Properties

Label 350.3.i.a.299.2
Level $350$
Weight $3$
Character 350.299
Analytic conductor $9.537$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,3,Mod(199,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.199"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 350.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.53680925261\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 299.2
Root \(0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 350.299
Dual form 350.3.i.a.199.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 - 0.707107i) q^{2} +(-0.358719 - 0.621320i) q^{3} +(1.00000 + 1.73205i) q^{4} +1.01461i q^{6} +(-3.16693 + 6.24264i) q^{7} -2.82843i q^{8} +(4.24264 - 7.34847i) q^{9} +(2.37868 + 4.11999i) q^{11} +(0.717439 - 1.24264i) q^{12} -15.2913 q^{13} +(8.29289 - 5.40629i) q^{14} +(-2.00000 + 3.46410i) q^{16} +(-1.88064 - 3.25736i) q^{17} +(-10.3923 + 6.00000i) q^{18} +(-3.62132 - 2.09077i) q^{19} +(5.01472 - 0.271680i) q^{21} -6.72792i q^{22} +(-24.0131 - 13.8640i) q^{23} +(-1.75736 + 1.01461i) q^{24} +(18.7279 + 10.8126i) q^{26} -12.5446 q^{27} +(-13.9795 + 0.757359i) q^{28} -3.51472 q^{29} +(-42.3198 + 24.4334i) q^{31} +(4.89898 - 2.82843i) q^{32} +(1.70656 - 2.95584i) q^{33} +5.31925i q^{34} +16.9706 q^{36} +(2.54709 + 1.47056i) q^{37} +(2.95680 + 5.12132i) q^{38} +(5.48528 + 9.50079i) q^{39} +27.9590i q^{41} +(-6.33386 - 3.21320i) q^{42} +10.4853i q^{43} +(-4.75736 + 8.23999i) q^{44} +(19.6066 + 33.9596i) q^{46} +(-26.3395 + 45.6213i) q^{47} +2.86976 q^{48} +(-28.9411 - 39.5400i) q^{49} +(-1.34924 + 2.33696i) q^{51} +(-15.2913 - 26.4853i) q^{52} +(-48.4719 + 27.9853i) q^{53} +(15.3640 + 8.87039i) q^{54} +(17.6569 + 8.95743i) q^{56} +3.00000i q^{57} +(4.30463 + 2.48528i) q^{58} +(-33.5330 + 19.3603i) q^{59} +(-78.3823 - 45.2540i) q^{61} +69.1080 q^{62} +(32.4377 + 49.7574i) q^{63} -8.00000 q^{64} +(-4.18019 + 2.41344i) q^{66} +(-29.9988 + 17.3198i) q^{67} +(3.76127 - 6.51472i) q^{68} +19.8931i q^{69} +36.4264 q^{71} +(-20.7846 - 12.0000i) q^{72} +(-26.3034 - 45.5589i) q^{73} +(-2.07969 - 3.60213i) q^{74} -8.36308i q^{76} +(-33.2528 + 1.80152i) q^{77} -15.5147i q^{78} +(-16.8934 + 29.2602i) q^{79} +(-33.6838 - 58.3420i) q^{81} +(19.7700 - 34.2426i) q^{82} +127.577 q^{83} +(5.48528 + 8.41407i) q^{84} +(7.41421 - 12.8418i) q^{86} +(1.26080 + 2.18377i) q^{87} +(11.6531 - 6.72792i) q^{88} +(43.5883 + 25.1657i) q^{89} +(48.4264 - 95.4580i) q^{91} -55.4558i q^{92} +(30.3619 + 17.5294i) q^{93} +(64.5183 - 37.2497i) q^{94} +(-3.51472 - 2.02922i) q^{96} +101.792 q^{97} +(7.48650 + 68.8909i) q^{98} +40.3675 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{4} + 36 q^{11} + 72 q^{14} - 16 q^{16} - 12 q^{19} + 108 q^{21} - 48 q^{24} + 48 q^{26} - 96 q^{29} - 84 q^{31} - 24 q^{39} - 72 q^{44} + 72 q^{46} + 40 q^{49} + 108 q^{51} + 72 q^{54} + 96 q^{56}+ \cdots - 288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 0.707107i −0.612372 0.353553i
\(3\) −0.358719 0.621320i −0.119573 0.207107i 0.800025 0.599966i \(-0.204819\pi\)
−0.919599 + 0.392859i \(0.871486\pi\)
\(4\) 1.00000 + 1.73205i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 1.01461i 0.169102i
\(7\) −3.16693 + 6.24264i −0.452418 + 0.891806i
\(8\) 2.82843i 0.353553i
\(9\) 4.24264 7.34847i 0.471405 0.816497i
\(10\) 0 0
\(11\) 2.37868 + 4.11999i 0.216244 + 0.374545i 0.953657 0.300897i \(-0.0972861\pi\)
−0.737413 + 0.675442i \(0.763953\pi\)
\(12\) 0.717439 1.24264i 0.0597866 0.103553i
\(13\) −15.2913 −1.17625 −0.588126 0.808769i \(-0.700134\pi\)
−0.588126 + 0.808769i \(0.700134\pi\)
\(14\) 8.29289 5.40629i 0.592350 0.386163i
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) −1.88064 3.25736i −0.110626 0.191609i 0.805397 0.592736i \(-0.201952\pi\)
−0.916023 + 0.401126i \(0.868619\pi\)
\(18\) −10.3923 + 6.00000i −0.577350 + 0.333333i
\(19\) −3.62132 2.09077i −0.190596 0.110041i 0.401666 0.915786i \(-0.368431\pi\)
−0.592261 + 0.805746i \(0.701765\pi\)
\(20\) 0 0
\(21\) 5.01472 0.271680i 0.238796 0.0129371i
\(22\) 6.72792i 0.305815i
\(23\) −24.0131 13.8640i −1.04405 0.602781i −0.123070 0.992398i \(-0.539274\pi\)
−0.920977 + 0.389617i \(0.872607\pi\)
\(24\) −1.75736 + 1.01461i −0.0732233 + 0.0422755i
\(25\) 0 0
\(26\) 18.7279 + 10.8126i 0.720305 + 0.415868i
\(27\) −12.5446 −0.464616
\(28\) −13.9795 + 0.757359i −0.499268 + 0.0270485i
\(29\) −3.51472 −0.121197 −0.0605986 0.998162i \(-0.519301\pi\)
−0.0605986 + 0.998162i \(0.519301\pi\)
\(30\) 0 0
\(31\) −42.3198 + 24.4334i −1.36516 + 0.788173i −0.990305 0.138913i \(-0.955639\pi\)
−0.374850 + 0.927085i \(0.622306\pi\)
\(32\) 4.89898 2.82843i 0.153093 0.0883883i
\(33\) 1.70656 2.95584i 0.0517139 0.0895710i
\(34\) 5.31925i 0.156448i
\(35\) 0 0
\(36\) 16.9706 0.471405
\(37\) 2.54709 + 1.47056i 0.0688403 + 0.0397449i 0.534025 0.845469i \(-0.320679\pi\)
−0.465185 + 0.885214i \(0.654012\pi\)
\(38\) 2.95680 + 5.12132i 0.0778104 + 0.134772i
\(39\) 5.48528 + 9.50079i 0.140648 + 0.243610i
\(40\) 0 0
\(41\) 27.9590i 0.681927i 0.940077 + 0.340963i \(0.110753\pi\)
−0.940077 + 0.340963i \(0.889247\pi\)
\(42\) −6.33386 3.21320i −0.150806 0.0765048i
\(43\) 10.4853i 0.243844i 0.992540 + 0.121922i \(0.0389057\pi\)
−0.992540 + 0.121922i \(0.961094\pi\)
\(44\) −4.75736 + 8.23999i −0.108122 + 0.187272i
\(45\) 0 0
\(46\) 19.6066 + 33.9596i 0.426230 + 0.738253i
\(47\) −26.3395 + 45.6213i −0.560415 + 0.970666i 0.437046 + 0.899439i \(0.356025\pi\)
−0.997460 + 0.0712271i \(0.977309\pi\)
\(48\) 2.86976 0.0597866
\(49\) −28.9411 39.5400i −0.590635 0.806939i
\(50\) 0 0
\(51\) −1.34924 + 2.33696i −0.0264557 + 0.0458227i
\(52\) −15.2913 26.4853i −0.294063 0.509332i
\(53\) −48.4719 + 27.9853i −0.914565 + 0.528024i −0.881897 0.471442i \(-0.843734\pi\)
−0.0326677 + 0.999466i \(0.510400\pi\)
\(54\) 15.3640 + 8.87039i 0.284518 + 0.164266i
\(55\) 0 0
\(56\) 17.6569 + 8.95743i 0.315301 + 0.159954i
\(57\) 3.00000i 0.0526316i
\(58\) 4.30463 + 2.48528i 0.0742178 + 0.0428497i
\(59\) −33.5330 + 19.3603i −0.568356 + 0.328141i −0.756492 0.654002i \(-0.773089\pi\)
0.188136 + 0.982143i \(0.439755\pi\)
\(60\) 0 0
\(61\) −78.3823 45.2540i −1.28495 0.741869i −0.307205 0.951643i \(-0.599394\pi\)
−0.977750 + 0.209774i \(0.932727\pi\)
\(62\) 69.1080 1.11464
\(63\) 32.4377 + 49.7574i 0.514884 + 0.789799i
\(64\) −8.00000 −0.125000
\(65\) 0 0
\(66\) −4.18019 + 2.41344i −0.0633363 + 0.0365672i
\(67\) −29.9988 + 17.3198i −0.447743 + 0.258505i −0.706877 0.707337i \(-0.749896\pi\)
0.259134 + 0.965842i \(0.416563\pi\)
\(68\) 3.76127 6.51472i 0.0553129 0.0958047i
\(69\) 19.8931i 0.288306i
\(70\) 0 0
\(71\) 36.4264 0.513048 0.256524 0.966538i \(-0.417423\pi\)
0.256524 + 0.966538i \(0.417423\pi\)
\(72\) −20.7846 12.0000i −0.288675 0.166667i
\(73\) −26.3034 45.5589i −0.360321 0.624094i 0.627693 0.778461i \(-0.283999\pi\)
−0.988014 + 0.154367i \(0.950666\pi\)
\(74\) −2.07969 3.60213i −0.0281039 0.0486774i
\(75\) 0 0
\(76\) 8.36308i 0.110041i
\(77\) −33.2528 + 1.80152i −0.431854 + 0.0233963i
\(78\) 15.5147i 0.198907i
\(79\) −16.8934 + 29.2602i −0.213840 + 0.370383i −0.952913 0.303243i \(-0.901931\pi\)
0.739073 + 0.673626i \(0.235264\pi\)
\(80\) 0 0
\(81\) −33.6838 58.3420i −0.415849 0.720272i
\(82\) 19.7700 34.2426i 0.241098 0.417593i
\(83\) 127.577 1.53708 0.768539 0.639803i \(-0.220984\pi\)
0.768539 + 0.639803i \(0.220984\pi\)
\(84\) 5.48528 + 8.41407i 0.0653010 + 0.100167i
\(85\) 0 0
\(86\) 7.41421 12.8418i 0.0862118 0.149323i
\(87\) 1.26080 + 2.18377i 0.0144919 + 0.0251008i
\(88\) 11.6531 6.72792i 0.132422 0.0764537i
\(89\) 43.5883 + 25.1657i 0.489756 + 0.282761i 0.724473 0.689303i \(-0.242083\pi\)
−0.234717 + 0.972064i \(0.575416\pi\)
\(90\) 0 0
\(91\) 48.4264 95.4580i 0.532158 1.04899i
\(92\) 55.4558i 0.602781i
\(93\) 30.3619 + 17.5294i 0.326472 + 0.188489i
\(94\) 64.5183 37.2497i 0.686365 0.396273i
\(95\) 0 0
\(96\) −3.51472 2.02922i −0.0366117 0.0211377i
\(97\) 101.792 1.04940 0.524700 0.851287i \(-0.324177\pi\)
0.524700 + 0.851287i \(0.324177\pi\)
\(98\) 7.48650 + 68.8909i 0.0763928 + 0.702968i
\(99\) 40.3675 0.407753
\(100\) 0 0
\(101\) −51.6838 + 29.8396i −0.511720 + 0.295442i −0.733541 0.679646i \(-0.762134\pi\)
0.221820 + 0.975088i \(0.428800\pi\)
\(102\) 3.30496 1.90812i 0.0324015 0.0187070i
\(103\) 60.0890 104.077i 0.583388 1.01046i −0.411686 0.911326i \(-0.635060\pi\)
0.995074 0.0991322i \(-0.0316067\pi\)
\(104\) 43.2503i 0.415868i
\(105\) 0 0
\(106\) 79.1543 0.746739
\(107\) 98.3893 + 56.8051i 0.919526 + 0.530889i 0.883484 0.468462i \(-0.155192\pi\)
0.0360423 + 0.999350i \(0.488525\pi\)
\(108\) −12.5446 21.7279i −0.116154 0.201184i
\(109\) −72.6543 125.841i −0.666553 1.15450i −0.978862 0.204524i \(-0.934435\pi\)
0.312308 0.949981i \(-0.398898\pi\)
\(110\) 0 0
\(111\) 2.11008i 0.0190097i
\(112\) −15.2913 23.4558i −0.136529 0.209427i
\(113\) 34.5442i 0.305700i −0.988249 0.152850i \(-0.951155\pi\)
0.988249 0.152850i \(-0.0488452\pi\)
\(114\) 2.12132 3.67423i 0.0186081 0.0322301i
\(115\) 0 0
\(116\) −3.51472 6.08767i −0.0302993 0.0524799i
\(117\) −64.8754 + 112.368i −0.554491 + 0.960406i
\(118\) 54.7592 0.464061
\(119\) 26.2904 1.42432i 0.220927 0.0119691i
\(120\) 0 0
\(121\) 49.1838 85.1888i 0.406477 0.704040i
\(122\) 63.9988 + 110.849i 0.524581 + 0.908600i
\(123\) 17.3715 10.0294i 0.141232 0.0815401i
\(124\) −84.6396 48.8667i −0.682578 0.394086i
\(125\) 0 0
\(126\) −4.54416 83.8770i −0.0360647 0.665690i
\(127\) 247.338i 1.94754i −0.227526 0.973772i \(-0.573064\pi\)
0.227526 0.973772i \(-0.426936\pi\)
\(128\) 9.79796 + 5.65685i 0.0765466 + 0.0441942i
\(129\) 6.51472 3.76127i 0.0505017 0.0291572i
\(130\) 0 0
\(131\) −127.864 73.8223i −0.976061 0.563529i −0.0749822 0.997185i \(-0.523890\pi\)
−0.901079 + 0.433656i \(0.857223\pi\)
\(132\) 6.82623 0.0517139
\(133\) 24.5204 15.9853i 0.184364 0.120190i
\(134\) 48.9878 0.365581
\(135\) 0 0
\(136\) −9.21320 + 5.31925i −0.0677441 + 0.0391121i
\(137\) −28.2096 + 16.2868i −0.205909 + 0.118882i −0.599409 0.800443i \(-0.704598\pi\)
0.393500 + 0.919325i \(0.371264\pi\)
\(138\) 14.0665 24.3640i 0.101931 0.176550i
\(139\) 68.5857i 0.493422i 0.969089 + 0.246711i \(0.0793499\pi\)
−0.969089 + 0.246711i \(0.920650\pi\)
\(140\) 0 0
\(141\) 37.7939 0.268042
\(142\) −44.6131 25.7574i −0.314176 0.181390i
\(143\) −36.3731 63.0000i −0.254357 0.440559i
\(144\) 16.9706 + 29.3939i 0.117851 + 0.204124i
\(145\) 0 0
\(146\) 74.3973i 0.509571i
\(147\) −14.1853 + 32.1655i −0.0964984 + 0.218813i
\(148\) 5.88225i 0.0397449i
\(149\) 46.1985 80.0181i 0.310057 0.537034i −0.668317 0.743876i \(-0.732985\pi\)
0.978374 + 0.206842i \(0.0663185\pi\)
\(150\) 0 0
\(151\) 45.8934 + 79.4897i 0.303930 + 0.526422i 0.977022 0.213136i \(-0.0683678\pi\)
−0.673093 + 0.739558i \(0.735035\pi\)
\(152\) −5.91359 + 10.2426i −0.0389052 + 0.0673858i
\(153\) −31.9155 −0.208598
\(154\) 42.0000 + 21.3068i 0.272727 + 0.138356i
\(155\) 0 0
\(156\) −10.9706 + 19.0016i −0.0703241 + 0.121805i
\(157\) 4.22815 + 7.32338i 0.0269309 + 0.0466457i 0.879177 0.476496i \(-0.158093\pi\)
−0.852246 + 0.523142i \(0.824760\pi\)
\(158\) 41.3802 23.8909i 0.261900 0.151208i
\(159\) 34.7756 + 20.0777i 0.218715 + 0.126275i
\(160\) 0 0
\(161\) 162.595 105.999i 1.00991 0.658378i
\(162\) 95.2721i 0.588099i
\(163\) 192.238 + 110.989i 1.17938 + 0.680913i 0.955870 0.293789i \(-0.0949164\pi\)
0.223506 + 0.974703i \(0.428250\pi\)
\(164\) −48.4264 + 27.9590i −0.295283 + 0.170482i
\(165\) 0 0
\(166\) −156.250 90.2109i −0.941264 0.543439i
\(167\) 168.841 1.01102 0.505511 0.862820i \(-0.331304\pi\)
0.505511 + 0.862820i \(0.331304\pi\)
\(168\) −0.768426 14.1838i −0.00457396 0.0844272i
\(169\) 64.8234 0.383570
\(170\) 0 0
\(171\) −30.7279 + 17.7408i −0.179695 + 0.103747i
\(172\) −18.1610 + 10.4853i −0.105587 + 0.0609609i
\(173\) −82.1704 + 142.323i −0.474974 + 0.822678i −0.999589 0.0286608i \(-0.990876\pi\)
0.524616 + 0.851339i \(0.324209\pi\)
\(174\) 3.56608i 0.0204947i
\(175\) 0 0
\(176\) −19.0294 −0.108122
\(177\) 24.0579 + 13.8898i 0.135920 + 0.0784736i
\(178\) −35.5897 61.6432i −0.199942 0.346310i
\(179\) 92.5919 + 160.374i 0.517273 + 0.895943i 0.999799 + 0.0200614i \(0.00638618\pi\)
−0.482526 + 0.875882i \(0.660280\pi\)
\(180\) 0 0
\(181\) 155.086i 0.856830i 0.903582 + 0.428415i \(0.140928\pi\)
−0.903582 + 0.428415i \(0.859072\pi\)
\(182\) −126.809 + 82.6690i −0.696753 + 0.454226i
\(183\) 64.9340i 0.354831i
\(184\) −39.2132 + 67.9193i −0.213115 + 0.369126i
\(185\) 0 0
\(186\) −24.7904 42.9382i −0.133282 0.230850i
\(187\) 8.94687 15.4964i 0.0478442 0.0828686i
\(188\) −105.358 −0.560415
\(189\) 39.7279 78.3116i 0.210201 0.414347i
\(190\) 0 0
\(191\) −124.048 + 214.857i −0.649465 + 1.12491i 0.333786 + 0.942649i \(0.391674\pi\)
−0.983251 + 0.182257i \(0.941660\pi\)
\(192\) 2.86976 + 4.97056i 0.0149466 + 0.0258883i
\(193\) −133.661 + 77.1690i −0.692543 + 0.399840i −0.804564 0.593866i \(-0.797601\pi\)
0.112021 + 0.993706i \(0.464268\pi\)
\(194\) −124.669 71.9777i −0.642624 0.371019i
\(195\) 0 0
\(196\) 39.5442 89.6675i 0.201756 0.457487i
\(197\) 181.103i 0.919303i −0.888099 0.459651i \(-0.847974\pi\)
0.888099 0.459651i \(-0.152026\pi\)
\(198\) −49.4399 28.5442i −0.249697 0.144162i
\(199\) −301.989 + 174.353i −1.51753 + 0.876147i −0.517744 + 0.855535i \(0.673228\pi\)
−0.999788 + 0.0206121i \(0.993439\pi\)
\(200\) 0 0
\(201\) 21.5223 + 12.4259i 0.107076 + 0.0618204i
\(202\) 84.3992 0.417818
\(203\) 11.1309 21.9411i 0.0548318 0.108084i
\(204\) −5.39697 −0.0264557
\(205\) 0 0
\(206\) −147.187 + 84.9786i −0.714502 + 0.412518i
\(207\) −203.758 + 117.640i −0.984337 + 0.568307i
\(208\) 30.5826 52.9706i 0.147032 0.254666i
\(209\) 19.8931i 0.0951823i
\(210\) 0 0
\(211\) 364.073 1.72547 0.862733 0.505660i \(-0.168751\pi\)
0.862733 + 0.505660i \(0.168751\pi\)
\(212\) −96.9439 55.9706i −0.457282 0.264012i
\(213\) −13.0669 22.6325i −0.0613468 0.106256i
\(214\) −80.3345 139.143i −0.375395 0.650203i
\(215\) 0 0
\(216\) 35.4815i 0.164266i
\(217\) −18.5048 341.566i −0.0852757 1.57404i
\(218\) 205.497i 0.942649i
\(219\) −18.8711 + 32.6857i −0.0861694 + 0.149250i
\(220\) 0 0
\(221\) 28.7574 + 49.8092i 0.130124 + 0.225381i
\(222\) −1.49205 + 2.58431i −0.00672095 + 0.0116410i
\(223\) −123.231 −0.552603 −0.276302 0.961071i \(-0.589109\pi\)
−0.276302 + 0.961071i \(0.589109\pi\)
\(224\) 2.14214 + 39.5400i 0.00956311 + 0.176518i
\(225\) 0 0
\(226\) −24.4264 + 42.3078i −0.108081 + 0.187203i
\(227\) −38.1878 66.1432i −0.168228 0.291380i 0.769569 0.638564i \(-0.220471\pi\)
−0.937797 + 0.347184i \(0.887138\pi\)
\(228\) −5.19615 + 3.00000i −0.0227901 + 0.0131579i
\(229\) −309.419 178.643i −1.35117 0.780101i −0.362760 0.931883i \(-0.618166\pi\)
−0.988414 + 0.151782i \(0.951499\pi\)
\(230\) 0 0
\(231\) 13.0477 + 20.0144i 0.0564837 + 0.0866423i
\(232\) 9.94113i 0.0428497i
\(233\) −236.488 136.537i −1.01497 0.585994i −0.102328 0.994751i \(-0.532629\pi\)
−0.912643 + 0.408757i \(0.865962\pi\)
\(234\) 158.912 91.7477i 0.679110 0.392084i
\(235\) 0 0
\(236\) −67.0660 38.7206i −0.284178 0.164070i
\(237\) 24.2400 0.102278
\(238\) −33.2061 16.8457i −0.139522 0.0707801i
\(239\) 265.103 1.10922 0.554608 0.832112i \(-0.312868\pi\)
0.554608 + 0.832112i \(0.312868\pi\)
\(240\) 0 0
\(241\) −75.8970 + 43.8191i −0.314925 + 0.181822i −0.649128 0.760679i \(-0.724866\pi\)
0.334203 + 0.942501i \(0.391533\pi\)
\(242\) −120.475 + 69.5563i −0.497831 + 0.287423i
\(243\) −80.6168 + 139.632i −0.331757 + 0.574619i
\(244\) 181.016i 0.741869i
\(245\) 0 0
\(246\) −28.3675 −0.115315
\(247\) 55.3746 + 31.9706i 0.224189 + 0.129435i
\(248\) 69.1080 + 119.698i 0.278661 + 0.482655i
\(249\) −45.7645 79.2664i −0.183793 0.318339i
\(250\) 0 0
\(251\) 495.655i 1.97472i 0.158491 + 0.987360i \(0.449337\pi\)
−0.158491 + 0.987360i \(0.550663\pi\)
\(252\) −53.7446 + 105.941i −0.213272 + 0.420401i
\(253\) 131.912i 0.521390i
\(254\) −174.894 + 302.926i −0.688561 + 1.19262i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −200.268 + 346.875i −0.779254 + 1.34971i 0.153119 + 0.988208i \(0.451068\pi\)
−0.932372 + 0.361499i \(0.882265\pi\)
\(258\) −10.6385 −0.0412345
\(259\) −17.2466 + 11.2434i −0.0665894 + 0.0434108i
\(260\) 0 0
\(261\) −14.9117 + 25.8278i −0.0571329 + 0.0989571i
\(262\) 104.400 + 180.827i 0.398475 + 0.690179i
\(263\) 28.0118 16.1726i 0.106509 0.0614928i −0.445799 0.895133i \(-0.647081\pi\)
0.552308 + 0.833640i \(0.313747\pi\)
\(264\) −8.36039 4.82687i −0.0316681 0.0182836i
\(265\) 0 0
\(266\) −41.3345 + 2.23936i −0.155393 + 0.00841863i
\(267\) 36.1097i 0.135242i
\(268\) −59.9976 34.6396i −0.223872 0.129252i
\(269\) 265.838 153.482i 0.988246 0.570564i 0.0834963 0.996508i \(-0.473391\pi\)
0.904749 + 0.425944i \(0.140058\pi\)
\(270\) 0 0
\(271\) −65.8051 37.9926i −0.242823 0.140194i 0.373650 0.927570i \(-0.378106\pi\)
−0.616474 + 0.787376i \(0.711439\pi\)
\(272\) 15.0451 0.0553129
\(273\) −76.6815 + 4.15433i −0.280885 + 0.0152173i
\(274\) 46.0660 0.168124
\(275\) 0 0
\(276\) −34.4558 + 19.8931i −0.124840 + 0.0720764i
\(277\) 241.111 139.206i 0.870438 0.502547i 0.00294398 0.999996i \(-0.499063\pi\)
0.867494 + 0.497448i \(0.165730\pi\)
\(278\) 48.4974 84.0000i 0.174451 0.302158i
\(279\) 414.648i 1.48619i
\(280\) 0 0
\(281\) 394.690 1.40459 0.702296 0.711885i \(-0.252158\pi\)
0.702296 + 0.711885i \(0.252158\pi\)
\(282\) −46.2879 26.7244i −0.164142 0.0947672i
\(283\) −73.1981 126.783i −0.258650 0.447996i 0.707230 0.706983i \(-0.249944\pi\)
−0.965881 + 0.258988i \(0.916611\pi\)
\(284\) 36.4264 + 63.0924i 0.128262 + 0.222156i
\(285\) 0 0
\(286\) 102.879i 0.359715i
\(287\) −174.538 88.5442i −0.608146 0.308516i
\(288\) 48.0000i 0.166667i
\(289\) 137.426 238.030i 0.475524 0.823632i
\(290\) 0 0
\(291\) −36.5147 63.2453i −0.125480 0.217338i
\(292\) 52.6069 91.1177i 0.180160 0.312047i
\(293\) −299.678 −1.02279 −0.511396 0.859345i \(-0.670872\pi\)
−0.511396 + 0.859345i \(0.670872\pi\)
\(294\) 40.1177 29.3640i 0.136455 0.0998776i
\(295\) 0 0
\(296\) 4.15938 7.20426i 0.0140520 0.0243387i
\(297\) −29.8396 51.6838i −0.100470 0.174019i
\(298\) −113.163 + 65.3345i −0.379741 + 0.219243i
\(299\) 367.191 + 211.998i 1.22806 + 0.709023i
\(300\) 0 0
\(301\) −65.4558 33.2061i −0.217461 0.110319i
\(302\) 129.806i 0.429822i
\(303\) 37.0799 + 21.4081i 0.122376 + 0.0706539i
\(304\) 14.4853 8.36308i 0.0476490 0.0275101i
\(305\) 0 0
\(306\) 39.0883 + 22.5676i 0.127740 + 0.0737505i
\(307\) −20.9886 −0.0683666 −0.0341833 0.999416i \(-0.510883\pi\)
−0.0341833 + 0.999416i \(0.510883\pi\)
\(308\) −36.3731 55.7939i −0.118094 0.181149i
\(309\) −86.2203 −0.279030
\(310\) 0 0
\(311\) 157.651 91.0197i 0.506916 0.292668i −0.224649 0.974440i \(-0.572124\pi\)
0.731565 + 0.681772i \(0.238790\pi\)
\(312\) 26.8723 15.5147i 0.0861291 0.0497267i
\(313\) −48.9643 + 84.8087i −0.156435 + 0.270954i −0.933581 0.358367i \(-0.883334\pi\)
0.777145 + 0.629321i \(0.216667\pi\)
\(314\) 11.9590i 0.0380861i
\(315\) 0 0
\(316\) −67.5736 −0.213840
\(317\) 417.399 + 240.985i 1.31672 + 0.760206i 0.983199 0.182538i \(-0.0584314\pi\)
0.333517 + 0.942744i \(0.391765\pi\)
\(318\) −28.3942 49.1802i −0.0892899 0.154655i
\(319\) −8.36039 14.4806i −0.0262081 0.0453938i
\(320\) 0 0
\(321\) 81.5084i 0.253920i
\(322\) −274.090 + 14.8492i −0.851213 + 0.0461157i
\(323\) 15.7279i 0.0486933i
\(324\) 67.3675 116.684i 0.207924 0.360136i
\(325\) 0 0
\(326\) −156.962 271.866i −0.481478 0.833945i
\(327\) −52.1250 + 90.2832i −0.159404 + 0.276095i
\(328\) 79.0800 0.241098
\(329\) −201.382 308.907i −0.612104 0.938928i
\(330\) 0 0
\(331\) −112.504 + 194.862i −0.339890 + 0.588707i −0.984412 0.175879i \(-0.943723\pi\)
0.644522 + 0.764586i \(0.277056\pi\)
\(332\) 127.577 + 220.971i 0.384269 + 0.665574i
\(333\) 21.6128 12.4781i 0.0649032 0.0374719i
\(334\) −206.787 119.388i −0.619122 0.357450i
\(335\) 0 0
\(336\) −9.08831 + 17.9149i −0.0270485 + 0.0533180i
\(337\) 264.368i 0.784473i −0.919864 0.392237i \(-0.871701\pi\)
0.919864 0.392237i \(-0.128299\pi\)
\(338\) −79.3921 45.8370i −0.234888 0.135613i
\(339\) −21.4630 + 12.3917i −0.0633126 + 0.0365536i
\(340\) 0 0
\(341\) −201.331 116.238i −0.590412 0.340875i
\(342\) 50.1785 0.146721
\(343\) 338.488 55.4487i 0.986847 0.161658i
\(344\) 29.6569 0.0862118
\(345\) 0 0
\(346\) 201.276 116.207i 0.581722 0.335857i
\(347\) −165.633 + 95.6285i −0.477330 + 0.275586i −0.719303 0.694697i \(-0.755539\pi\)
0.241973 + 0.970283i \(0.422205\pi\)
\(348\) −2.52160 + 4.36753i −0.00724597 + 0.0125504i
\(349\) 135.448i 0.388104i 0.980991 + 0.194052i \(0.0621630\pi\)
−0.980991 + 0.194052i \(0.937837\pi\)
\(350\) 0 0
\(351\) 191.823 0.546505
\(352\) 23.3062 + 13.4558i 0.0662108 + 0.0382268i
\(353\) 174.245 + 301.802i 0.493612 + 0.854962i 0.999973 0.00736010i \(-0.00234281\pi\)
−0.506360 + 0.862322i \(0.669009\pi\)
\(354\) −19.6432 34.0230i −0.0554892 0.0961101i
\(355\) 0 0
\(356\) 100.663i 0.282761i
\(357\) −10.3158 15.8238i −0.0288959 0.0443244i
\(358\) 261.889i 0.731535i
\(359\) 152.415 263.991i 0.424555 0.735351i −0.571824 0.820377i \(-0.693764\pi\)
0.996379 + 0.0850256i \(0.0270972\pi\)
\(360\) 0 0
\(361\) −171.757 297.492i −0.475782 0.824079i
\(362\) 109.663 189.941i 0.302935 0.524699i
\(363\) −70.5727 −0.194415
\(364\) 213.765 11.5810i 0.587265 0.0318159i
\(365\) 0 0
\(366\) 45.9153 79.5276i 0.125452 0.217288i
\(367\) −47.5021 82.2761i −0.129434 0.224186i 0.794024 0.607887i \(-0.207983\pi\)
−0.923457 + 0.383701i \(0.874649\pi\)
\(368\) 96.0523 55.4558i 0.261012 0.150695i
\(369\) 205.456 + 118.620i 0.556791 + 0.321463i
\(370\) 0 0
\(371\) −21.1949 391.220i −0.0571291 1.05450i
\(372\) 70.1177i 0.188489i
\(373\) 219.588 + 126.779i 0.588708 + 0.339891i 0.764586 0.644521i \(-0.222943\pi\)
−0.175879 + 0.984412i \(0.556277\pi\)
\(374\) −21.9153 + 12.6528i −0.0585970 + 0.0338310i
\(375\) 0 0
\(376\) 129.037 + 74.4993i 0.343182 + 0.198136i
\(377\) 53.7446 0.142559
\(378\) −104.031 + 67.8198i −0.275215 + 0.179417i
\(379\) −508.250 −1.34103 −0.670514 0.741897i \(-0.733926\pi\)
−0.670514 + 0.741897i \(0.733926\pi\)
\(380\) 0 0
\(381\) −153.676 + 88.7250i −0.403350 + 0.232874i
\(382\) 303.854 175.430i 0.795428 0.459241i
\(383\) 238.881 413.753i 0.623709 1.08030i −0.365080 0.930976i \(-0.618958\pi\)
0.988789 0.149320i \(-0.0477084\pi\)
\(384\) 8.11689i 0.0211377i
\(385\) 0 0
\(386\) 218.267 0.565459
\(387\) 77.0508 + 44.4853i 0.199098 + 0.114949i
\(388\) 101.792 + 176.309i 0.262350 + 0.454404i
\(389\) 85.1102 + 147.415i 0.218792 + 0.378959i 0.954439 0.298406i \(-0.0964550\pi\)
−0.735647 + 0.677365i \(0.763122\pi\)
\(390\) 0 0
\(391\) 104.292i 0.266732i
\(392\) −111.836 + 81.8579i −0.285296 + 0.208821i
\(393\) 105.926i 0.269532i
\(394\) −128.059 + 221.804i −0.325023 + 0.562956i
\(395\) 0 0
\(396\) 40.3675 + 69.9186i 0.101938 + 0.176562i
\(397\) −122.275 + 211.786i −0.307997 + 0.533467i −0.977924 0.208960i \(-0.932992\pi\)
0.669927 + 0.742427i \(0.266325\pi\)
\(398\) 493.146 1.23906
\(399\) −18.7279 9.50079i −0.0469371 0.0238115i
\(400\) 0 0
\(401\) 208.786 361.629i 0.520664 0.901817i −0.479047 0.877789i \(-0.659018\pi\)
0.999711 0.0240277i \(-0.00764899\pi\)
\(402\) −17.5729 30.4371i −0.0437136 0.0757142i
\(403\) 647.124 373.617i 1.60577 0.927090i
\(404\) −103.368 59.6793i −0.255860 0.147721i
\(405\) 0 0
\(406\) −29.1472 + 19.0016i −0.0717911 + 0.0468019i
\(407\) 13.9920i 0.0343784i
\(408\) 6.60991 + 3.81623i 0.0162008 + 0.00935351i
\(409\) −266.919 + 154.106i −0.652614 + 0.376787i −0.789457 0.613806i \(-0.789638\pi\)
0.136843 + 0.990593i \(0.456304\pi\)
\(410\) 0 0
\(411\) 20.2386 + 11.6848i 0.0492424 + 0.0284301i
\(412\) 240.356 0.583388
\(413\) −14.6627 270.647i −0.0355029 0.655320i
\(414\) 332.735 0.803708
\(415\) 0 0
\(416\) −74.9117 + 43.2503i −0.180076 + 0.103967i
\(417\) 42.6137 24.6030i 0.102191 0.0590001i
\(418\) −14.0665 + 24.3640i −0.0336520 + 0.0582870i
\(419\) 103.142i 0.246163i −0.992397 0.123081i \(-0.960722\pi\)
0.992397 0.123081i \(-0.0392776\pi\)
\(420\) 0 0
\(421\) −165.220 −0.392447 −0.196224 0.980559i \(-0.562868\pi\)
−0.196224 + 0.980559i \(0.562868\pi\)
\(422\) −445.897 257.439i −1.05663 0.610044i
\(423\) 223.498 + 387.110i 0.528364 + 0.915153i
\(424\) 79.1543 + 137.099i 0.186685 + 0.323347i
\(425\) 0 0
\(426\) 36.9587i 0.0867574i
\(427\) 530.736 345.996i 1.24294 0.810295i
\(428\) 227.220i 0.530889i
\(429\) −26.0955 + 45.1987i −0.0608286 + 0.105358i
\(430\) 0 0
\(431\) −297.268 514.883i −0.689717 1.19463i −0.971929 0.235273i \(-0.924402\pi\)
0.282212 0.959352i \(-0.408932\pi\)
\(432\) 25.0892 43.4558i 0.0580770 0.100592i
\(433\) 40.6267 0.0938261 0.0469131 0.998899i \(-0.485062\pi\)
0.0469131 + 0.998899i \(0.485062\pi\)
\(434\) −218.860 + 431.416i −0.504286 + 0.994046i
\(435\) 0 0
\(436\) 145.309 251.682i 0.333277 0.577252i
\(437\) 57.9727 + 100.412i 0.132661 + 0.229775i
\(438\) 46.2246 26.6878i 0.105536 0.0609310i
\(439\) −126.959 73.3001i −0.289201 0.166971i 0.348380 0.937353i \(-0.386732\pi\)
−0.637582 + 0.770383i \(0.720065\pi\)
\(440\) 0 0
\(441\) −413.345 + 44.9190i −0.937291 + 0.101857i
\(442\) 81.3381i 0.184023i
\(443\) 92.9768 + 53.6802i 0.209880 + 0.121174i 0.601256 0.799057i \(-0.294667\pi\)
−0.391376 + 0.920231i \(0.628001\pi\)
\(444\) 3.65476 2.11008i 0.00823145 0.00475243i
\(445\) 0 0
\(446\) 150.926 + 87.1372i 0.338399 + 0.195375i
\(447\) −66.2892 −0.148298
\(448\) 25.3354 49.9411i 0.0565523 0.111476i
\(449\) −135.161 −0.301028 −0.150514 0.988608i \(-0.548093\pi\)
−0.150514 + 0.988608i \(0.548093\pi\)
\(450\) 0 0
\(451\) −115.191 + 66.5055i −0.255412 + 0.147462i
\(452\) 59.8322 34.5442i 0.132372 0.0764251i
\(453\) 32.9257 57.0290i 0.0726837 0.125892i
\(454\) 108.011i 0.237910i
\(455\) 0 0
\(456\) 8.48528 0.0186081
\(457\) −138.335 79.8675i −0.302702 0.174765i 0.340954 0.940080i \(-0.389250\pi\)
−0.643656 + 0.765315i \(0.722583\pi\)
\(458\) 252.639 + 437.584i 0.551614 + 0.955424i
\(459\) 23.5919 + 40.8623i 0.0513984 + 0.0890247i
\(460\) 0 0
\(461\) 310.250i 0.672993i −0.941685 0.336497i \(-0.890758\pi\)
0.941685 0.336497i \(-0.109242\pi\)
\(462\) −1.82784 33.7386i −0.00395636 0.0730274i
\(463\) 326.014i 0.704135i 0.935975 + 0.352067i \(0.114521\pi\)
−0.935975 + 0.352067i \(0.885479\pi\)
\(464\) 7.02944 12.1753i 0.0151496 0.0262400i
\(465\) 0 0
\(466\) 193.092 + 334.445i 0.414360 + 0.717693i
\(467\) −297.779 + 515.769i −0.637643 + 1.10443i 0.348306 + 0.937381i \(0.386757\pi\)
−0.985949 + 0.167048i \(0.946576\pi\)
\(468\) −259.502 −0.554491
\(469\) −13.1173 242.122i −0.0279687 0.516252i
\(470\) 0 0
\(471\) 3.03344 5.25408i 0.00644043 0.0111551i
\(472\) 54.7592 + 94.8457i 0.116015 + 0.200944i
\(473\) −43.1993 + 24.9411i −0.0913304 + 0.0527297i
\(474\) −29.6878 17.1402i −0.0626324 0.0361608i
\(475\) 0 0
\(476\) 28.7574 + 44.1119i 0.0604146 + 0.0926721i
\(477\) 474.926i 0.995652i
\(478\) −324.683 187.456i −0.679253 0.392167i
\(479\) −438.798 + 253.340i −0.916071 + 0.528894i −0.882379 0.470539i \(-0.844060\pi\)
−0.0336914 + 0.999432i \(0.510726\pi\)
\(480\) 0 0
\(481\) −38.9483 22.4868i −0.0809735 0.0467501i
\(482\) 123.939 0.257135
\(483\) −124.185 63.0000i −0.257113 0.130435i
\(484\) 196.735 0.406477
\(485\) 0 0
\(486\) 197.470 114.009i 0.406317 0.234587i
\(487\) 182.992 105.651i 0.375755 0.216942i −0.300215 0.953872i \(-0.597058\pi\)
0.675970 + 0.736930i \(0.263725\pi\)
\(488\) −127.998 + 221.698i −0.262290 + 0.454300i
\(489\) 159.255i 0.325676i
\(490\) 0 0
\(491\) −784.161 −1.59707 −0.798534 0.601949i \(-0.794391\pi\)
−0.798534 + 0.601949i \(0.794391\pi\)
\(492\) 34.7430 + 20.0589i 0.0706158 + 0.0407701i
\(493\) 6.60991 + 11.4487i 0.0134075 + 0.0232225i
\(494\) −45.2132 78.3116i −0.0915247 0.158525i
\(495\) 0 0
\(496\) 195.467i 0.394086i
\(497\) −115.360 + 227.397i −0.232112 + 0.457539i
\(498\) 129.442i 0.259923i
\(499\) −85.7462 + 148.517i −0.171836 + 0.297629i −0.939062 0.343748i \(-0.888303\pi\)
0.767226 + 0.641377i \(0.221637\pi\)
\(500\) 0 0
\(501\) −60.5665 104.904i −0.120891 0.209390i
\(502\) 350.481 607.051i 0.698169 1.20926i
\(503\) 20.0883 0.0399370 0.0199685 0.999801i \(-0.493643\pi\)
0.0199685 + 0.999801i \(0.493643\pi\)
\(504\) 140.735 91.7477i 0.279236 0.182039i
\(505\) 0 0
\(506\) −93.2756 + 161.558i −0.184339 + 0.319285i
\(507\) −23.2534 40.2761i −0.0458647 0.0794400i
\(508\) 428.402 247.338i 0.843311 0.486886i
\(509\) 412.890 + 238.382i 0.811178 + 0.468334i 0.847365 0.531011i \(-0.178188\pi\)
−0.0361865 + 0.999345i \(0.511521\pi\)
\(510\) 0 0
\(511\) 367.709 19.9211i 0.719587 0.0389846i
\(512\) 22.6274i 0.0441942i
\(513\) 45.4281 + 26.2279i 0.0885538 + 0.0511266i
\(514\) 490.555 283.222i 0.954387 0.551016i
\(515\) 0 0
\(516\) 13.0294 + 7.52255i 0.0252508 + 0.0145786i
\(517\) −250.613 −0.484744
\(518\) 29.0730 1.57507i 0.0561255 0.00304068i
\(519\) 117.905 0.227176
\(520\) 0 0
\(521\) 739.823 427.137i 1.42001 0.819841i 0.423707 0.905799i \(-0.360729\pi\)
0.996299 + 0.0859587i \(0.0273953\pi\)
\(522\) 36.5260 21.0883i 0.0699732 0.0403991i
\(523\) −296.501 + 513.554i −0.566923 + 0.981940i 0.429945 + 0.902855i \(0.358533\pi\)
−0.996868 + 0.0790845i \(0.974800\pi\)
\(524\) 295.289i 0.563529i
\(525\) 0 0
\(526\) −45.7431 −0.0869640
\(527\) 159.176 + 91.9005i 0.302043 + 0.174384i
\(528\) 6.82623 + 11.8234i 0.0129285 + 0.0223928i
\(529\) 119.919 + 207.706i 0.226690 + 0.392638i
\(530\) 0 0
\(531\) 328.555i 0.618748i
\(532\) 52.2077 + 26.4853i 0.0981348 + 0.0497844i
\(533\) 427.529i 0.802118i
\(534\) −25.5334 + 44.2252i −0.0478154 + 0.0828188i
\(535\) 0 0
\(536\) 48.9878 + 84.8494i 0.0913952 + 0.158301i
\(537\) 66.4290 115.058i 0.123704 0.214262i
\(538\) −434.112 −0.806899
\(539\) 94.0629 213.290i 0.174514 0.395715i
\(540\) 0 0
\(541\) −427.595 + 740.617i −0.790380 + 1.36898i 0.135352 + 0.990798i \(0.456783\pi\)
−0.925732 + 0.378180i \(0.876550\pi\)
\(542\) 53.7296 + 93.0624i 0.0991322 + 0.171702i
\(543\) 96.3583 55.6325i 0.177455 0.102454i
\(544\) −18.4264 10.6385i −0.0338721 0.0195560i
\(545\) 0 0
\(546\) 96.8528 + 49.1340i 0.177386 + 0.0899890i
\(547\) 415.897i 0.760323i 0.924920 + 0.380161i \(0.124132\pi\)
−0.924920 + 0.380161i \(0.875868\pi\)
\(548\) −56.4191 32.5736i −0.102955 0.0594409i
\(549\) −665.095 + 383.993i −1.21147 + 0.699441i
\(550\) 0 0
\(551\) 12.7279 + 7.34847i 0.0230997 + 0.0133366i
\(552\) 56.2662 0.101931
\(553\) −129.161 198.124i −0.233564 0.358272i
\(554\) −393.733 −0.710709
\(555\) 0 0
\(556\) −118.794 + 68.5857i −0.213658 + 0.123356i
\(557\) −505.950 + 292.110i −0.908348 + 0.524435i −0.879899 0.475160i \(-0.842390\pi\)
−0.0284485 + 0.999595i \(0.509057\pi\)
\(558\) 293.200 507.838i 0.525448 0.910103i
\(559\) 160.333i 0.286822i
\(560\) 0 0
\(561\) −12.8377 −0.0228835
\(562\) −483.395 279.088i −0.860134 0.496598i
\(563\) −455.573 789.076i −0.809189 1.40156i −0.913426 0.407004i \(-0.866573\pi\)
0.104237 0.994552i \(-0.466760\pi\)
\(564\) 37.7939 + 65.4610i 0.0670105 + 0.116066i
\(565\) 0 0
\(566\) 207.035i 0.365787i
\(567\) 470.882 25.5107i 0.830480 0.0449924i
\(568\) 103.029i 0.181390i
\(569\) 350.000 606.217i 0.615113 1.06541i −0.375251 0.926923i \(-0.622444\pi\)
0.990365 0.138485i \(-0.0442231\pi\)
\(570\) 0 0
\(571\) 281.231 + 487.107i 0.492525 + 0.853077i 0.999963 0.00861055i \(-0.00274086\pi\)
−0.507438 + 0.861688i \(0.669408\pi\)
\(572\) 72.7461 126.000i 0.127179 0.220280i
\(573\) 177.993 0.310634
\(574\) 151.154 + 231.861i 0.263335 + 0.403939i
\(575\) 0 0
\(576\) −33.9411 + 58.7878i −0.0589256 + 0.102062i
\(577\) −330.830 573.014i −0.573362 0.993092i −0.996218 0.0868946i \(-0.972306\pi\)
0.422856 0.906197i \(-0.361028\pi\)
\(578\) −336.625 + 194.350i −0.582395 + 0.336246i
\(579\) 95.8934 + 55.3641i 0.165619 + 0.0956202i
\(580\) 0 0
\(581\) −404.029 + 796.420i −0.695402 + 1.37077i
\(582\) 103.279i 0.177456i
\(583\) −230.598 133.136i −0.395538 0.228364i
\(584\) −128.860 + 74.3973i −0.220651 + 0.127393i
\(585\) 0 0
\(586\) 367.029 + 211.905i 0.626330 + 0.361612i
\(587\) −823.029 −1.40209 −0.701046 0.713116i \(-0.747283\pi\)
−0.701046 + 0.713116i \(0.747283\pi\)
\(588\) −69.8975 + 7.59589i −0.118873 + 0.0129182i
\(589\) 204.338 0.346924
\(590\) 0 0
\(591\) −112.523 + 64.9650i −0.190394 + 0.109924i
\(592\) −10.1884 + 5.88225i −0.0172101 + 0.00993623i
\(593\) −311.128 + 538.890i −0.524668 + 0.908752i 0.474919 + 0.880029i \(0.342477\pi\)
−0.999587 + 0.0287225i \(0.990856\pi\)
\(594\) 84.3992i 0.142086i
\(595\) 0 0
\(596\) 184.794 0.310057
\(597\) 216.659 + 125.088i 0.362912 + 0.209527i
\(598\) −299.810 519.286i −0.501355 0.868372i
\(599\) −256.422 444.137i −0.428084 0.741463i 0.568619 0.822601i \(-0.307478\pi\)
−0.996703 + 0.0811377i \(0.974145\pi\)
\(600\) 0 0
\(601\) 680.160i 1.13171i −0.824504 0.565857i \(-0.808546\pi\)
0.824504 0.565857i \(-0.191454\pi\)
\(602\) 56.6864 + 86.9533i 0.0941635 + 0.144441i
\(603\) 293.927i 0.487441i
\(604\) −91.7868 + 158.979i −0.151965 + 0.263211i
\(605\) 0 0
\(606\) −30.2756 52.4390i −0.0499598 0.0865329i
\(607\) −19.3690 + 33.5482i −0.0319095 + 0.0552688i −0.881539 0.472111i \(-0.843492\pi\)
0.849630 + 0.527380i \(0.176825\pi\)
\(608\) −23.6544 −0.0389052
\(609\) −17.6253 + 0.954877i −0.0289414 + 0.00156794i
\(610\) 0 0
\(611\) 402.765 697.609i 0.659189 1.14175i
\(612\) −31.9155 55.2792i −0.0521495 0.0903255i
\(613\) −347.366 + 200.552i −0.566665 + 0.327164i −0.755816 0.654784i \(-0.772760\pi\)
0.189151 + 0.981948i \(0.439426\pi\)
\(614\) 25.7056 + 14.8412i 0.0418658 + 0.0241713i
\(615\) 0 0
\(616\) 5.09545 + 94.0530i 0.00827184 + 0.152683i
\(617\) 959.044i 1.55437i −0.629275 0.777183i \(-0.716648\pi\)
0.629275 0.777183i \(-0.283352\pi\)
\(618\) 105.598 + 60.9670i 0.170870 + 0.0986521i
\(619\) 869.951 502.267i 1.40541 0.811416i 0.410473 0.911873i \(-0.365364\pi\)
0.994941 + 0.100457i \(0.0320303\pi\)
\(620\) 0 0
\(621\) 301.235 + 173.918i 0.485081 + 0.280061i
\(622\) −257.443 −0.413895
\(623\) −295.142 + 192.408i −0.473743 + 0.308841i
\(624\) −43.8823 −0.0703241
\(625\) 0 0
\(626\) 119.938 69.2460i 0.191594 0.110617i
\(627\) −12.3600 + 7.13604i −0.0197129 + 0.0113812i
\(628\) −8.45631 + 14.6468i −0.0134655 + 0.0233229i
\(629\) 11.0624i 0.0175873i
\(630\) 0 0
\(631\) −386.514 −0.612542 −0.306271 0.951944i \(-0.599081\pi\)
−0.306271 + 0.951944i \(0.599081\pi\)
\(632\) 82.7604 + 47.7817i 0.130950 + 0.0756040i
\(633\) −130.600 226.206i −0.206319 0.357356i
\(634\) −340.805 590.291i −0.537547 0.931058i
\(635\) 0 0
\(636\) 80.3109i 0.126275i
\(637\) 442.547 + 604.617i 0.694736 + 0.949164i
\(638\) 23.6468i 0.0370639i
\(639\) 154.544 267.678i 0.241853 0.418902i
\(640\) 0 0
\(641\) 496.074 + 859.225i 0.773906 + 1.34044i 0.935407 + 0.353572i \(0.115033\pi\)
−0.161502 + 0.986872i \(0.551634\pi\)
\(642\) −57.6351 + 99.8269i −0.0897743 + 0.155494i
\(643\) −944.986 −1.46965 −0.734826 0.678256i \(-0.762736\pi\)
−0.734826 + 0.678256i \(0.762736\pi\)
\(644\) 346.191 + 175.625i 0.537564 + 0.272709i
\(645\) 0 0
\(646\) 11.1213 19.2627i 0.0172157 0.0298184i
\(647\) 1.44544 + 2.50357i 0.00223406 + 0.00386951i 0.867140 0.498064i \(-0.165956\pi\)
−0.864906 + 0.501934i \(0.832622\pi\)
\(648\) −165.016 + 95.2721i −0.254654 + 0.147025i
\(649\) −159.529 92.1039i −0.245807 0.141917i
\(650\) 0 0
\(651\) −205.584 + 134.024i −0.315797 + 0.205874i
\(652\) 443.955i 0.680913i
\(653\) −279.777 161.529i −0.428449 0.247365i 0.270237 0.962794i \(-0.412898\pi\)
−0.698686 + 0.715429i \(0.746231\pi\)
\(654\) 127.680 73.7159i 0.195229 0.112716i
\(655\) 0 0
\(656\) −96.8528 55.9180i −0.147641 0.0852409i
\(657\) −446.384 −0.679428
\(658\) 28.2114 + 520.731i 0.0428744 + 0.791385i
\(659\) −295.955 −0.449098 −0.224549 0.974463i \(-0.572091\pi\)
−0.224549 + 0.974463i \(0.572091\pi\)
\(660\) 0 0
\(661\) 17.9710 10.3756i 0.0271876 0.0156968i −0.486345 0.873767i \(-0.661670\pi\)
0.513532 + 0.858070i \(0.328337\pi\)
\(662\) 275.576 159.104i 0.416278 0.240338i
\(663\) 20.6316 35.7351i 0.0311186 0.0538990i
\(664\) 360.843i 0.543439i
\(665\) 0 0
\(666\) −35.2935 −0.0529933
\(667\) 84.3992 + 48.7279i 0.126536 + 0.0730554i
\(668\) 168.841 + 292.441i 0.252756 + 0.437785i
\(669\) 44.2052 + 76.5656i 0.0660765 + 0.114448i
\(670\) 0 0
\(671\) 430.579i 0.641698i
\(672\) 23.7986 15.5147i 0.0354146 0.0230874i
\(673\) 627.044i 0.931714i −0.884860 0.465857i \(-0.845746\pi\)
0.884860 0.465857i \(-0.154254\pi\)
\(674\) −186.936 + 323.783i −0.277353 + 0.480390i
\(675\) 0 0
\(676\) 64.8234 + 112.277i 0.0958926 + 0.166091i
\(677\) 54.6230 94.6097i 0.0806838 0.139749i −0.822860 0.568244i \(-0.807623\pi\)
0.903544 + 0.428496i \(0.140956\pi\)
\(678\) 35.0489 0.0516946
\(679\) −322.368 + 635.450i −0.474768 + 0.935861i
\(680\) 0 0
\(681\) −27.3974 + 47.4537i −0.0402311 + 0.0696824i
\(682\) 164.386 + 284.724i 0.241035 + 0.417484i
\(683\) −687.248 + 396.783i −1.00622 + 0.580941i −0.910083 0.414427i \(-0.863982\pi\)
−0.0961370 + 0.995368i \(0.530649\pi\)
\(684\) −61.4558 35.4815i −0.0898477 0.0518736i
\(685\) 0 0
\(686\) −453.770 171.437i −0.661473 0.249908i
\(687\) 256.331i 0.373116i
\(688\) −36.3221 20.9706i −0.0527937 0.0304805i
\(689\) 741.198 427.931i 1.07576 0.621090i
\(690\) 0 0
\(691\) 159.253 + 91.9447i 0.230467 + 0.133060i 0.610788 0.791794i \(-0.290853\pi\)
−0.380320 + 0.924855i \(0.624186\pi\)
\(692\) −328.682 −0.474974
\(693\) −127.841 + 252.000i −0.184475 + 0.363636i
\(694\) 270.478 0.389738
\(695\) 0 0
\(696\) 6.17662 3.56608i 0.00887446 0.00512367i
\(697\) 91.0725 52.5807i 0.130664 0.0754386i
\(698\) 95.7763 165.889i 0.137215 0.237664i
\(699\) 195.913i 0.280277i
\(700\) 0 0
\(701\) −1043.82 −1.48905 −0.744525 0.667595i \(-0.767324\pi\)
−0.744525 + 0.667595i \(0.767324\pi\)
\(702\) −234.935 135.640i −0.334665 0.193219i
\(703\) −6.14922 10.6508i −0.00874711 0.0151504i
\(704\) −19.0294 32.9600i −0.0270305 0.0468181i
\(705\) 0 0
\(706\) 492.840i 0.698073i
\(707\) −22.5993 417.143i −0.0319651 0.590019i
\(708\) 55.5593i 0.0784736i
\(709\) −490.279 + 849.188i −0.691507 + 1.19773i 0.279836 + 0.960048i \(0.409720\pi\)
−0.971344 + 0.237678i \(0.923614\pi\)
\(710\) 0 0
\(711\) 143.345 + 248.281i 0.201611 + 0.349200i
\(712\) 71.1794 123.286i 0.0999711 0.173155i
\(713\) 1354.97 1.90038
\(714\) 1.44513 + 26.6745i 0.00202399 + 0.0373593i
\(715\) 0 0
\(716\) −185.184 + 320.748i −0.258637 + 0.447972i
\(717\) −95.0975 164.714i −0.132632 0.229726i
\(718\) −373.340 + 215.548i −0.519972 + 0.300206i
\(719\) 674.187 + 389.242i 0.937673 + 0.541366i 0.889230 0.457460i \(-0.151241\pi\)
0.0484429 + 0.998826i \(0.484574\pi\)
\(720\) 0 0
\(721\) 459.419 + 704.719i 0.637197 + 0.977419i
\(722\) 485.803i 0.672858i
\(723\) 54.4514 + 31.4376i 0.0753132 + 0.0434821i
\(724\) −268.617 + 155.086i −0.371018 + 0.214208i
\(725\) 0 0
\(726\) 86.4335 + 49.9024i 0.119054 + 0.0687361i
\(727\) −735.255 −1.01135 −0.505677 0.862723i \(-0.668757\pi\)
−0.505677 + 0.862723i \(0.668757\pi\)
\(728\) −269.996 136.971i −0.370874 0.188146i
\(729\) −490.632 −0.673021
\(730\) 0 0
\(731\) 34.1543 19.7190i 0.0467227 0.0269754i
\(732\) −112.469 + 64.9340i −0.153646 + 0.0887076i
\(733\) −239.430 + 414.705i −0.326644 + 0.565764i −0.981844 0.189692i \(-0.939251\pi\)
0.655200 + 0.755456i \(0.272585\pi\)
\(734\) 134.356i 0.183047i
\(735\) 0 0
\(736\) −156.853 −0.213115
\(737\) −142.715 82.3965i −0.193643 0.111800i
\(738\) −167.754 290.558i −0.227309 0.393711i
\(739\) −9.95227 17.2378i −0.0134672 0.0233259i 0.859213 0.511618i \(-0.170954\pi\)
−0.872680 + 0.488292i \(0.837620\pi\)
\(740\) 0 0
\(741\) 45.8739i 0.0619080i
\(742\) −250.676 + 494.132i −0.337838 + 0.665946i
\(743\) 43.3095i 0.0582901i −0.999575 0.0291450i \(-0.990722\pi\)
0.999575 0.0291450i \(-0.00927847\pi\)
\(744\) 49.5807 85.8764i 0.0666408 0.115425i
\(745\) 0 0
\(746\) −179.293 310.544i −0.240339 0.416279i
\(747\) 541.265 937.499i 0.724585 1.25502i
\(748\) 35.7875 0.0478442
\(749\) −666.206 + 434.311i −0.889460 + 0.579855i
\(750\) 0 0
\(751\) −112.665 + 195.142i −0.150020 + 0.259842i −0.931235 0.364420i \(-0.881267\pi\)
0.781215 + 0.624263i \(0.214600\pi\)
\(752\) −105.358 182.485i −0.140104 0.242667i
\(753\) 307.961 177.801i 0.408978 0.236124i
\(754\) −65.8234 38.0031i −0.0872989 0.0504020i
\(755\) 0 0
\(756\) 175.368 9.50079i 0.231968 0.0125672i
\(757\) 935.779i 1.23617i 0.786112 + 0.618084i \(0.212091\pi\)
−0.786112 + 0.618084i \(0.787909\pi\)
\(758\) 622.476 + 359.387i 0.821209 + 0.474125i
\(759\) −81.9594 + 47.3193i −0.107983 + 0.0623443i
\(760\) 0 0
\(761\) 1214.79 + 701.357i 1.59630 + 0.921625i 0.992191 + 0.124724i \(0.0398046\pi\)
0.604110 + 0.796901i \(0.293529\pi\)
\(762\) 250.952 0.329334
\(763\) 1015.67 55.0254i 1.33115 0.0721172i
\(764\) −496.191 −0.649465
\(765\) 0 0
\(766\) −585.136 + 337.828i −0.763885 + 0.441029i
\(767\) 512.763 296.044i 0.668530 0.385976i
\(768\) −5.73951 + 9.94113i −0.00747332 + 0.0129442i
\(769\) 1.72330i 0.00224097i 0.999999 + 0.00112048i \(0.000356661\pi\)
−0.999999 + 0.00112048i \(0.999643\pi\)
\(770\) 0 0
\(771\) 287.360 0.372711
\(772\) −267.321 154.338i −0.346271 0.199920i
\(773\) −112.129 194.213i −0.145057 0.251245i 0.784337 0.620334i \(-0.213003\pi\)
−0.929394 + 0.369089i \(0.879670\pi\)
\(774\) −62.9117 108.966i −0.0812813 0.140783i
\(775\) 0 0
\(776\) 287.911i 0.371019i
\(777\) 13.1725 + 6.68247i 0.0169530 + 0.00860034i
\(778\) 240.728i 0.309419i
\(779\) 58.4558 101.248i 0.0750396 0.129972i
\(780\) 0 0
\(781\) 86.6468 + 150.077i 0.110943 + 0.192160i
\(782\) 73.7458 127.731i 0.0943041 0.163340i
\(783\) 44.0908 0.0563101
\(784\) 194.853 21.1750i 0.248537 0.0270089i
\(785\) 0 0
\(786\) 74.9010 129.732i 0.0952939 0.165054i
\(787\) 35.1017 + 60.7979i 0.0446019 + 0.0772528i 0.887465 0.460876i \(-0.152465\pi\)
−0.842863 + 0.538129i \(0.819131\pi\)
\(788\) 313.679 181.103i 0.398070 0.229826i
\(789\) −20.0968 11.6029i −0.0254712 0.0147058i
\(790\) 0 0
\(791\) 215.647 + 109.399i 0.272625 + 0.138305i
\(792\) 114.177i 0.144162i
\(793\) 1198.57 + 691.992i 1.51143 + 0.872625i
\(794\) 299.511 172.923i 0.377218 0.217787i
\(795\) 0 0
\(796\) −603.978 348.707i −0.758766 0.438074i
\(797\) 1305.38 1.63787 0.818933 0.573889i \(-0.194566\pi\)
0.818933 + 0.573889i \(0.194566\pi\)
\(798\) 16.2189 + 24.8787i 0.0203244 + 0.0311763i
\(799\) 198.140 0.247985
\(800\) 0 0
\(801\) 369.859 213.538i 0.461747 0.266590i
\(802\) −511.420 + 295.269i −0.637681 + 0.368165i
\(803\) 125.135 216.740i 0.155834 0.269913i
\(804\) 49.7036i 0.0618204i
\(805\) 0 0
\(806\) −1056.75 −1.31110
\(807\) −190.723 110.114i −0.236335 0.136448i
\(808\) 84.3992 + 146.184i 0.104455 + 0.180921i
\(809\) 381.382 + 660.573i 0.471424 + 0.816531i 0.999466 0.0326879i \(-0.0104067\pi\)
−0.528041 + 0.849219i \(0.677073\pi\)
\(810\) 0 0
\(811\) 1214.98i 1.49813i −0.662498 0.749064i \(-0.730504\pi\)
0.662498 0.749064i \(-0.269496\pi\)
\(812\) 49.1340 2.66190i 0.0605099 0.00327821i
\(813\) 54.5147i 0.0670538i
\(814\) 9.89383 17.1366i 0.0121546 0.0210524i
\(815\) 0 0
\(816\) −5.39697 9.34783i −0.00661393 0.0114557i
\(817\) 21.9223 37.9706i 0.0268327 0.0464756i
\(818\) 435.877 0.532857
\(819\) −496.014 760.854i −0.605634 0.929004i
\(820\) 0 0
\(821\) 291.684 505.211i 0.355279 0.615361i −0.631887 0.775061i \(-0.717719\pi\)
0.987166 + 0.159700i \(0.0510527\pi\)
\(822\) −16.5248 28.6218i −0.0201031 0.0348197i
\(823\) −892.648 + 515.371i −1.08463 + 0.626210i −0.932141 0.362096i \(-0.882061\pi\)
−0.152486 + 0.988306i \(0.548728\pi\)
\(824\) −294.375 169.957i −0.357251 0.206259i
\(825\) 0 0
\(826\) −173.418 + 341.842i −0.209950 + 0.413852i
\(827\) 152.102i 0.183920i 0.995763 + 0.0919599i \(0.0293132\pi\)
−0.995763 + 0.0919599i \(0.970687\pi\)
\(828\) −407.516 235.279i −0.492169 0.284154i
\(829\) −532.095 + 307.205i −0.641852 + 0.370573i −0.785327 0.619081i \(-0.787505\pi\)
0.143476 + 0.989654i \(0.454172\pi\)
\(830\) 0 0
\(831\) −172.983 99.8715i −0.208162 0.120182i
\(832\) 122.330 0.147032
\(833\) −74.3682 + 168.632i −0.0892776 + 0.202439i
\(834\) −69.5879 −0.0834387
\(835\) 0 0
\(836\) 34.4558 19.8931i 0.0412151 0.0237956i
\(837\) 530.886 306.507i 0.634272 0.366197i
\(838\) −72.9326 + 126.323i −0.0870317 + 0.150743i
\(839\) 1546.14i 1.84284i −0.388568 0.921420i \(-0.627030\pi\)
0.388568 0.921420i \(-0.372970\pi\)
\(840\) 0 0
\(841\) −828.647 −0.985311
\(842\) 202.353 + 116.828i 0.240324 + 0.138751i
\(843\) −141.583 245.229i −0.167952 0.290901i
\(844\) 364.073 + 630.593i 0.431366 + 0.747148i
\(845\) 0 0
\(846\) 632.148i 0.747219i
\(847\) 376.041 + 576.823i 0.443969 + 0.681019i
\(848\) 223.882i 0.264012i
\(849\) −52.5152 + 90.9589i −0.0618553 + 0.107137i
\(850\) 0 0
\(851\) −40.7756 70.6255i −0.0479150 0.0829912i
\(852\) 26.1337 45.2649i 0.0306734 0.0531279i
\(853\) 1235.15 1.44800 0.724002 0.689798i \(-0.242301\pi\)
0.724002 + 0.689798i \(0.242301\pi\)
\(854\) −894.672 + 48.4701i −1.04763 + 0.0567566i
\(855\) 0 0
\(856\) 160.669 278.287i 0.187697 0.325102i
\(857\) −550.341 953.219i −0.642172 1.11227i −0.984947 0.172857i \(-0.944700\pi\)
0.342775 0.939417i \(-0.388633\pi\)
\(858\) 63.9205 36.9045i 0.0744995 0.0430123i
\(859\) −512.488 295.885i −0.596610 0.344453i 0.171096 0.985254i \(-0.445269\pi\)
−0.767707 + 0.640801i \(0.778602\pi\)
\(860\) 0 0
\(861\) 7.59589 + 140.207i 0.00882217 + 0.162841i
\(862\) 840.801i 0.975407i
\(863\) −56.0553 32.3635i −0.0649540 0.0375012i 0.467171 0.884167i \(-0.345273\pi\)
−0.532125 + 0.846666i \(0.678606\pi\)
\(864\) −61.4558 + 35.4815i −0.0711294 + 0.0410666i
\(865\) 0 0
\(866\) −49.7574 28.7274i −0.0574565 0.0331725i
\(867\) −197.190 −0.227440
\(868\) 573.105 373.617i 0.660259 0.430435i
\(869\) −160.736 −0.184967
\(870\) 0 0
\(871\) 458.720 264.842i 0.526659 0.304067i
\(872\) −355.932 + 205.497i −0.408179 + 0.235662i
\(873\) 431.866 748.014i 0.494692 0.856832i
\(874\) 163.972i 0.187611i
\(875\) 0 0
\(876\) −75.4844 −0.0861694
\(877\) 263.438 + 152.096i 0.300385 + 0.173427i 0.642616 0.766188i \(-0.277849\pi\)
−0.342231 + 0.939616i \(0.611182\pi\)
\(878\) 103.662 + 179.548i 0.118066 + 0.204496i
\(879\) 107.500 + 186.196i 0.122299 + 0.211827i
\(880\) 0 0
\(881\) 863.732i 0.980400i −0.871610 0.490200i \(-0.836924\pi\)
0.871610 0.490200i \(-0.163076\pi\)
\(882\) 538.005 + 237.265i 0.609983 + 0.269008i
\(883\) 567.456i 0.642645i 0.946970 + 0.321323i \(0.104127\pi\)
−0.946970 + 0.321323i \(0.895873\pi\)
\(884\) −57.5147 + 99.6184i −0.0650619 + 0.112691i
\(885\) 0 0
\(886\) −75.9153 131.489i −0.0856831 0.148408i
\(887\) 444.880 770.555i 0.501556 0.868721i −0.498442 0.866923i \(-0.666094\pi\)
0.999998 0.00179783i \(-0.000572267\pi\)
\(888\) −5.96820 −0.00672095
\(889\) 1544.04 + 783.302i 1.73683 + 0.881105i
\(890\) 0 0
\(891\) 160.246 277.554i 0.179849 0.311508i
\(892\) −123.231 213.442i −0.138151 0.239284i
\(893\) 190.767 110.140i 0.213625 0.123337i
\(894\) 81.1873 + 46.8735i 0.0908136 + 0.0524312i
\(895\) 0 0
\(896\) −66.3431 + 43.2503i −0.0740437 + 0.0482704i
\(897\) 304.191i 0.339120i
\(898\) 165.538 + 95.5736i 0.184341 + 0.106429i
\(899\) 148.742 85.8764i 0.165453 0.0955243i
\(900\) 0 0
\(901\) 182.316 + 105.260i 0.202349 + 0.116826i
\(902\) 188.106 0.208543
\(903\) 2.84864 + 52.5807i 0.00315464 + 0.0582289i
\(904\) −97.7056 −0.108081
\(905\) 0 0
\(906\) −80.6512 + 46.5640i −0.0890190 + 0.0513951i
\(907\) 323.874 186.989i 0.357083 0.206162i −0.310717 0.950502i \(-0.600569\pi\)
0.667800 + 0.744340i \(0.267236\pi\)
\(908\) 76.3756 132.286i 0.0841141 0.145690i
\(909\) 506.395i 0.557091i
\(910\) 0 0
\(911\) 1133.75 1.24451 0.622256 0.782814i \(-0.286216\pi\)
0.622256 + 0.782814i \(0.286216\pi\)
\(912\) −10.3923 6.00000i −0.0113951 0.00657895i
\(913\) 303.466 + 525.618i 0.332383 + 0.575704i
\(914\) 112.950 + 195.635i 0.123577 + 0.214042i
\(915\) 0 0
\(916\) 714.572i 0.780101i
\(917\) 865.782 564.419i 0.944146 0.615506i
\(918\) 66.7279i 0.0726884i
\(919\) 228.151 395.169i 0.248260 0.429999i −0.714783 0.699346i \(-0.753475\pi\)
0.963043 + 0.269347i \(0.0868078\pi\)
\(920\) 0 0
\(921\) 7.52900 + 13.0406i 0.00817481 + 0.0141592i
\(922\) −219.380 + 379.977i −0.237939 + 0.412122i
\(923\) −557.007 −0.603474
\(924\) −21.6182 + 42.6137i −0.0233963 + 0.0461187i
\(925\) 0 0
\(926\) 230.527 399.284i 0.248949 0.431193i
\(927\) −509.872 883.124i −0.550024 0.952669i
\(928\) −17.2185 + 9.94113i −0.0185545 + 0.0107124i
\(929\) 824.058 + 475.770i 0.887037 + 0.512131i 0.872972 0.487770i \(-0.162189\pi\)
0.0140650 + 0.999901i \(0.495523\pi\)
\(930\) 0 0
\(931\) 22.1360 + 203.696i 0.0237766 + 0.218793i
\(932\) 546.146i 0.585994i
\(933\) −113.105 65.3011i −0.121227 0.0699904i
\(934\) 729.407 421.123i 0.780949 0.450881i
\(935\) 0 0
\(936\) 317.823 + 183.495i 0.339555 + 0.196042i
\(937\) −1295.71 −1.38283 −0.691413 0.722460i \(-0.743011\pi\)
−0.691413 + 0.722460i \(0.743011\pi\)
\(938\) −155.141 + 305.813i −0.165395 + 0.326027i
\(939\) 70.2578 0.0748219
\(940\) 0 0
\(941\) −1175.10 + 678.446i −1.24878 + 0.720984i −0.970866 0.239622i \(-0.922977\pi\)
−0.277915 + 0.960606i \(0.589643\pi\)
\(942\) −7.43038 + 4.28993i −0.00788788 + 0.00455407i
\(943\) 387.622 671.382i 0.411052 0.711964i
\(944\) 154.882i 0.164070i
\(945\) 0 0
\(946\) 70.5442 0.0745710
\(947\) 614.412 + 354.731i 0.648799 + 0.374584i 0.787996 0.615681i \(-0.211119\pi\)
−0.139197 + 0.990265i \(0.544452\pi\)
\(948\) 24.2400 + 41.9848i 0.0255696 + 0.0442878i
\(949\) 402.213 + 696.654i 0.423828 + 0.734092i
\(950\) 0 0
\(951\) 345.784i 0.363601i
\(952\) −4.02858 74.3604i −0.00423170 0.0781097i
\(953\) 936.603i 0.982794i −0.870936 0.491397i \(-0.836486\pi\)
0.870936 0.491397i \(-0.163514\pi\)
\(954\) 335.823 581.663i 0.352016 0.609710i
\(955\) 0 0
\(956\) 265.103 + 459.171i 0.277304 + 0.480305i
\(957\) −5.99807 + 10.3890i −0.00626757 + 0.0108558i
\(958\) 716.554 0.747969
\(959\) −12.3350 227.681i −0.0128623 0.237415i
\(960\) 0 0
\(961\) 713.477 1235.78i 0.742432 1.28593i
\(962\) 31.8011 + 55.0812i 0.0330573 + 0.0572569i
\(963\) 834.861 482.007i 0.866938 0.500527i
\(964\) −151.794 87.6383i −0.157463 0.0909111i
\(965\) 0 0
\(966\) 107.548 + 164.971i 0.111333 + 0.170778i
\(967\) 1374.37i 1.42127i 0.703561 + 0.710635i \(0.251592\pi\)
−0.703561 + 0.710635i \(0.748408\pi\)
\(968\) −240.950 139.113i −0.248916 0.143711i
\(969\) 9.77208 5.64191i 0.0100847 0.00582241i
\(970\) 0 0
\(971\) −27.2466 15.7309i −0.0280604 0.0162007i 0.485904 0.874012i \(-0.338490\pi\)
−0.513965 + 0.857811i \(0.671824\pi\)
\(972\) −322.467 −0.331757
\(973\) −428.156 217.206i −0.440037 0.223233i
\(974\) −298.825 −0.306802
\(975\) 0 0
\(976\) 313.529 181.016i 0.321239 0.185467i
\(977\) −469.297 + 270.949i −0.480345 + 0.277327i −0.720560 0.693392i \(-0.756115\pi\)
0.240215 + 0.970720i \(0.422782\pi\)
\(978\) −112.611 + 195.047i −0.115144 + 0.199435i
\(979\) 239.445i 0.244581i
\(980\) 0 0
\(981\) −1232.98 −1.25687
\(982\) 960.397 + 554.485i 0.978001 + 0.564649i
\(983\) −11.2099 19.4161i −0.0114038 0.0197519i 0.860267 0.509843i \(-0.170297\pi\)
−0.871671 + 0.490092i \(0.836963\pi\)
\(984\) −28.3675 49.1340i −0.0288288 0.0499329i
\(985\) 0 0
\(986\) 18.6957i 0.0189611i
\(987\) −119.691 + 235.934i −0.121267 + 0.239042i
\(988\) 127.882i 0.129435i
\(989\) 145.368 251.784i 0.146984 0.254584i
\(990\) 0 0
\(991\) −339.017 587.195i −0.342096 0.592528i 0.642726 0.766097i \(-0.277804\pi\)
−0.984822 + 0.173568i \(0.944470\pi\)
\(992\) −138.216 + 239.397i −0.139331 + 0.241328i
\(993\) 161.429 0.162567
\(994\) 302.080 196.932i 0.303904 0.198120i
\(995\) 0 0
\(996\) 91.5290 158.533i 0.0918966 0.159170i
\(997\) 438.081 + 758.779i 0.439400 + 0.761062i 0.997643 0.0686147i \(-0.0218579\pi\)
−0.558244 + 0.829677i \(0.688525\pi\)
\(998\) 210.034 121.263i 0.210455 0.121506i
\(999\) −31.9523 18.4477i −0.0319843 0.0184661i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.3.i.a.299.2 8
5.2 odd 4 350.3.k.a.201.2 4
5.3 odd 4 14.3.d.a.5.1 yes 4
5.4 even 2 inner 350.3.i.a.299.3 8
7.3 odd 6 inner 350.3.i.a.199.3 8
15.8 even 4 126.3.n.c.19.2 4
20.3 even 4 112.3.s.b.33.1 4
35.3 even 12 14.3.d.a.3.1 4
35.13 even 4 98.3.d.a.19.1 4
35.17 even 12 350.3.k.a.101.2 4
35.18 odd 12 98.3.d.a.31.1 4
35.23 odd 12 98.3.b.b.97.4 4
35.24 odd 6 inner 350.3.i.a.199.2 8
35.33 even 12 98.3.b.b.97.3 4
40.3 even 4 448.3.s.c.257.2 4
40.13 odd 4 448.3.s.d.257.1 4
60.23 odd 4 1008.3.cg.l.145.2 4
105.23 even 12 882.3.c.f.685.1 4
105.38 odd 12 126.3.n.c.73.2 4
105.53 even 12 882.3.n.b.325.2 4
105.68 odd 12 882.3.c.f.685.2 4
105.83 odd 4 882.3.n.b.19.2 4
140.3 odd 12 112.3.s.b.17.1 4
140.23 even 12 784.3.c.e.97.2 4
140.83 odd 4 784.3.s.c.705.2 4
140.103 odd 12 784.3.c.e.97.3 4
140.123 even 12 784.3.s.c.129.2 4
280.3 odd 12 448.3.s.c.129.2 4
280.213 even 12 448.3.s.d.129.1 4
420.143 even 12 1008.3.cg.l.577.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.3.d.a.3.1 4 35.3 even 12
14.3.d.a.5.1 yes 4 5.3 odd 4
98.3.b.b.97.3 4 35.33 even 12
98.3.b.b.97.4 4 35.23 odd 12
98.3.d.a.19.1 4 35.13 even 4
98.3.d.a.31.1 4 35.18 odd 12
112.3.s.b.17.1 4 140.3 odd 12
112.3.s.b.33.1 4 20.3 even 4
126.3.n.c.19.2 4 15.8 even 4
126.3.n.c.73.2 4 105.38 odd 12
350.3.i.a.199.2 8 35.24 odd 6 inner
350.3.i.a.199.3 8 7.3 odd 6 inner
350.3.i.a.299.2 8 1.1 even 1 trivial
350.3.i.a.299.3 8 5.4 even 2 inner
350.3.k.a.101.2 4 35.17 even 12
350.3.k.a.201.2 4 5.2 odd 4
448.3.s.c.129.2 4 280.3 odd 12
448.3.s.c.257.2 4 40.3 even 4
448.3.s.d.129.1 4 280.213 even 12
448.3.s.d.257.1 4 40.13 odd 4
784.3.c.e.97.2 4 140.23 even 12
784.3.c.e.97.3 4 140.103 odd 12
784.3.s.c.129.2 4 140.123 even 12
784.3.s.c.705.2 4 140.83 odd 4
882.3.c.f.685.1 4 105.23 even 12
882.3.c.f.685.2 4 105.68 odd 12
882.3.n.b.19.2 4 105.83 odd 4
882.3.n.b.325.2 4 105.53 even 12
1008.3.cg.l.145.2 4 60.23 odd 4
1008.3.cg.l.577.2 4 420.143 even 12