.505660i $$0.168751\pi$$
$$212$$ −55.9706 96.9439i −0.264012 0.457282i
$$213$$ 22.6325 + 13.0669i 0.106256 + 0.0613468i
$$214$$ 80.3345 139.143i 0.375395 0.650203i
$$215$$ 60.2132 34.7641i 0.280061 0.161694i
$$216$$ 35.4815i 0.164266i
$$217$$ −341.566 18.5048i −1.57404 0.0852757i
$$218$$ −205.497 −0.942649
$$219$$ 18.8711 + 32.6857i 0.0861694 + 0.149250i
$$220$$ −54.6396 31.5462i −0.248362 0.143392i
$$221$$ 28.7574 49.8092i 0.130124 0.225381i
$$222$$ 2.58431 1.49205i 0.0116410 0.00672095i
$$223$$ 123.231i 0.552603i 0.961071 + 0.276302i $$0.0891089\pi$$
−0.961071 + 0.276302i $$0.910891\pi$$
$$224$$ −2.14214 + 39.5400i −0.00956311 + 0.176518i
$$225$$ −160.971 −0.715425
$$226$$ −24.4264 42.3078i −0.108081 0.187203i
$$227$$ −66.1432 38.1878i −0.291380 0.168228i 0.347184 0.937797i $$-0.387138\pi$$
−0.638564 + 0.769569i $$0.720471\pi$$
$$228$$ −3.00000 + 5.19615i −0.0131579 + 0.0227901i
$$229$$ 309.419 178.643i 1.35117 0.780101i 0.362760 0.931883i $$-0.381834\pi$$
0.988414 + 0.151782i $$0.0485012\pi$$
$$230$$ 260.024i 1.13054i
$$231$$ 13.0477 20.0144i 0.0564837 0.0866423i
$$232$$ 9.94113 0.0428497
$$233$$ 136.537 + 236.488i 0.585994 + 1.01497i 0.994751 + 0.102328i $$0.0326291\pi$$
−0.408757 + 0.912643i $$0.634038\pi$$
$$234$$ −158.912 91.7477i −0.679110 0.392084i
$$235$$ −174.658 + 302.516i −0.743225 + 1.28730i
$$236$$ −67.0660 + 38.7206i −0.284178 + 0.164070i
$$237$$ 24.2400i 0.102278i
$$238$$ 16.8457 + 33.2061i 0.0707801 + 0.139522i
$$239$$ −265.103 −1.10922 −0.554608 0.832112i $$-0.687132\pi$$
−0.554608 + 0.832112i $$0.687132\pi$$
$$240$$ 9.51472 + 16.4800i 0.0396447 + 0.0686666i
$$241$$ −75.8970 43.8191i −0.314925 0.181822i 0.334203 0.942501i $$-0.391533\pi$$
−0.649128 + 0.760679i $$0.724866\pi$$
$$242$$ 69.5563 120.475i 0.287423 0.497831i
$$243$$ −139.632 + 80.6168i −0.574619 + 0.331757i
$$244$$ 181.016i 0.741869i
$$245$$ −35.1030 + 323.019i −0.143278 + 1.31844i
$$246$$ −28.3675 −0.115315
$$247$$ 31.9706 + 55.3746i 0.129435 + 0.224189i
$$248$$ −119.698 69.1080i −0.482655 0.278661i
$$249$$ 45.7645 79.2664i 0.183793 0.318339i
$$250$$ −48.9670 + 28.2711i −0.195868 + 0.113084i
$$251$$ 495.655i 1.97472i −0.158491 0.987360i $$-0.550663\pi$$
0.158491 0.987360i $$-0.449337\pi$$
$$252$$ 105.941 53.7446i 0.420401 0.213272i
$$253$$ 131.912 0.521390
$$254$$ 174.894 + 302.926i 0.688561 + 1.19262i
$$255$$ 15.4964 + 8.94687i 0.0607703 + 0.0350858i
$$256$$ −8.00000 + 13.8564i −0.0312500 + 0.0541266i
$$257$$ 346.875 200.268i 1.34971 0.779254i 0.361499 0.932372i $$-0.382265\pi$$
0.988208 + 0.153119i $$0.0489317\pi$$
$$258$$ 10.6385i 0.0412345i
$$259$$ 17.2466 + 11.2434i 0.0665894 + 0.0434108i
$$260$$ 202.794 0.779977
$$261$$ −14.9117 25.8278i −0.0571329 0.0989571i
$$262$$ 180.827 + 104.400i 0.690179 + 0.398475i
$$263$$ 16.1726 28.0118i 0.0614928 0.106509i −0.833640 0.552308i $$-0.813747\pi$$
0.895133 + 0.445799i $$0.147081\pi$$
$$264$$ 8.36039 4.82687i 0.0316681 0.0182836i
$$265$$ 371.142i 1.40054i
$$266$$ −41.3345 2.23936i −0.155393 0.00841863i
$$267$$ −36.1097 −0.135242
$$268$$ 34.6396 + 59.9976i 0.129252 + 0.223872i
$$269$$ −265.838 153.482i −0.988246 0.570564i −0.0834963 0.996508i $$-0.526609\pi$$
−0.904749 + 0.425944i $$0.859942\pi$$
$$270$$ 58.8198 101.879i 0.217851 0.377329i
$$271$$ −65.8051 + 37.9926i −0.242823 + 0.140194i −0.616474 0.787376i $$-0.711439\pi$$
0.373650 + 0.927570i $$0.378106\pi$$
$$272$$ 15.0451i 0.0553129i
$$273$$ −4.15433 + 76.6815i −0.0152173 + 0.280885i
$$274$$ −46.0660 −0.168124
$$275$$ −45.1249 78.1586i −0.164091 0.284213i
$$276$$ −34.4558 19.8931i −0.124840 0.0720764i
$$277$$ −139.206 + 241.111i −0.502547 + 0.870438i 0.497448 + 0.867494i $$0.334270\pi$$
−0.999996 + 0.00294398i $$0.999063\pi$$
$$278$$ 84.0000 48.4974i 0.302158 0.174451i
$$279$$ 414.648i 1.48619i
$$280$$ −71.6985 + 109.981i −0.256066 + 0.392789i
$$281$$ 394.690 1.40459 0.702296 0.711885i $$-0.252158\pi$$
0.702296 + 0.711885i $$0.252158\pi$$
$$282$$ −26.7244 46.2879i −0.0947672 0.164142i
$$283$$ 126.783 + 73.1981i 0.447996 + 0.258650i 0.706983 0.707230i $$-0.250056\pi$$
−0.258988 + 0.965881i $$0.583389\pi$$
$$284$$ −36.4264 + 63.0924i −0.128262 + 0.222156i
$$285$$ −17.2279 + 9.94655i −0.0604488 + 0.0349002i
$$286$$ 102.879i 0.359715i
$$287$$ −88.5442 174.538i −0.308516 0.608146i
$$288$$ 48.0000 0.166667
$$289$$ −137.426 238.030i −0.475524 0.823632i
$$290$$ 28.5442 + 16.4800i 0.0984281 + 0.0568275i
$$291$$ −36.5147 + 63.2453i −0.125480 + 0.217338i
$$292$$ −91.1177 + 52.6069i −0.312047 + 0.180160i
$$293$$ 299.678i 1.02279i 0.859345 + 0.511396i $$0.170872\pi$$
−0.859345 + 0.511396i $$0.829128\pi$$
$$294$$ −40.1177 29.3640i −0.136455 0.0998776i
$$295$$ −256.757 −0.870364
$$296$$ 4.15938 + 7.20426i 0.0140520 + 0.0243387i
$$297$$ −51.6838 29.8396i −0.174019 0.100470i
$$298$$ −65.3345 + 113.163i −0.219243 + 0.379741i
$$299$$ −367.191 + 211.998i −1.22806 + 0.709023i
$$300$$ 27.2204i 0.0907348i
$$301$$ −65.4558 + 33.2061i −0.217461 + 0.110319i
$$302$$ −129.806 −0.429822
$$303$$ −21.4081 37.0799i −0.0706539 0.122376i
$$304$$ −14.4853 8.36308i −0.0476490 0.0275101i
$$305$$ 300.081 519.755i 0.983871 1.70412i
$$306$$ 39.0883 22.5676i 0.127740 0.0737505i
$$307$$ 20.9886i 0.0683666i −0.999416 0.0341833i $$-0.989117\pi$$
0.999416 0.0341833i $$-0.0108830\pi$$
$$308$$ 55.7939 + 36.3731i 0.181149 + 0.118094i
$$309$$ 86.2203 0.279030
$$310$$ −229.128 396.862i −0.739124 1.28020i
$$311$$ 157.651 + 91.0197i 0.506916 + 0.292668i 0.731565 0.681772i $$-0.238790\pi$$
−0.224649 + 0.974440i $$0.572124\pi$$
$$312$$ −15.5147 + 26.8723i −0.0497267 + 0.0861291i
$$313$$ −84.8087 + 48.9643i −0.270954 + 0.156435i −0.629321 0.777145i $$-0.716667\pi$$
0.358367 + 0.933581i $$0.383334\pi$$
$$314$$ 11.9590i 0.0380861i
$$315$$ 393.286 + 21.3068i 1.24853 + 0.0676408i
$$316$$ −67.5736 −0.213840
$$317$$ 240.985 + 417.399i 0.760206 + 1.31672i 0.942744 + 0.333517i $$0.108235\pi$$
−0.182538 + 0.983199i $$0.558431\pi$$
$$318$$ 49.1802 + 28.3942i 0.154655 + 0.0892899i
$$319$$ 8.36039 14.4806i 0.0262081 0.0453938i
$$320$$ −45.9411 + 26.5241i −0.143566 + 0.0828879i
$$321$$ 81.5084i 0.253920i
$$322$$ 14.8492 274.090i 0.0461157 0.851213i
$$323$$ −15.7279 −0.0486933
$$324$$ −67.3675 116.684i −0.207924 0.360136i
$$325$$ 251.220 + 145.042i 0.772986 + 0.446283i
$$326$$ −156.962 + 271.866i −0.481478 + 0.833945i
$$327$$ 90.2832 52.1250i 0.276095 0.159404i
$$328$$ 79.0800i 0.241098i
$$329$$ 201.382 308.907i 0.612104 0.938928i
$$330$$ 32.0071 0.0969913
$$331$$ −112.504 194.862i −0.339890 0.588707i 0.644522 0.764586i $$-0.277056\pi$$
−0.984412 + 0.175879i $$0.943723\pi$$
$$332$$ 220.971 + 127.577i 0.665574 + 0.384269i
$$333$$ 12.4781 21.6128i 0.0374719 0.0649032i
$$334$$ 206.787 119.388i 0.619122 0.357450i
$$335$$ 229.696i 0.685661i
$$336$$ −9.08831 17.9149i −0.0270485 0.0533180i
$$337$$ −264.368 −0.784473 −0.392237 0.919864i $$-0.628299\pi$$
−0.392237 + 0.919864i $$0.628299\pi$$
$$338$$ 45.8370 + 79.3921i 0.135613 + 0.234888i
$$339$$ 21.4630 + 12.3917i 0.0633126 + 0.0365536i
$$340$$ −24.9411 + 43.1993i −0.0733563 + 0.127057i
$$341$$ −201.331 + 116.238i −0.590412 + 0.340875i
$$342$$ 50.1785i 0.146721i
$$343$$ 55.4487 338.488i 0.161658 0.986847i
$$344$$ −29.6569 −0.0862118
$$345$$ −65.9558 114.239i −0.191176 0.331127i
$$346$$ 201.276 + 116.207i 0.581722 + 0.335857i
$$347$$ 95.6285 165.633i 0.275586 0.477330i −0.694697 0.719303i $$-0.744461\pi$$
0.970283 + 0.241973i $$0.0777947\pi$$
$$348$$ −4.36753 + 2.52160i −0.0125504 + 0.00724597i
$$349$$ 135.448i 0.388104i 0.980991 + 0.194052i $$0.0621630\pi$$
−0.980991 + 0.194052i $$0.937837\pi$$
$$350$$ −167.480 + 84.9637i −0.478515 + 0.242753i
$$351$$ 191.823 0.546505
$$352$$ 13.4558 + 23.3062i 0.0382268 + 0.0662108i
$$353$$ −301.802 174.245i −0.854962 0.493612i 0.00736010 0.999973i $$-0.497657\pi$$
−0.862322 + 0.506360i $$0.830991\pi$$
$$354$$ 19.6432 34.0230i 0.0554892 0.0961101i
$$355$$ −209.184 + 120.772i −0.589250 + 0.340204i
$$356$$ 100.663i 0.282761i
$$357$$ −15.8238 10.3158i −0.0443244 0.0288959i
$$358$$ 261.889 0.731535
$$359$$ −152.415 263.991i −0.424555 0.735351i 0.571824 0.820377i $$-0.306236\pi$$
−0.996379 + 0.0850256i $$0.972903\pi$$
$$360$$ 137.823 + 79.5724i 0.382843 + 0.221034i
$$361$$ −171.757 + 297.492i −0.475782 + 0.824079i
$$362$$ −189.941 + 109.663i −0.524699 + 0.302935i
$$363$$ 70.5727i 0.194415i
$$364$$ −213.765 11.5810i −0.587265 0.0318159i
$$365$$ −348.838 −0.955720
$$366$$ 45.9153 + 79.5276i 0.125452 + 0.217288i
$$367$$ −82.2761 47.5021i −0.224186 0.129434i 0.383701 0.923457i $$-0.374649\pi$$
−0.607887 + 0.794024i $$0.707983\pi$$
$$368$$ 55.4558 96.0523i 0.150695 0.261012i
$$369$$ −205.456 + 118.620i −0.556791 + 0.321463i
$$370$$ 27.5810i 0.0745432i
$$371$$ −21.1949 + 391.220i −0.0571291 + 1.05450i
$$372$$ 70.1177 0.188489
$$373$$ −126.779 219.588i −0.339891 0.588708i 0.644521 0.764586i $$-0.277057\pi$$
−0.984412 + 0.175879i $$0.943723\pi$$
$$374$$ 21.9153 + 12.6528i 0.0585970 + 0.0338310i
$$375$$ 14.3421 24.8412i 0.0382456 0.0662433i
$$376$$ 129.037 74.4993i 0.343182 0.198136i
$$377$$ 53.7446i 0.142559i
$$378$$ −67.8198 + 104.031i −0.179417 + 0.275215i
$$379$$ 508.250 1.34103 0.670514 0.741897i $$-0.266074\pi$$
0.670514 + 0.741897i $$0.266074\pi$$
$$380$$ −27.7279 48.0262i −0.0729682 0.126385i
$$381$$ −153.676 88.7250i −0.403350 0.232874i
$$382$$ −175.430 + 303.854i −0.459241 + 0.795428i
$$383$$ 413.753 238.881i 1.08030 0.623709i 0.149320 0.988789i $$-0.452292\pi$$
0.930976 + 0.365080i $$0.118958\pi$$
$$384$$ 8.11689i 0.0211377i
$$385$$ 99.9045 + 196.932i 0.259492 + 0.511511i
$$386$$ 218.267 0.565459
$$387$$ 44.4853 + 77.0508i 0.114949 + 0.199098i
$$388$$ −176.309 101.792i −0.454404 0.262350i
$$389$$ −85.1102 + 147.415i −0.218792 + 0.378959i −0.954439 0.298406i $$-0.903545\pi$$
0.735647 + 0.677365i $$0.236878\pi$$
$$390$$ −89.0955 + 51.4393i −0.228450 + 0.131896i
$$391$$ 104.292i 0.266732i
$$392$$ 81.8579 111.836i 0.208821 0.285296i
$$393$$ −105.926 −0.269532
$$394$$ 128.059 + 221.804i 0.325023 + 0.562956i
$$395$$ −194.025 112.021i −0.491204 0.283597i
$$396$$ 40.3675 69.9186i 0.101938 0.176562i
$$397$$ 211.786 122.275i 0.533467 0.307997i −0.208960 0.977924i $$-0.567008\pi$$
0.742427 + 0.669927i $$0.233675\pi$$
$$398$$ 493.146i 1.23906i
$$399$$ 18.7279 9.50079i 0.0469371 0.0238115i
$$400$$ −75.8823 −0.189706
$$401$$ 208.786 + 361.629i 0.520664 + 0.901817i 0.999711 + 0.0240277i $$0.00764899\pi$$
−0.479047 + 0.877789i $$0.659018\pi$$
$$402$$ −30.4371 17.5729i −0.0757142 0.0437136i
$$403$$ 373.617 647.124i 0.927090 1.60577i
$$404$$ 103.368 59.6793i 0.255860 0.147721i
$$405$$ 446.716i 1.10300i
$$406$$ −29.1472 19.0016i −0.0717911 0.0468019i
$$407$$ 13.9920 0.0343784
$$408$$ −3.81623 6.60991i −0.00935351 0.0162008i
$$409$$ 266.919 + 154.106i 0.652614 + 0.376787i 0.789457 0.613806i $$-0.210362\pi$$
−0.136843 + 0.990593i $$0.543696\pi$$
$$410$$ 131.095 227.064i 0.319745 0.553815i
$$411$$ 20.2386 11.6848i 0.0492424 0.0284301i
$$412$$ 240.356i 0.583388i
$$413$$ 270.647 + 14.6627i 0.655320 + 0.0355029i
$$414$$ −332.735 −0.803708
$$415$$ 422.985 + 732.631i 1.01924 + 1.76538i
$$416$$ −74.9117 43.2503i −0.180076 0.103967i
$$417$$ −24.6030 + 42.6137i −0.0590001 + 0.102191i
$$418$$ −24.3640 + 14.0665i −0.0582870 + 0.0336520i
$$419$$ 103.142i 0.246163i −0.992397 0.123081i $$-0.960722\pi$$
0.992397 0.123081i $$-0.0392776\pi$$
$$420$$ 3.60303 66.5055i 0.00857864 0.158346i
$$421$$ −165.220 −0.392447 −0.196224 0.980559i $$-0.562868\pi$$
−0.196224 + 0.980559i $$0.562868\pi$$
$$422$$ −257.439 445.897i −0.610044 1.05663i
$$423$$ −387.110 223.498i −0.915153 0.528364i
$$424$$ −79.1543 + 137.099i −0.186685 + 0.323347i
$$425$$ −61.7939 + 35.6767i −0.145398 + 0.0839453i
$$426$$ 36.9587i 0.0867574i
$$427$$ −345.996 + 530.736i −0.810295 + 1.24294i
$$428$$ −227.220 −0.530889
$$429$$ 26.0955 + 45.1987i 0.0608286 + 0.105358i
$$430$$ −85.1543 49.1639i −0.198033 0.114335i
$$431$$ −297.268 + 514.883i −0.689717 + 1.19463i 0.282212 + 0.959352i $$0.408932\pi$$
−0.971929 + 0.235273i $$0.924402\pi$$
$$432$$ −43.4558 + 25.0892i −0.100592 + 0.0580770i
$$433$$ 40.6267i 0.0938261i −0.998899 0.0469131i $$-0.985062\pi$$
0.998899 0.0469131i $$-0.0149384\pi$$
$$434$$ 218.860 + 431.416i 0.504286 + 0.994046i
$$435$$ −16.7208 −0.0384386
$$436$$ 145.309 + 251.682i 0.333277 + 0.577252i
$$437$$ 100.412 + 57.9727i 0.229775 + 0.132661i
$$438$$ 26.6878 46.2246i 0.0609310 0.105536i
$$439$$ 126.959 73.3001i 0.289201 0.166971i −0.348380 0.937353i $$-0.613268\pi$$
0.637582 + 0.770383i $$0.279935\pi$$
$$440$$ 89.2261i 0.202787i
$$441$$ −413.345 44.9190i −0.937291 0.101857i
$$442$$ −81.3381 −0.184023
$$443$$ −53.6802 92.9768i −0.121174 0.209880i 0.799057 0.601256i $$-0.205333\pi$$
−0.920231 + 0.391376i $$0.871999\pi$$
$$444$$ −3.65476 2.11008i −0.00823145 0.00475243i
$$445$$ 166.875 289.035i 0.374999 0.649518i
$$446$$ 150.926 87.1372i 0.338399 0.195375i
$$447$$ 66.2892i 0.148298i
$$448$$ 49.9411 25.3354i 0.111476 0.0565523i
$$449$$ 135.161 0.301028 0.150514 0.988608i $$-0.451907\pi$$
0.150514 + 0.988608i $$0.451907\pi$$
$$450$$ 113.823 + 197.148i 0.252941 + 0.438106i
$$451$$ −115.191 66.5055i −0.255412 0.147462i
$$452$$ −34.5442 + 59.8322i −0.0764251 + 0.132372i
$$453$$ 57.0290 32.9257i 0.125892 0.0726837i
$$454$$ 108.011i 0.237910i
$$455$$ −594.588 387.622i −1.30679 0.851918i
$$456$$ 8.48528 0.0186081
$$457$$ −79.8675 138.335i −0.174765 0.302702i 0.765315 0.643656i $$-0.222583\pi$$
−0.940080 + 0.340954i $$0.889250\pi$$
$$458$$ −437.584 252.639i −0.955424 0.551614i
$$459$$ −23.5919 + 40.8623i −0.0513984 + 0.0890247i
$$460$$ 318.463 183.865i 0.692311 0.399706i
$$461$$ 310.250i 0.672993i 0.941685 + 0.336497i $$0.109242\pi$$
−0.941685 + 0.336497i $$0.890758\pi$$
$$462$$ −33.7386 1.82784i −0.0730274 0.00395636i
$$463$$ −326.014 −0.704135 −0.352067 0.935975i $$-0.614521\pi$$
−0.352067 + 0.935975i $$0.614521\pi$$
$$464$$ −7.02944 12.1753i −0.0151496 0.0262400i
$$465$$ 201.331 + 116.238i 0.432969 + 0.249975i
$$466$$ 193.092 334.445i 0.414360 0.717693i
$$467$$ 515.769 297.779i 1.10443 0.637643i 0.167048 0.985949i $$-0.446576\pi$$
0.937381 + 0.348306i $$0.113243\pi$$
$$468$$ 259.502i 0.554491i
$$469$$ 13.1173 242.122i 0.0279687 0.516252i
$$470$$ 494.007 1.05108
$$471$$ 3.03344 + 5.25408i 0.00644043 + 0.0111551i
$$472$$ 94.8457 + 54.7592i 0.200944 + 0.116015i
$$473$$ −24.9411 + 43.1993i −0.0527297 + 0.0913304i
$$474$$ 29.6878 17.1402i 0.0626324 0.0361608i
$$475$$ 79.3262i 0.167002i
$$476$$ 28.7574 44.1119i 0.0604146 0.0926721i
$$477$$ 474.926 0.995652
$$478$$ 187.456 + 324.683i 0.392167 + 0.679253i
$$479$$ 438.798 + 253.340i 0.916071 + 0.528894i 0.882379 0.470539i $$-0.155940\pi$$
0.0336914 + 0.999432i $$0.489274\pi$$
$$480$$ 13.4558 23.3062i 0.0280330 0.0485546i
$$481$$ −38.9483 + 22.4868i −0.0809735 + 0.0467501i
$$482$$ 123.939i 0.257135i
$$483$$ 63.0000 + 124.185i 0.130435 + 0.257113i
$$484$$ −196.735 −0.406477
$$485$$ −337.492 584.554i −0.695861 1.20527i
$$486$$ 197.470 + 114.009i 0.406317 + 0.234587i
$$487$$ −105.651 + 182.992i −0.216942 + 0.375755i −0.953872 0.300215i $$-0.902942\pi$$
0.736930 + 0.675970i $$0.236275\pi$$
$$488$$ −221.698 + 127.998i −0.454300 + 0.262290i
$$489$$ 159.255i 0.325676i
$$490$$ 420.437 185.416i 0.858035 0.378401i
$$491$$ −784.161 −1.59707 −0.798534 0.601949i $$-0.794391\pi$$
−0.798534 + 0.601949i $$0.794391\pi$$
$$492$$ 20.0589 + 34.7430i 0.0407701 + 0.0706158i
$$493$$ −11.4487 6.60991i −0.0232225 0.0134075i
$$494$$ 45.2132 78.3116i 0.0915247 0.158525i
$$495$$ 231.816 133.839i 0.468316 0.270382i
$$496$$ 195.467i 0.394086i
$$497$$ 227.397 115.360i 0.457539 0.232112i
$$498$$ −129.442 −0.259923
$$499$$ 85.7462 + 148.517i 0.171836 + 0.297629i 0.939062 0.343748i $$-0.111697\pi$$
−0.767226 + 0.641377i $$0.778363\pi$$
$$500$$ 69.2498 + 39.9814i 0.138500 + 0.0799628i
$$501$$ −60.5665 + 104.904i −0.120891 + 0.209390i
$$502$$ −607.051 + 350.481i −1.20926 + 0.698169i
$$503$$ 20.0883i 0.0399370i −0.999801 0.0199685i $$-0.993643\pi$$
0.999801 0.0199685i $$-0.00635659\pi$$
$$504$$ −140.735 91.7477i −0.279236 0.182039i
$$505$$ 395.735 0.783634
$$506$$ −93.2756 161.558i −0.184339 0.319285i
$$507$$ −40.2761 23.2534i −0.0794400 0.0458647i
$$508$$ 247.338 428.402i 0.486886 0.843311i
$$509$$ −412.890 + 238.382i −0.811178 + 0.468334i −0.847365 0.531011i $$-0.821812\pi$$
0.0361865 + 0.999345i $$0.488479\pi$$
$$510$$ 25.3056i 0.0496187i
$$511$$ 367.709 + 19.9211i 0.719587 + 0.0389846i
$$512$$ 22.6274 0.0441942
$$513$$ −26.2279 45.4281i −0.0511266 0.0885538i
$$514$$ −490.555 283.222i −0.954387 0.551016i
$$515$$ −398.452 + 690.139i −0.773693 + 1.34008i
$$516$$ 13.0294 7.52255i 0.0252508 0.0145786i
$$517$$ 250.613i 0.484744i
$$518$$ 1.57507 29.0730i 0.00304068 0.0561255i
$$519$$ −117.905 −0.227176
$$520$$ −143.397 248.371i −0.275763 0.477636i
$$521$$ 739.823 + 427.137i 1.42001 + 0.819841i 0.996299 0.0859587i $$-0.0273953\pi$$
0.423707 + 0.905799i $$0.360729\pi$$
$$522$$ −21.0883 + 36.5260i −0.0403991 + 0.0699732i
$$523$$ −513.554 + 296.501i −0.981940 + 0.566923i −0.902855 0.429945i $$-0.858533\pi$$
−0.0790845 + 0.996868i $$0.525200\pi$$
$$524$$ 295.289i 0.563529i
$$525$$ 52.0294 79.8098i 0.0991037 0.152019i
$$526$$ −45.7431 −0.0869640
$$527$$ 91.9005 + 159.176i 0.174384 + 0.302043i
$$528$$ −11.8234 6.82623i −0.0223928 0.0129285i
$$529$$ −119.919 + 207.706i −0.226690 + 0.392638i
$$530$$ −454.555 + 262.437i −0.857651 + 0.495165i
$$531$$ 328.555i 0.618748i
$$532$$ 26.4853 + 52.2077i 0.0497844 + 0.0981348i
$$533$$ 427.529 0.802118
$$534$$ 25.5334 + 44.2252i 0.0478154 + 0.0828188i
$$535$$ −652.422 376.676i −1.21948 0.704068i
$$536$$ 48.9878 84.8494i 0.0913952 0.158301i
$$537$$ −115.058 + 66.4290i −0.214262 + 0.123704i
$$538$$ 434.112i 0.806899i
$$539$$ −94.0629 213.290i −0.174514 0.395715i
$$540$$ −166.368 −0.308088
$$541$$ −427.595 740.617i −0.790380 1.36898i −0.925732 0.378180i $$-0.876550\pi$$
0.135352 0.990798i $$-0.456783\pi$$
$$542$$ 93.0624 + 53.7296i 0.171702 + 0.0991322i
$$543$$ 55.6325 96.3583i 0.102454 0.177455i
$$544$$ 18.4264 10.6385i 0.0338721 0.0195560i
$$545$$ 963.546i 1.76797i
$$546$$ 96.8528 49.1340i 0.177386 0.0899890i
$$547$$ 415.897 0.760323 0.380161 0.924920i $$-0.375868\pi$$
0.380161 + 0.924920i $$0.375868\pi$$
$$548$$ 32.5736 + 56.4191i 0.0594409 + 0.102955i
$$549$$ 665.095 + 383.993i 1.21147 + 0.699441i
$$550$$ −63.8162 + 110.533i −0.116030 + 0.200969i
$$551$$ 12.7279 7.34847i 0.0230997 0.0133366i
$$552$$ 56.2662i 0.101931i
$$553$$ 198.124 + 129.161i 0.358272 + 0.233564i
$$554$$ 393.733 0.710709
$$555$$ −6.99600 12.1174i −0.0126054 0.0218332i
$$556$$ −118.794 68.5857i −0.213658 0.123356i
$$557$$ 292.110 505.950i 0.524435 0.908348i −0.475160 0.879899i $$-0.657610\pi$$
0.999595 0.0284485i $$-0.00905667\pi$$
$$558$$ 507.838 293.200i 0.910103 0.525448i
$$559$$ 160.333i 0.286822i
$$560$$ 185.397 + 10.0441i 0.331066 + 0.0179360i
$$561$$ −12.8377 −0.0228835
$$562$$ −279.088 483.395i −0.496598 0.860134i
$$563$$ 789.076 + 455.573i 1.40156 + 0.809189i 0.994552 0.104237i $$-0.0332402\pi$$
0.407004 + 0.913426i $$0.366573\pi$$
$$564$$ −37.7939 + 65.4610i −0.0670105 + 0.116066i
$$565$$ −198.375 + 114.532i −0.351106 + 0.202711i
$$566$$ 207.035i 0.365787i
$$567$$ −25.5107 + 470.882i −0.0449924 + 0.830480i
$$568$$ 103.029 0.181390
$$569$$ −350.000 606.217i −0.615113 1.06541i −0.990365 0.138485i $$-0.955777\pi$$
0.375251 0.926923i $$-0.377556\pi$$
$$570$$ 24.3640 + 14.0665i 0.0427438 + 0.0246781i
$$571$$ 281.231 487.107i 0.492525 0.853077i −0.507438 0.861688i $$-0.669408\pi$$
0.999963 + 0.00861055i $$0.00274086\pi$$
$$572$$ −126.000 + 72.7461i −0.220280 + 0.127179i
$$573$$ 177.993i 0.310634i
$$574$$ −151.154 + 231.861i −0.263335 + 0.403939i
$$575$$ 526.014 0.914807
$$576$$ −33.9411 58.7878i −0.0589256 0.102062i
$$577$$ −573.014 330.830i −0.993092 0.573362i −0.0868946 0.996218i $$-0.527694\pi$$
−0.906197 + 0.422856i $$0.861028\pi$$
$$578$$ −194.350 + 336.625i −0.336246 + 0.582395i
$$579$$ −95.8934 + 55.3641i −0.165619 + 0.0956202i
$$580$$ 46.6124i 0.0803662i
$$581$$ −404.029 796.420i −0.695402 1.37077i
$$582$$ 103.279 0.177456
$$583$$ 133.136 + 230.598i 0.228364 + 0.395538i
$$584$$ 128.860 + 74.3973i 0.220651 + 0.127393i
$$585$$ −430.191 + 745.113i −0.735369 + 1.27370i
$$586$$ 367.029 211.905i 0.626330 0.361612i
$$587$$ 823.029i 1.40209i −0.713116 0.701046i $$-0.752717\pi$$
0.713116 0.701046i $$-0.247283\pi$$
$$588$$ −7.59589 + 69.8975i −0.0129182 + 0.118873i
$$589$$ −204.338 −0.346924
$$590$$ 181.555 + 314.462i 0.307720 + 0.532987i
$$591$$ −112.523 64.9650i −0.190394 0.109924i
$$592$$ 5.88225 10.1884i 0.00993623 0.0172101i
$$593$$ −538.890 + 311.128i −0.908752 + 0.524668i −0.880029 0.474919i $$-0.842477\pi$$
−0.0287225 + 0.999587i $$0.509144\pi$$
$$594$$ 84.3992i 0.142086i
$$595$$ 155.698 78.9868i 0.261678 0.132751i
$$596$$ 184.794 0.310057
$$597$$ 125.088 + 216.659i 0.209527 + 0.362912i
$$598$$ 519.286 + 299.810i 0.868372 + 0.501355i
$$599$$ 256.422 444.137i 0.428084 0.741463i −0.568619 0.822601i $$-0.692522\pi$$
0.996703 + 0.0811377i $$0.0258554\pi$$
$$600$$ 33.3381 19.2478i 0.0555635 0.0320796i
$$601$$ 680.160i 1.13171i 0.824504 + 0.565857i $$0.191454\pi$$
−0.824504 + 0.565857i $$0.808546\pi$$
$$602$$ 86.9533 + 56.6864i 0.144441 + 0.0941635i
$$603$$ −293.927 −0.487441
$$604$$ 91.7868 + 158.979i 0.151965 + 0.263211i
$$605$$ −564.889 326.139i −0.933701 0.539073i
$$606$$ −30.2756 + 52.4390i −0.0499598 + 0.0865329i
$$607$$ 33.5482 19.3690i 0.0552688 0.0319095i −0.472111 0.881539i $$-0.656508\pi$$
0.527380 + 0.849630i $$0.323175\pi$$
$$608$$ 23.6544i 0.0389052i
$$609$$ 17.6253 + 0.954877i 0.0289414 + 0.00156794i
$$610$$ −848.756 −1.39140
$$611$$ 402.765 + 697.609i 0.659189 + 1.14175i
$$612$$ −55.2792 31.9155i −0.0903255 0.0521495i
$$613$$ −200.552 + 347.366i −0.327164 + 0.566665i −0.981948 0.189151i $$-0.939426\pi$$
0.654784 + 0.755816i $$0.272760\pi$$
$$614$$ −25.7056 + 14.8412i −0.0418658 + 0.0241713i
$$615$$ 133.011i 0.216278i
$$616$$ 5.09545 94.0530i 0.00827184 0.152683i
$$617$$ −959.044 −1.55437 −0.777183 0.629275i $$-0.783352\pi$$
−0.777183 + 0.629275i $$0.783352\pi$$
$$618$$ −60.9670 105.598i −0.0986521 0.170870i
$$619$$ −869.951 502.267i −1.40541 0.811416i −0.410473 0.911873i $$-0.634636\pi$$
−0.994941 + 0.100457i $$0.967970\pi$$
$$620$$ −324.037 + 561.248i −0.522640 + 0.905238i
$$621$$ 301.235 173.918i 0.485081 0.280061i
$$622$$ 257.443i 0.413895i
$$623$$ −192.408 + 295.142i −0.308841 + 0.473743i
$$624$$ 43.8823 0.0703241
$$625$$ 369.691 + 640.323i 0.591505 + 1.02452i
$$626$$ 119.938 + 69.2460i 0.191594 + 0.110617i
$$627$$ 7.13604 12.3600i 0.0113812 0.0197129i
$$628$$ −14.6468 + 8.45631i −0.0233229 + 0.0134655i
$$629$$ 11.0624i 0.0175873i
$$630$$ −252.000 496.742i −0.400000 0.788479i
$$631$$ −386.514 −0.612542 −0.306271 0.951944i $$-0.599081\pi$$
−0.306271 + 0.951944i $$0.599081\pi$$
$$632$$ 47.7817 + 82.7604i 0.0756040 + 0.130950i
$$633$$ 226.206 + 130.600i 0.357356 + 0.206319i
$$634$$ 340.805 590.291i 0.537547 0.931058i
$$635$$ 1420.37 820.053i 2.23681 1.29142i
$$636$$ 80.3109i 0.126275i
$$637$$ 604.617 + 442.547i 0.949164 + 0.694736i
$$638$$ −23.6468 −0.0370639
$$639$$ −154.544 267.678i −0.241853 0.418902i
$$640$$ 64.9706 + 37.5108i 0.101517 + 0.0586106i
$$641$$ 496.074 859.225i 0.773906 1.34044i −0.161502 0.986872i $$-0.551634\pi$$
0.935407 0.353572i $$-0.115033\pi$$
$$642$$ 99.8269 57.6351i 0.155494 0.0897743i
$$643$$ 944.986i 1.46965i 0.678256 + 0.734826i $$0.262736\pi$$
−0.678256 + 0.734826i $$0.737264\pi$$
$$644$$ −346.191 + 175.625i −0.537564 + 0.272709i
$$645$$ 49.8823 0.0773368
$$646$$ 11.1213 + 19.2627i 0.0172157 + 0.0298184i
$$647$$ 2.50357 + 1.44544i 0.00386951 + 0.00223406i 0.501934 0.864906i $$-0.332622\pi$$
−0.498064 + 0.867140i $$0.665956\pi$$
$$648$$ −95.2721 + 165.016i −0.147025 + 0.254654i
$$649$$ 159.529 92.1039i 0.245807 0.141917i
$$650$$ 410.241i 0.631140i
$$651$$ −205.584 134.024i −0.315797 0.205874i
$$652$$ 443.955 0.680913
$$653$$ 161.529 + 279.777i 0.247365 + 0.428449i 0.962794 0.270237i $$-0.0871019\pi$$
−0.715429 + 0.698686i $$0.753769\pi$$
$$654$$ −127.680 73.7159i −0.195229 0.112716i
$$655$$ 489.518 847.870i 0.747356 1.29446i
$$656$$ −96.8528 + 55.9180i −0.147641 + 0.0852409i
$$657$$ 446.384i 0.679428i
$$658$$ −520.731 28.2114i −0.791385 0.0428744i
$$659$$ 295.955 0.449098 0.224549 0.974463i $$-0.427909\pi$$
0.224549 + 0.974463i $$0.427909\pi$$
$$660$$ −22.6325 39.2006i −0.0342916 0.0593948i
$$661$$ 17.9710 + 10.3756i 0.0271876 + 0.0156968i 0.513532 0.858070i $$-0.328337\pi$$
−0.486345 + 0.873767i $$0.661670\pi$$
$$662$$ −159.104 + 275.576i −0.240338 + 0.416278i
$$663$$ 35.7351 20.6316i 0.0538990 0.0311186i
$$664$$ 360.843i 0.543439i
$$665$$ −10.5000 + 193.811i −0.0157895 + 0.291445i
$$666$$ −35.2935 −0.0529933
$$667$$ 48.7279 + 84.3992i 0.0730554 + 0.126536i
$$668$$ −292.441 168.841i −0.437785 0.252756i
$$669$$ −44.2052 + 76.5656i −0.0660765 + 0.114448i
$$670$$ 281.319 162.420i 0.419880 0.242418i
$$671$$ 430.579i 0.641698i
$$672$$ −15.5147 + 23.7986i −0.0230874 + 0.0354146i
$$673$$ 627.044 0.931714 0.465857 0.884860i $$-0.345746\pi$$
0.465857 + 0.884860i $$0.345746\pi$$
$$674$$ 186.936 + 323.783i 0.277353 + 0.480390i
$$675$$ −206.095 118.989i −0.305327 0.176280i
$$676$$ 64.8234 112.277i 0.0958926 0.166091i
$$677$$ −94.6097 + 54.6230i −0.139749 + 0.0806838i −0.568244 0.822860i $$-0.692377\pi$$
0.428496 + 0.903544i $$0.359044\pi$$
$$678$$ 35.0489i 0.0516946i
$$679$$ 322.368 + 635.450i 0.474768 + 0.935861i
$$680$$ 70.5442 0.103741
$$681$$ −27.3974 47.4537i −0.0402311 0.0696824i
$$682$$ 284.724 + 164.386i 0.417484 + 0.241035i
$$683$$ −396.783 + 687.248i −0.580941 + 1.00622i 0.414427 + 0.910083i $$0.363982\pi$$
−0.995368 + 0.0961370i $$0.969351\pi$$
$$684$$ 61.4558 35.4815i 0.0898477 0.0518736i
$$685$$ 215.996i 0.315323i
$$686$$ −453.770 + 171.437i −0.661473 + 0.249908i
$$687$$ 256.331 0.373116
$$688$$ 20.9706 + 36.3221i 0.0304805 + 0.0527937i
$$689$$ −741.198 427.931i −1.07576 0.621090i
$$690$$ −93.2756 + 161.558i −0.135182 + 0.234142i
$$691$$ 159.253 91.9447i 0.230467 0.133060i −0.380320 0.924855i $$-0.624186\pi$$
0.610788 + 0.791794i $$0.290853\pi$$
$$692$$ 328.682i 0.474974i
$$693$$ −252.000 + 127.841i −0.363636 + 0.184475i
$$694$$ −270.478 −0.389738
$$695$$ −227.397 393.863i −0.327190 0.566710i
$$696$$ 6.17662 + 3.56608i 0.00887446 + 0.00512367i
$$697$$ −52.5807 + 91.0725i −0.0754386 + 0.130664i
$$698$$ 165.889 95.7763i 0.237664 0.137215i
$$699$$ 195.913i 0.280277i
$$700$$ 222.485 + 145.042i 0.317836 + 0.207203i
$$701$$ −1043.82 −1.48905 −0.744525 0.667595i $$-0.767324\pi$$
−0.744525 + 0.667595i $$0.767324\pi$$
$$702$$ −135.640 234.935i −0.193219 0.334665i
$$703$$ 10.6508 + 6.14922i 0.0151504 + 0.00874711i
$$704$$ 19.0294 32.9600i 0.0270305 0.0468181i
$$705$$ −217.037 + 125.306i −0.307854 + 0.177740i
$$706$$ 492.840i 0.698073i
$$707$$ −417.143 22.5993i −0.590019 0.0319651i
$$708$$ −55.5593 −0.0784736
$$709$$ 490.279 + 849.188i 0.691507 + 1.19773i 0.971344 + 0.237678i $$0.0763864\pi$$
−0.279836 + 0.960048i $$0.590280\pi$$
$$710$$ 295.831 + 170.798i 0.416663 + 0.240560i
$$711$$ 143.345 248.281i 0.201611 0.349200i
$$712$$ −123.286 + 71.1794i −0.173155 + 0.0999711i
$$713$$ 1354.97i 1.90038i
$$714$$ −1.44513 + 26.6745i −0.00202399 + 0.0373593i
$$715$$ −482.382 −0.674660
$$716$$ −185.184 320.748i −0.258637 0.447972i
$$717$$ −164.714 95.0975i −0.229726 0.132632i
$$718$$ −215.548 + 373.340i −0.300206 + 0.519972i
$$719$$ −674.187 + 389.242i −0.937673 + 0.541366i −0.889230 0.457460i $$-0.848759\pi$$
−0.0484429 + 0.998826i $$0.515426\pi$$
$$720$$ 225.065i 0.312590i
$$721$$ 459.419 704.719i 0.637197 0.977419i
$$722$$ 485.803 0.672858
$$723$$ −31.4376 54.4514i −0.0434821 0.0753132i
$$724$$ 268.617 + 155.086i 0.371018 + 0.214208i
$$725$$ 33.3381 57.7433i 0.0459836 0.0796459i
$$726$$ 86.4335 49.9024i 0.119054 0.0687361i
$$727$$ 735.255i 1.01135i −0.862723 0.505677i $$-0.831243\pi$$
0.862723 0.505677i $$-0.168757\pi$$
$$728$$ 136.971 + 269.996i 0.188146 + 0.370874i
$$729$$ 490.632 0.673021
$$730$$ 246.665 + 427.237i 0.337898 + 0.585256i
$$731$$ 34.1543 + 19.7190i 0.0467227 + 0.0269754i
$$732$$ 64.9340 112.469i 0.0887076 0.153646i
$$733$$ −414.705 + 239.430i −0.565764 + 0.326644i −0.755456 0.655200i $$-0.772585\pi$$
0.189692 + 0.981844i $$0.439251\pi$$
$$734$$ 134.356i 0.183047i
$$735$$ −137.683 + 188.106i −0.187324 + 0.255926i
$$736$$ −156.853 −0.213115
$$737$$ −82.3965 142.715i −0.111800 0.193643i
$$738$$ 290.558 + 167.754i 0.393711 + 0.227309i
$$739$$ 9.95227 17.2378i 0.0134672 0.0233259i −0.859213 0.511618i $$-0.829046\pi$$
0.872680 + 0.488292i $$0.162380\pi$$
$$740$$ 33.7797 19.5027i 0.0456482 0.0263550i
$$741$$ 45.8739i 0.0619080i
$$742$$ 494.132 250.676i 0.665946 0.337838i
$$743$$ 43.3095 0.0582901 0.0291450 0.999575i $$-0.490722\pi$$
0.0291450 + 0.999575i $$0.490722\pi$$
$$744$$ −49.5807 85.8764i −0.0666408 0.115425i
$$745$$ 530.603 + 306.344i 0.712218 + 0.411199i
$$746$$ −179.293 + 310.544i −0.240339 + 0.416279i
$$747$$ −937.499 + 541.265i −1.25502 + 0.724585i
$$748$$ 35.7875i 0.0478442i
$$749$$ 666.206 + 434.311i 0.889460 + 0.579855i
$$750$$ −40.5656 −0.0540874
$$751$$ −112.665 195.142i −0.150020 0.259842i 0.781215 0.624263i $$-0.214600\pi$$
−0.931235 + 0.364420i $$0.881267\pi$$
$$752$$ −182.485 105.358i −0.242667 0.140104i
$$753$$ 177.801 307.961i 0.236124 0.408978i
$$754$$ 65.8234 38.0031i 0.0872989 0.0504020i
$$755$$ 608.641i 0.806147i
$$756$$ 175.368 + 9.50079i 0.231968 + 0.0125672i
$$757$$ 935.779 1.23617 0.618084 0.786112i $$-0.287909\pi$$
0.618084 + 0.786112i $$0.287909\pi$$
$$758$$ −359.387 622.476i −0.474125 0.821209i
$$759$$ 81.9594 + 47.3193i 0.107983 + 0.0623443i
$$760$$ −39.2132 + 67.9193i −0.0515963 + 0.0893674i
$$761$$ 1214.79 701.357i 1.59630 0.921625i 0.604110 0.796901i $$-0.293529\pi$$
0.992191 0.124724i $$-0.0398046\pi$$
$$762$$ 250.952i 0.329334i
$$763$$ 55.0254 1015.67i 0.0721172 1.33115i
$$764$$ 496.191 0.649465
$$765$$ −105.816 183.279i −0.138322 0.239581i
$$766$$ −585.136 337.828i −0.763885 0.441029i
$$767$$ −296.044 + 512.763i −0.385976 + 0.668530i
$$768$$ −9.94113 + 5.73951i −0.0129442 + 0.00747332i
$$769$$ 1.72330i 0.00224097i 0.999999 + 0.00112048i $$0.000356661\pi$$
−0.999999 + 0.00112048i $$0.999643\pi$$
$$770$$ 170.548 261.609i 0.221491 0.339752i
$$771$$