Properties

Label 783.2.v.b.26.9
Level $783$
Weight $2$
Character 783.26
Analytic conductor $6.252$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(26,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(28)) chi = DirichletCharacter(H, H._module([14, 19])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.v (of order \(28\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [240,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(20\) over \(\Q(\zeta_{28})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 26.9
Character \(\chi\) \(=\) 783.26
Dual form 783.2.v.b.512.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.561561 - 0.352852i) q^{2} +(-0.676921 - 1.40564i) q^{4} +(0.901677 + 3.95051i) q^{5} +(3.71421 + 1.78867i) q^{7} +(-0.264364 + 2.34630i) q^{8} +(0.887598 - 2.53661i) q^{10} +(-0.0605415 - 0.537321i) q^{11} +(1.03994 + 0.829323i) q^{13} +(-1.45462 - 2.31501i) q^{14} +(-0.969115 + 1.21523i) q^{16} +(-3.42739 + 3.42739i) q^{17} +(-6.17677 - 2.16134i) q^{19} +(4.94263 - 3.94162i) q^{20} +(-0.155597 + 0.323101i) q^{22} +(1.09932 + 0.250912i) q^{23} +(-10.2886 + 4.95474i) q^{25} +(-0.291360 - 0.832660i) q^{26} -6.43163i q^{28} +(-3.20978 + 4.32404i) q^{29} +(2.17681 - 3.46437i) q^{31} +(5.43031 - 1.90015i) q^{32} +(3.13405 - 0.715326i) q^{34} +(-3.71713 + 16.2858i) q^{35} +(-0.116634 - 0.0131415i) q^{37} +(2.70600 + 3.39321i) q^{38} +(-9.50744 + 1.07123i) q^{40} +(1.85162 + 1.85162i) q^{41} +(-2.37879 + 1.49469i) q^{43} +(-0.714298 + 0.448823i) q^{44} +(-0.528799 - 0.528799i) q^{46} +(-4.54606 + 0.512218i) q^{47} +(6.23158 + 7.81416i) q^{49} +(7.52598 + 0.847975i) q^{50} +(0.461775 - 2.02317i) q^{52} +(13.8470 - 3.16050i) q^{53} +(2.06810 - 0.723659i) q^{55} +(-5.17866 + 8.24178i) q^{56} +(3.32823 - 1.29563i) q^{58} -5.24021i q^{59} +(2.86526 + 8.18845i) q^{61} +(-2.44482 + 1.17736i) q^{62} +(-0.689180 - 0.157301i) q^{64} +(-2.33856 + 4.85606i) q^{65} +(11.0783 - 8.83463i) q^{67} +(7.13775 + 2.49761i) q^{68} +(7.83388 - 7.83388i) q^{70} +(-1.86371 + 2.33702i) q^{71} +(7.33708 + 11.6769i) q^{73} +(0.0608602 + 0.0485344i) q^{74} +(1.14311 + 10.1454i) q^{76} +(0.736225 - 2.10401i) q^{77} +(0.573293 - 5.08811i) q^{79} +(-5.67461 - 2.73275i) q^{80} +(-0.386450 - 1.69315i) q^{82} +(5.49290 + 11.4061i) q^{83} +(-16.6303 - 10.4495i) q^{85} +1.86324 q^{86} +1.27672 q^{88} +(-12.0422 - 7.56663i) q^{89} +(2.37916 + 4.94039i) q^{91} +(-0.391459 - 1.71509i) q^{92} +(2.73363 + 1.31645i) q^{94} +(2.96895 - 26.3502i) q^{95} +(-0.400010 + 1.14316i) q^{97} +(-0.742172 - 6.58696i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q + 72 q^{16} + 8 q^{19} - 40 q^{25} + 8 q^{31} - 32 q^{37} - 16 q^{40} - 16 q^{43} - 104 q^{46} - 8 q^{49} + 8 q^{52} - 128 q^{55} + 272 q^{58} - 24 q^{61} + 112 q^{67} - 56 q^{70} - 64 q^{73} - 160 q^{76}+ \cdots + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{19}{28}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.561561 0.352852i −0.397084 0.249504i 0.318657 0.947870i \(-0.396768\pi\)
−0.715741 + 0.698366i \(0.753911\pi\)
\(3\) 0 0
\(4\) −0.676921 1.40564i −0.338461 0.702821i
\(5\) 0.901677 + 3.95051i 0.403242 + 1.76672i 0.614125 + 0.789209i \(0.289509\pi\)
−0.210883 + 0.977511i \(0.567634\pi\)
\(6\) 0 0
\(7\) 3.71421 + 1.78867i 1.40384 + 0.676053i 0.973936 0.226822i \(-0.0728335\pi\)
0.429903 + 0.902875i \(0.358548\pi\)
\(8\) −0.264364 + 2.34630i −0.0934669 + 0.829542i
\(9\) 0 0
\(10\) 0.887598 2.53661i 0.280683 0.802146i
\(11\) −0.0605415 0.537321i −0.0182539 0.162008i 0.981278 0.192596i \(-0.0616907\pi\)
−0.999532 + 0.0305877i \(0.990262\pi\)
\(12\) 0 0
\(13\) 1.03994 + 0.829323i 0.288427 + 0.230013i 0.757005 0.653409i \(-0.226662\pi\)
−0.468578 + 0.883422i \(0.655233\pi\)
\(14\) −1.45462 2.31501i −0.388763 0.618713i
\(15\) 0 0
\(16\) −0.969115 + 1.21523i −0.242279 + 0.303808i
\(17\) −3.42739 + 3.42739i −0.831263 + 0.831263i −0.987690 0.156426i \(-0.950003\pi\)
0.156426 + 0.987690i \(0.450003\pi\)
\(18\) 0 0
\(19\) −6.17677 2.16134i −1.41705 0.495846i −0.490307 0.871550i \(-0.663116\pi\)
−0.926740 + 0.375703i \(0.877401\pi\)
\(20\) 4.94263 3.94162i 1.10521 0.881372i
\(21\) 0 0
\(22\) −0.155597 + 0.323101i −0.0331734 + 0.0688853i
\(23\) 1.09932 + 0.250912i 0.229224 + 0.0523188i 0.335590 0.942008i \(-0.391064\pi\)
−0.106366 + 0.994327i \(0.533922\pi\)
\(24\) 0 0
\(25\) −10.2886 + 4.95474i −2.05773 + 0.990948i
\(26\) −0.291360 0.832660i −0.0571405 0.163298i
\(27\) 0 0
\(28\) 6.43163i 1.21546i
\(29\) −3.20978 + 4.32404i −0.596041 + 0.802954i
\(30\) 0 0
\(31\) 2.17681 3.46437i 0.390966 0.622219i −0.592015 0.805927i \(-0.701667\pi\)
0.982981 + 0.183708i \(0.0588101\pi\)
\(32\) 5.43031 1.90015i 0.959951 0.335902i
\(33\) 0 0
\(34\) 3.13405 0.715326i 0.537485 0.122677i
\(35\) −3.71713 + 16.2858i −0.628309 + 2.75280i
\(36\) 0 0
\(37\) −0.116634 0.0131415i −0.0191745 0.00216045i 0.102372 0.994746i \(-0.467357\pi\)
−0.121547 + 0.992586i \(0.538785\pi\)
\(38\) 2.70600 + 3.39321i 0.438971 + 0.550452i
\(39\) 0 0
\(40\) −9.50744 + 1.07123i −1.50326 + 0.169376i
\(41\) 1.85162 + 1.85162i 0.289175 + 0.289175i 0.836754 0.547579i \(-0.184450\pi\)
−0.547579 + 0.836754i \(0.684450\pi\)
\(42\) 0 0
\(43\) −2.37879 + 1.49469i −0.362762 + 0.227938i −0.701063 0.713100i \(-0.747291\pi\)
0.338301 + 0.941038i \(0.390148\pi\)
\(44\) −0.714298 + 0.448823i −0.107685 + 0.0676627i
\(45\) 0 0
\(46\) −0.528799 0.528799i −0.0779672 0.0779672i
\(47\) −4.54606 + 0.512218i −0.663111 + 0.0747147i −0.437104 0.899411i \(-0.643996\pi\)
−0.226007 + 0.974126i \(0.572567\pi\)
\(48\) 0 0
\(49\) 6.23158 + 7.81416i 0.890226 + 1.11631i
\(50\) 7.52598 + 0.847975i 1.06433 + 0.119922i
\(51\) 0 0
\(52\) 0.461775 2.02317i 0.0640366 0.280563i
\(53\) 13.8470 3.16050i 1.90204 0.434128i 0.902041 0.431650i \(-0.142068\pi\)
0.999997 0.00247771i \(-0.000788680\pi\)
\(54\) 0 0
\(55\) 2.06810 0.723659i 0.278862 0.0975782i
\(56\) −5.17866 + 8.24178i −0.692027 + 1.10135i
\(57\) 0 0
\(58\) 3.32823 1.29563i 0.437019 0.170125i
\(59\) 5.24021i 0.682218i −0.940024 0.341109i \(-0.889198\pi\)
0.940024 0.341109i \(-0.110802\pi\)
\(60\) 0 0
\(61\) 2.86526 + 8.18845i 0.366859 + 1.04842i 0.968361 + 0.249552i \(0.0802834\pi\)
−0.601502 + 0.798871i \(0.705431\pi\)
\(62\) −2.44482 + 1.17736i −0.310493 + 0.149525i
\(63\) 0 0
\(64\) −0.689180 0.157301i −0.0861475 0.0196626i
\(65\) −2.33856 + 4.85606i −0.290062 + 0.602321i
\(66\) 0 0
\(67\) 11.0783 8.83463i 1.35343 1.07932i 0.364454 0.931222i \(-0.381256\pi\)
0.988972 0.148100i \(-0.0473156\pi\)
\(68\) 7.13775 + 2.49761i 0.865579 + 0.302879i
\(69\) 0 0
\(70\) 7.83388 7.83388i 0.936327 0.936327i
\(71\) −1.86371 + 2.33702i −0.221182 + 0.277353i −0.880025 0.474927i \(-0.842475\pi\)
0.658843 + 0.752280i \(0.271046\pi\)
\(72\) 0 0
\(73\) 7.33708 + 11.6769i 0.858741 + 1.36668i 0.929360 + 0.369175i \(0.120360\pi\)
−0.0706193 + 0.997503i \(0.522498\pi\)
\(74\) 0.0608602 + 0.0485344i 0.00707485 + 0.00564200i
\(75\) 0 0
\(76\) 1.14311 + 10.1454i 0.131124 + 1.16375i
\(77\) 0.736225 2.10401i 0.0839006 0.239774i
\(78\) 0 0
\(79\) 0.573293 5.08811i 0.0645005 0.572457i −0.919347 0.393448i \(-0.871282\pi\)
0.983847 0.179009i \(-0.0572893\pi\)
\(80\) −5.67461 2.73275i −0.634441 0.305530i
\(81\) 0 0
\(82\) −0.386450 1.69315i −0.0426763 0.186977i
\(83\) 5.49290 + 11.4061i 0.602924 + 1.25198i 0.949442 + 0.313941i \(0.101649\pi\)
−0.346519 + 0.938043i \(0.612636\pi\)
\(84\) 0 0
\(85\) −16.6303 10.4495i −1.80381 1.13341i
\(86\) 1.86324 0.200918
\(87\) 0 0
\(88\) 1.27672 0.136099
\(89\) −12.0422 7.56663i −1.27647 0.802061i −0.288618 0.957444i \(-0.593196\pi\)
−0.987854 + 0.155383i \(0.950339\pi\)
\(90\) 0 0
\(91\) 2.37916 + 4.94039i 0.249404 + 0.517893i
\(92\) −0.391459 1.71509i −0.0408124 0.178811i
\(93\) 0 0
\(94\) 2.73363 + 1.31645i 0.281952 + 0.135781i
\(95\) 2.96895 26.3502i 0.304608 2.70347i
\(96\) 0 0
\(97\) −0.400010 + 1.14316i −0.0406148 + 0.116071i −0.962405 0.271619i \(-0.912441\pi\)
0.921790 + 0.387689i \(0.126727\pi\)
\(98\) −0.742172 6.58696i −0.0749707 0.665383i
\(99\) 0 0
\(100\) 13.9292 + 11.1082i 1.39292 + 1.11082i
\(101\) −7.94123 12.6384i −0.790182 1.25757i −0.962165 0.272467i \(-0.912160\pi\)
0.171984 0.985100i \(-0.444982\pi\)
\(102\) 0 0
\(103\) 5.03284 6.31098i 0.495900 0.621839i −0.469399 0.882986i \(-0.655529\pi\)
0.965299 + 0.261147i \(0.0841008\pi\)
\(104\) −2.22076 + 2.22076i −0.217764 + 0.217764i
\(105\) 0 0
\(106\) −8.89115 3.11115i −0.863585 0.302181i
\(107\) −8.75922 + 6.98525i −0.846786 + 0.675289i −0.947545 0.319621i \(-0.896444\pi\)
0.100759 + 0.994911i \(0.467873\pi\)
\(108\) 0 0
\(109\) −7.45388 + 15.4781i −0.713952 + 1.48254i 0.155143 + 0.987892i \(0.450416\pi\)
−0.869095 + 0.494645i \(0.835298\pi\)
\(110\) −1.41671 0.323355i −0.135078 0.0308306i
\(111\) 0 0
\(112\) −5.77314 + 2.78020i −0.545511 + 0.262704i
\(113\) 3.83624 + 10.9633i 0.360883 + 1.03134i 0.971010 + 0.239040i \(0.0768327\pi\)
−0.610127 + 0.792304i \(0.708882\pi\)
\(114\) 0 0
\(115\) 4.56910i 0.426071i
\(116\) 8.25082 + 1.58477i 0.766069 + 0.147142i
\(117\) 0 0
\(118\) −1.84902 + 2.94270i −0.170216 + 0.270898i
\(119\) −18.8605 + 6.59957i −1.72894 + 0.604982i
\(120\) 0 0
\(121\) 10.4392 2.38267i 0.949014 0.216606i
\(122\) 1.28029 5.60933i 0.115912 0.507845i
\(123\) 0 0
\(124\) −6.34319 0.714706i −0.569635 0.0641825i
\(125\) −16.2185 20.3374i −1.45063 1.81903i
\(126\) 0 0
\(127\) 12.7918 1.44129i 1.13509 0.127894i 0.475636 0.879642i \(-0.342218\pi\)
0.659450 + 0.751748i \(0.270789\pi\)
\(128\) −7.80467 7.80467i −0.689842 0.689842i
\(129\) 0 0
\(130\) 3.02672 1.90181i 0.265461 0.166800i
\(131\) 0.416771 0.261874i 0.0364134 0.0228801i −0.513702 0.857968i \(-0.671726\pi\)
0.550116 + 0.835088i \(0.314584\pi\)
\(132\) 0 0
\(133\) −19.0759 19.0759i −1.65409 1.65409i
\(134\) −9.33844 + 1.05219i −0.806718 + 0.0908953i
\(135\) 0 0
\(136\) −7.13559 8.94775i −0.611872 0.767263i
\(137\) 3.47111 + 0.391100i 0.296557 + 0.0334139i 0.258989 0.965880i \(-0.416611\pi\)
0.0375674 + 0.999294i \(0.488039\pi\)
\(138\) 0 0
\(139\) −1.20207 + 5.26660i −0.101958 + 0.446707i 0.898019 + 0.439956i \(0.145006\pi\)
−0.999977 + 0.00675108i \(0.997851\pi\)
\(140\) 25.4082 5.79926i 2.14739 0.490127i
\(141\) 0 0
\(142\) 1.87121 0.654765i 0.157029 0.0549467i
\(143\) 0.382653 0.608989i 0.0319991 0.0509262i
\(144\) 0 0
\(145\) −19.9763 8.78137i −1.65894 0.729253i
\(146\) 9.14620i 0.756945i
\(147\) 0 0
\(148\) 0.0604799 + 0.172842i 0.00497141 + 0.0142075i
\(149\) −1.04175 + 0.501679i −0.0853433 + 0.0410992i −0.476068 0.879408i \(-0.657939\pi\)
0.390725 + 0.920507i \(0.372224\pi\)
\(150\) 0 0
\(151\) 11.4192 + 2.60636i 0.929283 + 0.212103i 0.660265 0.751032i \(-0.270444\pi\)
0.269018 + 0.963135i \(0.413301\pi\)
\(152\) 6.70408 13.9212i 0.543772 1.12915i
\(153\) 0 0
\(154\) −1.15584 + 0.921751i −0.0931402 + 0.0742768i
\(155\) 15.6488 + 5.47575i 1.25694 + 0.439823i
\(156\) 0 0
\(157\) 0.882364 0.882364i 0.0704203 0.0704203i −0.671019 0.741440i \(-0.734143\pi\)
0.741440 + 0.671019i \(0.234143\pi\)
\(158\) −2.11729 + 2.65500i −0.168443 + 0.211220i
\(159\) 0 0
\(160\) 12.4029 + 19.7391i 0.980537 + 1.56052i
\(161\) 3.63430 + 2.89825i 0.286423 + 0.228414i
\(162\) 0 0
\(163\) −1.48504 13.1801i −0.116317 1.03235i −0.907293 0.420498i \(-0.861855\pi\)
0.790976 0.611847i \(-0.209573\pi\)
\(164\) 1.34932 3.85613i 0.105364 0.301113i
\(165\) 0 0
\(166\) 0.940077 8.34341i 0.0729641 0.647574i
\(167\) −0.446853 0.215193i −0.0345785 0.0166521i 0.416515 0.909129i \(-0.363251\pi\)
−0.451093 + 0.892477i \(0.648966\pi\)
\(168\) 0 0
\(169\) −2.49908 10.9492i −0.192237 0.842244i
\(170\) 5.65180 + 11.7361i 0.433473 + 0.900116i
\(171\) 0 0
\(172\) 3.71125 + 2.33193i 0.282980 + 0.177808i
\(173\) 22.7723 1.73135 0.865674 0.500608i \(-0.166890\pi\)
0.865674 + 0.500608i \(0.166890\pi\)
\(174\) 0 0
\(175\) −47.0765 −3.55865
\(176\) 0.711641 + 0.447154i 0.0536419 + 0.0337055i
\(177\) 0 0
\(178\) 4.09254 + 8.49825i 0.306749 + 0.636971i
\(179\) 1.94996 + 8.54333i 0.145747 + 0.638558i 0.994039 + 0.109029i \(0.0347742\pi\)
−0.848292 + 0.529529i \(0.822369\pi\)
\(180\) 0 0
\(181\) 1.73920 + 0.837555i 0.129274 + 0.0622550i 0.497403 0.867520i \(-0.334287\pi\)
−0.368129 + 0.929775i \(0.620001\pi\)
\(182\) 0.407180 3.61382i 0.0301822 0.267874i
\(183\) 0 0
\(184\) −0.879335 + 2.51300i −0.0648254 + 0.185260i
\(185\) −0.0532507 0.472613i −0.00391507 0.0347472i
\(186\) 0 0
\(187\) 2.04910 + 1.63411i 0.149845 + 0.119498i
\(188\) 3.79732 + 6.04340i 0.276948 + 0.440761i
\(189\) 0 0
\(190\) −10.9650 + 13.7496i −0.795483 + 0.997504i
\(191\) 7.21934 7.21934i 0.522373 0.522373i −0.395914 0.918288i \(-0.629572\pi\)
0.918288 + 0.395914i \(0.129572\pi\)
\(192\) 0 0
\(193\) −3.49934 1.22447i −0.251888 0.0881394i 0.201382 0.979513i \(-0.435457\pi\)
−0.453270 + 0.891373i \(0.649743\pi\)
\(194\) 0.627997 0.500811i 0.0450876 0.0359561i
\(195\) 0 0
\(196\) 6.76561 14.0489i 0.483258 1.00350i
\(197\) −14.9878 3.42087i −1.06784 0.243727i −0.347733 0.937594i \(-0.613048\pi\)
−0.720103 + 0.693867i \(0.755905\pi\)
\(198\) 0 0
\(199\) 5.80624 2.79614i 0.411593 0.198213i −0.216617 0.976257i \(-0.569502\pi\)
0.628210 + 0.778044i \(0.283788\pi\)
\(200\) −8.90536 25.4501i −0.629704 1.79959i
\(201\) 0 0
\(202\) 9.89931i 0.696513i
\(203\) −19.6561 + 10.3192i −1.37959 + 0.724262i
\(204\) 0 0
\(205\) −5.64529 + 8.98442i −0.394284 + 0.627499i
\(206\) −5.05309 + 1.76815i −0.352065 + 0.123193i
\(207\) 0 0
\(208\) −2.01564 + 0.460057i −0.139759 + 0.0318992i
\(209\) −0.787384 + 3.44976i −0.0544645 + 0.238625i
\(210\) 0 0
\(211\) 15.2933 + 1.72314i 1.05283 + 0.118626i 0.621380 0.783510i \(-0.286572\pi\)
0.431453 + 0.902135i \(0.358001\pi\)
\(212\) −13.8159 17.3246i −0.948879 1.18986i
\(213\) 0 0
\(214\) 7.38360 0.831932i 0.504733 0.0568697i
\(215\) −8.04969 8.04969i −0.548984 0.548984i
\(216\) 0 0
\(217\) 14.2817 8.97381i 0.969507 0.609182i
\(218\) 9.64730 6.06180i 0.653398 0.410557i
\(219\) 0 0
\(220\) −2.41715 2.41715i −0.162964 0.162964i
\(221\) −6.40668 + 0.721860i −0.430960 + 0.0485575i
\(222\) 0 0
\(223\) 3.76337 + 4.71912i 0.252014 + 0.316016i 0.891705 0.452616i \(-0.149509\pi\)
−0.639691 + 0.768632i \(0.720938\pi\)
\(224\) 23.5680 + 2.65548i 1.57470 + 0.177427i
\(225\) 0 0
\(226\) 1.71416 7.51020i 0.114024 0.499571i
\(227\) 10.3888 2.37116i 0.689526 0.157380i 0.136620 0.990624i \(-0.456376\pi\)
0.552906 + 0.833244i \(0.313519\pi\)
\(228\) 0 0
\(229\) 17.6455 6.17441i 1.16604 0.408017i 0.323282 0.946303i \(-0.395214\pi\)
0.842762 + 0.538286i \(0.180928\pi\)
\(230\) 1.61222 2.56583i 0.106306 0.169186i
\(231\) 0 0
\(232\) −9.29694 8.67422i −0.610374 0.569491i
\(233\) 25.2819i 1.65627i −0.560526 0.828137i \(-0.689401\pi\)
0.560526 0.828137i \(-0.310599\pi\)
\(234\) 0 0
\(235\) −6.12260 17.4974i −0.399395 1.14140i
\(236\) −7.36586 + 3.54721i −0.479477 + 0.230904i
\(237\) 0 0
\(238\) 12.9200 + 2.94890i 0.837479 + 0.191149i
\(239\) 11.9320 24.7771i 0.771819 1.60270i −0.0258962 0.999665i \(-0.508244\pi\)
0.797715 0.603034i \(-0.206042\pi\)
\(240\) 0 0
\(241\) 8.87070 7.07415i 0.571412 0.455686i −0.294662 0.955602i \(-0.595207\pi\)
0.866074 + 0.499916i \(0.166636\pi\)
\(242\) −6.70296 2.34547i −0.430882 0.150772i
\(243\) 0 0
\(244\) 9.57047 9.57047i 0.612686 0.612686i
\(245\) −25.2510 + 31.6638i −1.61323 + 2.02292i
\(246\) 0 0
\(247\) −4.63100 7.37020i −0.294664 0.468955i
\(248\) 7.55298 + 6.02330i 0.479615 + 0.382480i
\(249\) 0 0
\(250\) 1.93160 + 17.1434i 0.122165 + 1.08425i
\(251\) −5.48814 + 15.6842i −0.346408 + 0.989978i 0.630476 + 0.776209i \(0.282860\pi\)
−0.976884 + 0.213769i \(0.931426\pi\)
\(252\) 0 0
\(253\) 0.0682659 0.605877i 0.00429184 0.0380911i
\(254\) −7.69192 3.70423i −0.482634 0.232424i
\(255\) 0 0
\(256\) 1.94351 + 8.51506i 0.121469 + 0.532191i
\(257\) −8.20818 17.0445i −0.512012 1.06320i −0.983429 0.181293i \(-0.941972\pi\)
0.471417 0.881910i \(-0.343743\pi\)
\(258\) 0 0
\(259\) −0.409698 0.257430i −0.0254574 0.0159959i
\(260\) 8.40891 0.521498
\(261\) 0 0
\(262\) −0.326445 −0.0201679
\(263\) −26.7374 16.8002i −1.64870 1.03595i −0.945848 0.324609i \(-0.894767\pi\)
−0.702851 0.711337i \(-0.748090\pi\)
\(264\) 0 0
\(265\) 24.9711 + 51.8531i 1.53396 + 3.18531i
\(266\) 3.98130 + 17.4432i 0.244109 + 1.06951i
\(267\) 0 0
\(268\) −19.9174 9.59173i −1.21665 0.585908i
\(269\) −1.21694 + 10.8007i −0.0741983 + 0.658528i 0.900477 + 0.434903i \(0.143218\pi\)
−0.974675 + 0.223625i \(0.928211\pi\)
\(270\) 0 0
\(271\) −1.10464 + 3.15688i −0.0671022 + 0.191767i −0.972552 0.232687i \(-0.925248\pi\)
0.905450 + 0.424454i \(0.139534\pi\)
\(272\) −0.843537 7.48660i −0.0511470 0.453942i
\(273\) 0 0
\(274\) −1.81124 1.44441i −0.109421 0.0872603i
\(275\) 3.28517 + 5.22832i 0.198103 + 0.315280i
\(276\) 0 0
\(277\) 1.73796 2.17934i 0.104424 0.130944i −0.726873 0.686772i \(-0.759027\pi\)
0.831297 + 0.555828i \(0.187599\pi\)
\(278\) 2.53337 2.53337i 0.151941 0.151941i
\(279\) 0 0
\(280\) −37.2287 13.0269i −2.22484 0.778505i
\(281\) 1.35528 1.08080i 0.0808490 0.0644749i −0.582231 0.813023i \(-0.697820\pi\)
0.663080 + 0.748548i \(0.269249\pi\)
\(282\) 0 0
\(283\) −6.88206 + 14.2908i −0.409096 + 0.849497i 0.590017 + 0.807391i \(0.299121\pi\)
−0.999113 + 0.0421063i \(0.986593\pi\)
\(284\) 4.54660 + 1.03773i 0.269791 + 0.0615781i
\(285\) 0 0
\(286\) −0.429766 + 0.206964i −0.0254126 + 0.0122381i
\(287\) 3.56538 + 10.1893i 0.210458 + 0.601453i
\(288\) 0 0
\(289\) 6.49396i 0.381998i
\(290\) 8.11940 + 11.9800i 0.476788 + 0.703488i
\(291\) 0 0
\(292\) 11.4469 18.2177i 0.669880 1.06611i
\(293\) 10.2053 3.57099i 0.596199 0.208619i −0.0152751 0.999883i \(-0.504862\pi\)
0.611475 + 0.791264i \(0.290577\pi\)
\(294\) 0 0
\(295\) 20.7015 4.72498i 1.20529 0.275099i
\(296\) 0.0616678 0.270184i 0.00358437 0.0157041i
\(297\) 0 0
\(298\) 0.762024 + 0.0858595i 0.0441429 + 0.00497371i
\(299\) 0.935135 + 1.17262i 0.0540803 + 0.0678145i
\(300\) 0 0
\(301\) −11.5088 + 1.29673i −0.663358 + 0.0747424i
\(302\) −5.49293 5.49293i −0.316083 0.316083i
\(303\) 0 0
\(304\) 8.61253 5.41161i 0.493963 0.310377i
\(305\) −29.7650 + 18.7026i −1.70434 + 1.07091i
\(306\) 0 0
\(307\) 10.8666 + 10.8666i 0.620191 + 0.620191i 0.945580 0.325389i \(-0.105495\pi\)
−0.325389 + 0.945580i \(0.605495\pi\)
\(308\) −3.45585 + 0.389381i −0.196915 + 0.0221870i
\(309\) 0 0
\(310\) −6.85562 8.59668i −0.389373 0.488259i
\(311\) 11.2187 + 1.26404i 0.636152 + 0.0716771i 0.424150 0.905592i \(-0.360573\pi\)
0.212002 + 0.977269i \(0.432002\pi\)
\(312\) 0 0
\(313\) −1.78340 + 7.81360i −0.100804 + 0.441651i 0.899188 + 0.437563i \(0.144158\pi\)
−0.999992 + 0.00408780i \(0.998699\pi\)
\(314\) −0.806845 + 0.184157i −0.0455329 + 0.0103926i
\(315\) 0 0
\(316\) −7.54014 + 2.63841i −0.424166 + 0.148422i
\(317\) −8.75043 + 13.9262i −0.491473 + 0.782175i −0.996731 0.0807937i \(-0.974255\pi\)
0.505258 + 0.862968i \(0.331397\pi\)
\(318\) 0 0
\(319\) 2.51772 + 1.46290i 0.140965 + 0.0819065i
\(320\) 2.86444i 0.160127i
\(321\) 0 0
\(322\) −1.01822 2.90992i −0.0567434 0.162163i
\(323\) 28.5779 13.7624i 1.59012 0.765761i
\(324\) 0 0
\(325\) −14.8086 3.37997i −0.821435 0.187487i
\(326\) −3.81669 + 7.92543i −0.211387 + 0.438949i
\(327\) 0 0
\(328\) −4.83397 + 3.85496i −0.266911 + 0.212855i
\(329\) −17.8012 6.22892i −0.981413 0.343411i
\(330\) 0 0
\(331\) 3.35519 3.35519i 0.184418 0.184418i −0.608860 0.793278i \(-0.708373\pi\)
0.793278 + 0.608860i \(0.208373\pi\)
\(332\) 12.3147 15.4421i 0.675855 0.847495i
\(333\) 0 0
\(334\) 0.175004 + 0.278517i 0.00957579 + 0.0152398i
\(335\) 44.8903 + 35.7988i 2.45262 + 1.95590i
\(336\) 0 0
\(337\) −1.07577 9.54770i −0.0586008 0.520096i −0.988383 0.151986i \(-0.951433\pi\)
0.929782 0.368111i \(-0.119995\pi\)
\(338\) −2.46006 + 7.03043i −0.133809 + 0.382405i
\(339\) 0 0
\(340\) −3.43086 + 30.4498i −0.186065 + 1.65137i
\(341\) −1.99326 0.959906i −0.107941 0.0519818i
\(342\) 0 0
\(343\) 2.74713 + 12.0359i 0.148331 + 0.649880i
\(344\) −2.87813 5.97649i −0.155178 0.322231i
\(345\) 0 0
\(346\) −12.7881 8.03527i −0.687490 0.431979i
\(347\) 3.15691 0.169472 0.0847360 0.996403i \(-0.472995\pi\)
0.0847360 + 0.996403i \(0.472995\pi\)
\(348\) 0 0
\(349\) −13.5471 −0.725158 −0.362579 0.931953i \(-0.618104\pi\)
−0.362579 + 0.931953i \(0.618104\pi\)
\(350\) 26.4363 + 16.6110i 1.41308 + 0.887898i
\(351\) 0 0
\(352\) −1.34975 2.80278i −0.0719417 0.149389i
\(353\) −4.10593 17.9893i −0.218537 0.957471i −0.958560 0.284890i \(-0.908043\pi\)
0.740024 0.672581i \(-0.234814\pi\)
\(354\) 0 0
\(355\) −10.9129 5.25537i −0.579196 0.278926i
\(356\) −2.48433 + 22.0491i −0.131669 + 1.16860i
\(357\) 0 0
\(358\) 1.91951 5.48565i 0.101449 0.289926i
\(359\) 1.71399 + 15.2121i 0.0904608 + 0.802862i 0.954250 + 0.299009i \(0.0966560\pi\)
−0.863790 + 0.503853i \(0.831915\pi\)
\(360\) 0 0
\(361\) 18.6262 + 14.8539i 0.980329 + 0.781786i
\(362\) −0.681134 1.08402i −0.0357996 0.0569748i
\(363\) 0 0
\(364\) 5.33390 6.68850i 0.279573 0.350573i
\(365\) −39.5140 + 39.5140i −2.06826 + 2.06826i
\(366\) 0 0
\(367\) −10.6427 3.72403i −0.555543 0.194393i 0.0378820 0.999282i \(-0.487939\pi\)
−0.593425 + 0.804889i \(0.702225\pi\)
\(368\) −1.37028 + 1.09276i −0.0714309 + 0.0569642i
\(369\) 0 0
\(370\) −0.136859 + 0.284191i −0.00711496 + 0.0147744i
\(371\) 57.0839 + 13.0290i 2.96365 + 0.676433i
\(372\) 0 0
\(373\) −23.3176 + 11.2292i −1.20734 + 0.581425i −0.925760 0.378112i \(-0.876573\pi\)
−0.281582 + 0.959537i \(0.590859\pi\)
\(374\) −0.574099 1.64068i −0.0296860 0.0848376i
\(375\) 0 0
\(376\) 10.8018i 0.557062i
\(377\) −6.92400 + 1.83479i −0.356604 + 0.0944965i
\(378\) 0 0
\(379\) 8.05998 12.8274i 0.414013 0.658898i −0.572997 0.819558i \(-0.694219\pi\)
0.987010 + 0.160659i \(0.0513621\pi\)
\(380\) −39.0487 + 13.6637i −2.00315 + 0.700934i
\(381\) 0 0
\(382\) −6.60146 + 1.50674i −0.337760 + 0.0770916i
\(383\) −6.31524 + 27.6689i −0.322693 + 1.41381i 0.510046 + 0.860147i \(0.329628\pi\)
−0.832739 + 0.553665i \(0.813229\pi\)
\(384\) 0 0
\(385\) 8.97574 + 1.01132i 0.457446 + 0.0515418i
\(386\) 1.53304 + 1.92237i 0.0780295 + 0.0978458i
\(387\) 0 0
\(388\) 1.87765 0.211561i 0.0953233 0.0107404i
\(389\) −15.2482 15.2482i −0.773116 0.773116i 0.205534 0.978650i \(-0.434107\pi\)
−0.978650 + 0.205534i \(0.934107\pi\)
\(390\) 0 0
\(391\) −4.62776 + 2.90781i −0.234036 + 0.147054i
\(392\) −19.9818 + 12.5554i −1.00923 + 0.634142i
\(393\) 0 0
\(394\) 7.20950 + 7.20950i 0.363209 + 0.363209i
\(395\) 20.6175 2.32304i 1.03738 0.116885i
\(396\) 0 0
\(397\) 5.67395 + 7.11491i 0.284767 + 0.357087i 0.903556 0.428471i \(-0.140948\pi\)
−0.618788 + 0.785558i \(0.712376\pi\)
\(398\) −4.24718 0.478542i −0.212892 0.0239872i
\(399\) 0 0
\(400\) 3.94970 17.3048i 0.197485 0.865239i
\(401\) 21.6183 4.93424i 1.07957 0.246404i 0.354482 0.935063i \(-0.384657\pi\)
0.725086 + 0.688659i \(0.241800\pi\)
\(402\) 0 0
\(403\) 5.13683 1.79745i 0.255884 0.0895376i
\(404\) −12.3895 + 19.7177i −0.616399 + 0.980993i
\(405\) 0 0
\(406\) 14.6792 + 1.14085i 0.728517 + 0.0566196i
\(407\) 0.0634655i 0.00314587i
\(408\) 0 0
\(409\) 5.55810 + 15.8841i 0.274830 + 0.785420i 0.995724 + 0.0923748i \(0.0294458\pi\)
−0.720894 + 0.693045i \(0.756268\pi\)
\(410\) 6.34035 3.05335i 0.313127 0.150794i
\(411\) 0 0
\(412\) −12.2778 2.80233i −0.604884 0.138061i
\(413\) 9.37301 19.4633i 0.461216 0.957724i
\(414\) 0 0
\(415\) −40.1071 + 31.9844i −1.96878 + 1.57005i
\(416\) 7.22302 + 2.52744i 0.354138 + 0.123918i
\(417\) 0 0
\(418\) 1.65942 1.65942i 0.0811648 0.0811648i
\(419\) 0.592078 0.742442i 0.0289249 0.0362707i −0.767159 0.641457i \(-0.778330\pi\)
0.796084 + 0.605187i \(0.206902\pi\)
\(420\) 0 0
\(421\) −13.0848 20.8243i −0.637714 1.01492i −0.996668 0.0815612i \(-0.974009\pi\)
0.358954 0.933355i \(-0.383133\pi\)
\(422\) −7.98010 6.36391i −0.388465 0.309790i
\(423\) 0 0
\(424\) 3.75481 + 33.3248i 0.182350 + 1.61840i
\(425\) 18.2813 52.2449i 0.886773 2.53425i
\(426\) 0 0
\(427\) −4.00424 + 35.5386i −0.193779 + 1.71983i
\(428\) 15.7481 + 7.58387i 0.761211 + 0.366580i
\(429\) 0 0
\(430\) 1.68004 + 7.36074i 0.0810188 + 0.354966i
\(431\) 0.210702 + 0.437527i 0.0101491 + 0.0210749i 0.905982 0.423317i \(-0.139134\pi\)
−0.895833 + 0.444392i \(0.853420\pi\)
\(432\) 0 0
\(433\) 25.3408 + 15.9227i 1.21780 + 0.765195i 0.978599 0.205775i \(-0.0659714\pi\)
0.239202 + 0.970970i \(0.423114\pi\)
\(434\) −11.1865 −0.536969
\(435\) 0 0
\(436\) 26.8024 1.28360
\(437\) −6.24792 3.92583i −0.298879 0.187798i
\(438\) 0 0
\(439\) −9.93931 20.6392i −0.474377 0.985055i −0.991617 0.129214i \(-0.958755\pi\)
0.517239 0.855841i \(-0.326960\pi\)
\(440\) 1.15119 + 5.04369i 0.0548808 + 0.240448i
\(441\) 0 0
\(442\) 3.85245 + 1.85524i 0.183243 + 0.0882449i
\(443\) −3.22774 + 28.6470i −0.153354 + 1.36106i 0.647439 + 0.762117i \(0.275840\pi\)
−0.800794 + 0.598941i \(0.795589\pi\)
\(444\) 0 0
\(445\) 19.0338 54.3955i 0.902289 2.57859i
\(446\) −0.448212 3.97799i −0.0212234 0.188363i
\(447\) 0 0
\(448\) −2.27840 1.81696i −0.107644 0.0858434i
\(449\) −6.74252 10.7307i −0.318199 0.506411i 0.648879 0.760892i \(-0.275238\pi\)
−0.967078 + 0.254481i \(0.918095\pi\)
\(450\) 0 0
\(451\) 0.882816 1.10702i 0.0415702 0.0521274i
\(452\) 12.8137 12.8137i 0.602705 0.602705i
\(453\) 0 0
\(454\) −6.67059 2.33414i −0.313066 0.109547i
\(455\) −17.3718 + 13.8535i −0.814402 + 0.649464i
\(456\) 0 0
\(457\) −0.653651 + 1.35732i −0.0305765 + 0.0634928i −0.915698 0.401868i \(-0.868361\pi\)
0.885121 + 0.465361i \(0.154075\pi\)
\(458\) −12.0877 2.75893i −0.564819 0.128916i
\(459\) 0 0
\(460\) 6.42252 3.09292i 0.299452 0.144208i
\(461\) 8.19989 + 23.4339i 0.381907 + 1.09143i 0.961091 + 0.276230i \(0.0890853\pi\)
−0.579185 + 0.815196i \(0.696629\pi\)
\(462\) 0 0
\(463\) 24.5107i 1.13911i −0.821953 0.569555i \(-0.807116\pi\)
0.821953 0.569555i \(-0.192884\pi\)
\(464\) −2.14406 8.09112i −0.0995357 0.375621i
\(465\) 0 0
\(466\) −8.92078 + 14.1973i −0.413247 + 0.657679i
\(467\) 27.2756 9.54416i 1.26217 0.441651i 0.385481 0.922716i \(-0.374036\pi\)
0.876685 + 0.481065i \(0.159750\pi\)
\(468\) 0 0
\(469\) 56.9492 12.9983i 2.62967 0.600205i
\(470\) −2.73578 + 11.9862i −0.126192 + 0.552883i
\(471\) 0 0
\(472\) 12.2951 + 1.38533i 0.565928 + 0.0637648i
\(473\) 0.947144 + 1.18768i 0.0435497 + 0.0546096i
\(474\) 0 0
\(475\) 74.2594 8.36702i 3.40725 0.383905i
\(476\) 22.0437 + 22.0437i 1.01037 + 1.01037i
\(477\) 0 0
\(478\) −15.4432 + 9.70362i −0.706357 + 0.443833i
\(479\) 34.1452 21.4548i 1.56013 0.980296i 0.573153 0.819449i \(-0.305720\pi\)
0.986979 0.160847i \(-0.0514227\pi\)
\(480\) 0 0
\(481\) −0.110394 0.110394i −0.00503352 0.00503352i
\(482\) −7.47757 + 0.842520i −0.340594 + 0.0383757i
\(483\) 0 0
\(484\) −10.4157 13.0608i −0.473440 0.593674i
\(485\) −4.87675 0.549478i −0.221442 0.0249505i
\(486\) 0 0
\(487\) −5.15038 + 22.5653i −0.233386 + 1.02253i 0.713423 + 0.700734i \(0.247144\pi\)
−0.946809 + 0.321797i \(0.895713\pi\)
\(488\) −19.9700 + 4.55803i −0.904000 + 0.206332i
\(489\) 0 0
\(490\) 25.3526 8.87126i 1.14531 0.400763i
\(491\) −3.36323 + 5.35254i −0.151780 + 0.241557i −0.913956 0.405813i \(-0.866988\pi\)
0.762176 + 0.647370i \(0.224131\pi\)
\(492\) 0 0
\(493\) −3.81900 25.8213i −0.171999 1.16293i
\(494\) 5.77288i 0.259734i
\(495\) 0 0
\(496\) 2.10044 + 6.00270i 0.0943124 + 0.269529i
\(497\) −11.1024 + 5.34662i −0.498010 + 0.239829i
\(498\) 0 0
\(499\) −10.9765 2.50531i −0.491374 0.112153i −0.0303478 0.999539i \(-0.509661\pi\)
−0.461026 + 0.887386i \(0.652519\pi\)
\(500\) −17.6084 + 36.5643i −0.787473 + 1.63520i
\(501\) 0 0
\(502\) 8.61613 6.87114i 0.384557 0.306674i
\(503\) 24.2139 + 8.47280i 1.07964 + 0.377784i 0.810754 0.585387i \(-0.199058\pi\)
0.268890 + 0.963171i \(0.413343\pi\)
\(504\) 0 0
\(505\) 42.7676 42.7676i 1.90313 1.90313i
\(506\) −0.252120 + 0.316149i −0.0112081 + 0.0140545i
\(507\) 0 0
\(508\) −10.6850 17.0050i −0.474068 0.754475i
\(509\) −19.8602 15.8380i −0.880288 0.702006i 0.0751585 0.997172i \(-0.476054\pi\)
−0.955446 + 0.295166i \(0.904625\pi\)
\(510\) 0 0
\(511\) 6.36535 + 56.4941i 0.281587 + 2.49915i
\(512\) −5.37774 + 15.3687i −0.237665 + 0.679206i
\(513\) 0 0
\(514\) −1.40478 + 12.4678i −0.0619622 + 0.549930i
\(515\) 29.4695 + 14.1918i 1.29858 + 0.625365i
\(516\) 0 0
\(517\) 0.550451 + 2.41168i 0.0242088 + 0.106066i
\(518\) 0.139235 + 0.289125i 0.00611765 + 0.0127034i
\(519\) 0 0
\(520\) −10.7755 6.77072i −0.472539 0.296916i
\(521\) 6.74973 0.295711 0.147855 0.989009i \(-0.452763\pi\)
0.147855 + 0.989009i \(0.452763\pi\)
\(522\) 0 0
\(523\) −13.9628 −0.610553 −0.305276 0.952264i \(-0.598749\pi\)
−0.305276 + 0.952264i \(0.598749\pi\)
\(524\) −0.650223 0.408562i −0.0284051 0.0178481i
\(525\) 0 0
\(526\) 9.08669 + 18.8687i 0.396198 + 0.822715i
\(527\) 4.41297 + 19.3345i 0.192232 + 0.842224i
\(528\) 0 0
\(529\) −19.5767 9.42766i −0.851163 0.409898i
\(530\) 4.27366 37.9298i 0.185636 1.64756i
\(531\) 0 0
\(532\) −13.9010 + 39.7267i −0.602684 + 1.72237i
\(533\) 0.389980 + 3.46117i 0.0168919 + 0.149920i
\(534\) 0 0
\(535\) −35.4933 28.3049i −1.53451 1.22373i
\(536\) 17.8000 + 28.3285i 0.768842 + 1.22360i
\(537\) 0 0
\(538\) 4.49442 5.63583i 0.193768 0.242978i
\(539\) 3.82144 3.82144i 0.164601 0.164601i
\(540\) 0 0
\(541\) −26.5010 9.27311i −1.13937 0.398682i −0.306345 0.951921i \(-0.599106\pi\)
−0.833023 + 0.553238i \(0.813392\pi\)
\(542\) 1.73424 1.38301i 0.0744918 0.0594053i
\(543\) 0 0
\(544\) −12.0992 + 25.1243i −0.518750 + 1.07720i
\(545\) −67.8675 15.4903i −2.90712 0.663532i
\(546\) 0 0
\(547\) −38.6354 + 18.6058i −1.65193 + 0.795528i −0.652649 + 0.757661i \(0.726342\pi\)
−0.999283 + 0.0378678i \(0.987943\pi\)
\(548\) −1.79992 5.14388i −0.0768888 0.219736i
\(549\) 0 0
\(550\) 4.09520i 0.174620i
\(551\) 29.1718 19.7711i 1.24276 0.842279i
\(552\) 0 0
\(553\) 11.2303 17.8729i 0.477560 0.760032i
\(554\) −1.74496 + 0.610587i −0.0741361 + 0.0259414i
\(555\) 0 0
\(556\) 8.21666 1.87540i 0.348464 0.0795347i
\(557\) 6.81818 29.8724i 0.288896 1.26573i −0.597148 0.802131i \(-0.703699\pi\)
0.886043 0.463603i \(-0.153444\pi\)
\(558\) 0 0
\(559\) −3.71338 0.418397i −0.157059 0.0176963i
\(560\) −16.1887 20.3000i −0.684098 0.857831i
\(561\) 0 0
\(562\) −1.14243 + 0.128721i −0.0481906 + 0.00542977i
\(563\) −25.1567 25.1567i −1.06023 1.06023i −0.998066 0.0621640i \(-0.980200\pi\)
−0.0621640 0.998066i \(-0.519800\pi\)
\(564\) 0 0
\(565\) −39.8517 + 25.0405i −1.67657 + 1.05346i
\(566\) 8.90722 5.59678i 0.374399 0.235250i
\(567\) 0 0
\(568\) −4.99065 4.99065i −0.209403 0.209403i
\(569\) 25.2658 2.84677i 1.05920 0.119343i 0.434860 0.900498i \(-0.356798\pi\)
0.624336 + 0.781156i \(0.285369\pi\)
\(570\) 0 0
\(571\) −2.88233 3.61433i −0.120622 0.151255i 0.717854 0.696193i \(-0.245124\pi\)
−0.838476 + 0.544938i \(0.816553\pi\)
\(572\) −1.11505 0.125636i −0.0466224 0.00525308i
\(573\) 0 0
\(574\) 1.59313 6.97995i 0.0664958 0.291337i
\(575\) −12.5537 + 2.86529i −0.523524 + 0.119491i
\(576\) 0 0
\(577\) −21.5333 + 7.53483i −0.896443 + 0.313679i −0.738886 0.673831i \(-0.764648\pi\)
−0.157557 + 0.987510i \(0.550362\pi\)
\(578\) −2.29141 + 3.64675i −0.0953100 + 0.151685i
\(579\) 0 0
\(580\) 1.17895 + 34.0238i 0.0489531 + 1.41276i
\(581\) 52.1897i 2.16519i
\(582\) 0 0
\(583\) −2.53652 7.24896i −0.105052 0.300221i
\(584\) −29.3372 + 14.1280i −1.21398 + 0.584622i
\(585\) 0 0
\(586\) −6.99092 1.59563i −0.288792 0.0659150i
\(587\) −4.13272 + 8.58169i −0.170576 + 0.354204i −0.968679 0.248317i \(-0.920123\pi\)
0.798103 + 0.602521i \(0.205837\pi\)
\(588\) 0 0
\(589\) −20.9333 + 16.6938i −0.862543 + 0.687855i
\(590\) −13.2924 4.65120i −0.547238 0.191487i
\(591\) 0 0
\(592\) 0.129002 0.129002i 0.00530194 0.00530194i
\(593\) 0.358513 0.449561i 0.0147223 0.0184612i −0.774416 0.632677i \(-0.781956\pi\)
0.789138 + 0.614216i \(0.210528\pi\)
\(594\) 0 0
\(595\) −43.0777 68.5578i −1.76601 2.81060i
\(596\) 1.41036 + 1.12473i 0.0577707 + 0.0460706i
\(597\) 0 0
\(598\) −0.111373 0.988464i −0.00455439 0.0404213i
\(599\) 8.41878 24.0595i 0.343982 0.983044i −0.633814 0.773486i \(-0.718512\pi\)
0.977796 0.209559i \(-0.0672028\pi\)
\(600\) 0 0
\(601\) 2.55298 22.6583i 0.104138 0.924253i −0.827648 0.561247i \(-0.810322\pi\)
0.931787 0.363006i \(-0.118250\pi\)
\(602\) 6.92046 + 3.33272i 0.282057 + 0.135831i
\(603\) 0 0
\(604\) −4.06630 17.8156i −0.165456 0.724908i
\(605\) 18.8255 + 39.0916i 0.765365 + 1.58930i
\(606\) 0 0
\(607\) 26.6597 + 16.7514i 1.08208 + 0.679919i 0.950293 0.311358i \(-0.100784\pi\)
0.131792 + 0.991277i \(0.457927\pi\)
\(608\) −37.6486 −1.52685
\(609\) 0 0
\(610\) 23.3141 0.943960
\(611\) −5.15242 3.23748i −0.208445 0.130974i
\(612\) 0 0
\(613\) −16.3387 33.9277i −0.659914 1.37033i −0.915019 0.403412i \(-0.867824\pi\)
0.255105 0.966913i \(-0.417890\pi\)
\(614\) −2.26796 9.93658i −0.0915274 0.401008i
\(615\) 0 0
\(616\) 4.74200 + 2.28363i 0.191061 + 0.0920100i
\(617\) 0.532966 4.73020i 0.0214564 0.190431i −0.978412 0.206665i \(-0.933739\pi\)
0.999868 + 0.0162339i \(0.00516764\pi\)
\(618\) 0 0
\(619\) −8.97421 + 25.6468i −0.360704 + 1.03083i 0.610383 + 0.792106i \(0.291016\pi\)
−0.971087 + 0.238726i \(0.923270\pi\)
\(620\) −2.89606 25.7032i −0.116309 1.03227i
\(621\) 0 0
\(622\) −5.85394 4.66836i −0.234722 0.187184i
\(623\) −31.1931 49.6436i −1.24973 1.98893i
\(624\) 0 0
\(625\) 30.1194 37.7685i 1.20478 1.51074i
\(626\) 3.75854 3.75854i 0.150221 0.150221i
\(627\) 0 0
\(628\) −1.83758 0.642996i −0.0733273 0.0256583i
\(629\) 0.444791 0.354709i 0.0177350 0.0141432i
\(630\) 0 0
\(631\) 0.961079 1.99570i 0.0382600 0.0794476i −0.880963 0.473186i \(-0.843104\pi\)
0.919223 + 0.393738i \(0.128818\pi\)
\(632\) 11.7867 + 2.69023i 0.468849 + 0.107012i
\(633\) 0 0
\(634\) 9.82780 4.73282i 0.390312 0.187964i
\(635\) 17.2279 + 49.2344i 0.683667 + 1.95381i
\(636\) 0 0
\(637\) 13.2942i 0.526737i
\(638\) −0.897667 1.70989i −0.0355390 0.0676952i
\(639\) 0 0
\(640\) 23.7951 37.8697i 0.940584 1.49693i
\(641\) −4.96248 + 1.73645i −0.196006 + 0.0685855i −0.426497 0.904489i \(-0.640253\pi\)
0.230491 + 0.973074i \(0.425967\pi\)
\(642\) 0 0
\(643\) −19.5291 + 4.45740i −0.770154 + 0.175783i −0.589505 0.807765i \(-0.700677\pi\)
−0.180649 + 0.983548i \(0.557820\pi\)
\(644\) 1.61377 7.07041i 0.0635916 0.278613i
\(645\) 0 0
\(646\) −20.9043 2.35535i −0.822471 0.0926702i
\(647\) −2.13062 2.67172i −0.0837634 0.105036i 0.738184 0.674600i \(-0.235684\pi\)
−0.821947 + 0.569564i \(0.807112\pi\)
\(648\) 0 0
\(649\) −2.81568 + 0.317250i −0.110525 + 0.0124532i
\(650\) 7.12332 + 7.12332i 0.279399 + 0.279399i
\(651\) 0 0
\(652\) −17.5212 + 11.0093i −0.686185 + 0.431159i
\(653\) −2.06425 + 1.29705i −0.0807802 + 0.0507575i −0.571817 0.820382i \(-0.693761\pi\)
0.491036 + 0.871139i \(0.336618\pi\)
\(654\) 0 0
\(655\) 1.41033 + 1.41033i 0.0551061 + 0.0551061i
\(656\) −4.04459 + 0.455716i −0.157915 + 0.0177927i
\(657\) 0 0
\(658\) 7.79858 + 9.77911i 0.304020 + 0.381230i
\(659\) −38.6654 4.35655i −1.50619 0.169707i −0.680048 0.733168i \(-0.738041\pi\)
−0.826143 + 0.563461i \(0.809470\pi\)
\(660\) 0 0
\(661\) −9.84055 + 43.1143i −0.382753 + 1.67695i 0.306060 + 0.952012i \(0.400989\pi\)
−0.688813 + 0.724939i \(0.741868\pi\)
\(662\) −3.06803 + 0.700258i −0.119242 + 0.0272163i
\(663\) 0 0
\(664\) −28.2143 + 9.87261i −1.09493 + 0.383131i
\(665\) 58.1591 92.5596i 2.25531 3.58931i
\(666\) 0 0
\(667\) −4.61352 + 3.94812i −0.178636 + 0.152872i
\(668\) 0.773784i 0.0299386i
\(669\) 0 0
\(670\) −12.5769 35.9428i −0.485890 1.38859i
\(671\) 4.22636 2.03531i 0.163157 0.0785721i
\(672\) 0 0
\(673\) 15.6749 + 3.57770i 0.604224 + 0.137910i 0.513679 0.857982i \(-0.328282\pi\)
0.0905444 + 0.995892i \(0.471139\pi\)
\(674\) −2.76482 + 5.74120i −0.106497 + 0.221143i
\(675\) 0 0
\(676\) −13.6989 + 10.9245i −0.526882 + 0.420174i
\(677\) −14.2726 4.99419i −0.548539 0.191942i 0.0417586 0.999128i \(-0.486704\pi\)
−0.590298 + 0.807186i \(0.700990\pi\)
\(678\) 0 0
\(679\) −3.53046 + 3.53046i −0.135487 + 0.135487i
\(680\) 28.9141 36.2572i 1.10881 1.39040i
\(681\) 0 0
\(682\) 0.780635 + 1.24237i 0.0298921 + 0.0475729i
\(683\) −29.4103 23.4539i −1.12535 0.897439i −0.129790 0.991541i \(-0.541430\pi\)
−0.995563 + 0.0941026i \(0.970002\pi\)
\(684\) 0 0
\(685\) 1.58478 + 14.0653i 0.0605512 + 0.537407i
\(686\) 2.70423 7.72824i 0.103248 0.295066i
\(687\) 0 0
\(688\) 0.488922 4.33931i 0.0186400 0.165435i
\(689\) 17.0211 + 8.19695i 0.648454 + 0.312279i
\(690\) 0 0
\(691\) 4.75600 + 20.8374i 0.180927 + 0.792693i 0.981190 + 0.193044i \(0.0618359\pi\)
−0.800263 + 0.599649i \(0.795307\pi\)
\(692\) −15.4151 32.0097i −0.585993 1.21683i
\(693\) 0 0
\(694\) −1.77280 1.11392i −0.0672945 0.0422839i
\(695\) −21.8896 −0.830321
\(696\) 0 0
\(697\) −12.6925 −0.480761
\(698\) 7.60751 + 4.78011i 0.287948 + 0.180930i
\(699\) 0 0
\(700\) 31.8671 + 66.1727i 1.20446 + 2.50109i
\(701\) 4.53501 + 19.8692i 0.171285 + 0.750449i 0.985471 + 0.169845i \(0.0543266\pi\)
−0.814186 + 0.580605i \(0.802816\pi\)
\(702\) 0 0
\(703\) 0.692018 + 0.333258i 0.0261000 + 0.0125691i
\(704\) −0.0427970 + 0.379834i −0.00161297 + 0.0143155i
\(705\) 0 0
\(706\) −4.04182 + 11.5508i −0.152116 + 0.434722i
\(707\) −6.88948 61.1458i −0.259106 2.29963i
\(708\) 0 0
\(709\) 14.5947 + 11.6389i 0.548116 + 0.437108i 0.857988 0.513670i \(-0.171715\pi\)
−0.309871 + 0.950779i \(0.600286\pi\)
\(710\) 4.27388 + 6.80185i 0.160396 + 0.255269i
\(711\) 0 0
\(712\) 20.9371 26.2543i 0.784651 0.983921i
\(713\) 3.26226 3.26226i 0.122172 0.122172i
\(714\) 0 0
\(715\) 2.75084 + 0.962562i 0.102876 + 0.0359978i
\(716\) 10.6889 8.52411i 0.399463 0.318561i
\(717\) 0 0
\(718\) 4.40510 9.14728i 0.164397 0.341374i
\(719\) 36.8464 + 8.40995i 1.37414 + 0.313638i 0.844940 0.534860i \(-0.179636\pi\)
0.529198 + 0.848499i \(0.322493\pi\)
\(720\) 0 0
\(721\) 29.9813 14.4382i 1.11656 0.537707i
\(722\) −5.21853 14.9137i −0.194214 0.555030i
\(723\) 0 0
\(724\) 3.01165i 0.111927i
\(725\) 11.5997 60.3921i 0.430803 2.24290i
\(726\) 0 0
\(727\) 26.5998 42.3334i 0.986534 1.57006i 0.175981 0.984394i \(-0.443690\pi\)
0.810553 0.585666i \(-0.199167\pi\)
\(728\) −12.2206 + 4.27617i −0.452925 + 0.158485i
\(729\) 0 0
\(730\) 36.1321 8.24692i 1.33731 0.305232i
\(731\) 3.03014 13.2759i 0.112074 0.491027i
\(732\) 0 0
\(733\) 18.5172 + 2.08639i 0.683948 + 0.0770625i 0.447100 0.894484i \(-0.352457\pi\)
0.236849 + 0.971547i \(0.423885\pi\)
\(734\) 4.66248 + 5.84656i 0.172095 + 0.215801i
\(735\) 0 0
\(736\) 6.44640 0.726335i 0.237617 0.0267731i
\(737\) −5.41772 5.41772i −0.199564 0.199564i
\(738\) 0 0
\(739\) 5.79153 3.63906i 0.213045 0.133865i −0.421283 0.906929i \(-0.638420\pi\)
0.634328 + 0.773064i \(0.281277\pi\)
\(740\) −0.628278 + 0.394773i −0.0230960 + 0.0145122i
\(741\) 0 0
\(742\) −27.4588 27.4588i −1.00804 1.00804i
\(743\) −4.77591 + 0.538116i −0.175211 + 0.0197415i −0.199134 0.979972i \(-0.563813\pi\)
0.0239230 + 0.999714i \(0.492384\pi\)
\(744\) 0 0
\(745\) −2.92121 3.66308i −0.107025 0.134205i
\(746\) 17.0565 + 1.92181i 0.624484 + 0.0703624i
\(747\) 0 0
\(748\) 0.909885 3.98647i 0.0332687 0.145760i
\(749\) −45.0279 + 10.2773i −1.64528 + 0.375525i
\(750\) 0 0
\(751\) 41.9736 14.6872i 1.53164 0.535944i 0.572752 0.819729i \(-0.305876\pi\)
0.958888 + 0.283785i \(0.0915900\pi\)
\(752\) 3.78319 6.02092i 0.137959 0.219560i
\(753\) 0 0
\(754\) 4.53566 + 1.41280i 0.165179 + 0.0514512i
\(755\) 47.4618i 1.72731i
\(756\) 0 0
\(757\) −12.0529 34.4452i −0.438070 1.25193i −0.925493 0.378765i \(-0.876349\pi\)
0.487423 0.873166i \(-0.337937\pi\)
\(758\) −9.05234 + 4.35938i −0.328796 + 0.158340i
\(759\) 0 0
\(760\) 61.0405 + 13.9321i 2.21417 + 0.505370i
\(761\) 2.75922 5.72957i 0.100022 0.207697i −0.844953 0.534840i \(-0.820372\pi\)
0.944975 + 0.327143i \(0.106086\pi\)
\(762\) 0 0
\(763\) −55.3705 + 44.1565i −2.00455 + 1.59857i
\(764\) −15.0347 5.26088i −0.543938 0.190332i
\(765\) 0 0
\(766\) 13.3094 13.3094i 0.480888 0.480888i
\(767\) 4.34583 5.44950i 0.156919 0.196770i
\(768\) 0 0
\(769\) 3.51156 + 5.58861i 0.126630 + 0.201531i 0.904022 0.427486i \(-0.140601\pi\)
−0.777392 + 0.629016i \(0.783458\pi\)
\(770\) −4.68358 3.73503i −0.168784 0.134601i
\(771\) 0 0
\(772\) 0.647609 + 5.74769i 0.0233080 + 0.206864i
\(773\) 7.68076 21.9504i 0.276258 0.789500i −0.719244 0.694758i \(-0.755512\pi\)
0.995502 0.0947420i \(-0.0302026\pi\)
\(774\) 0 0
\(775\) −5.23131 + 46.4291i −0.187914 + 1.66778i
\(776\) −2.57645 1.24075i −0.0924892 0.0445405i
\(777\) 0 0
\(778\) 3.18244 + 13.9432i 0.114096 + 0.499887i
\(779\) −7.43506 15.4391i −0.266389 0.553161i
\(780\) 0 0
\(781\) 1.36856 + 0.859925i 0.0489710 + 0.0307705i
\(782\) 3.62480 0.129623
\(783\) 0 0
\(784\) −15.5351 −0.554826
\(785\) 4.28139 + 2.69018i 0.152809 + 0.0960165i
\(786\) 0 0
\(787\) 13.9613 + 28.9909i 0.497666 + 1.03341i 0.986911 + 0.161268i \(0.0515583\pi\)
−0.489244 + 0.872147i \(0.662727\pi\)
\(788\) 5.33704 + 23.3831i 0.190124 + 0.832989i
\(789\) 0 0
\(790\) −12.3977 5.97042i −0.441090 0.212418i
\(791\) −5.36119 + 47.5819i −0.190622 + 1.69182i
\(792\) 0 0
\(793\) −3.81117 + 10.8917i −0.135339 + 0.386776i
\(794\) −0.675758 5.99752i −0.0239818 0.212844i
\(795\) 0 0
\(796\) −7.86073 6.26873i −0.278616 0.222189i
\(797\) 2.71716 + 4.32434i 0.0962468 + 0.153176i 0.891377 0.453263i \(-0.149740\pi\)
−0.795130 + 0.606439i \(0.792597\pi\)
\(798\) 0 0
\(799\) 13.8255 17.3367i 0.489113 0.613328i
\(800\) −46.4557 + 46.4557i −1.64246 + 1.64246i
\(801\) 0 0
\(802\) −13.8811 4.85720i −0.490158 0.171514i
\(803\) 5.83004 4.64930i 0.205738 0.164070i
\(804\) 0 0
\(805\) −8.17261 + 16.9706i −0.288047 + 0.598135i
\(806\) −3.51888 0.803161i −0.123947 0.0282901i
\(807\) 0 0
\(808\) 31.7528 15.2913i 1.11706 0.537948i
\(809\) −2.02647 5.79133i −0.0712470 0.203612i 0.902753 0.430158i \(-0.141542\pi\)
−0.974000 + 0.226546i \(0.927257\pi\)
\(810\) 0 0
\(811\) 15.2737i 0.536332i 0.963373 + 0.268166i \(0.0864176\pi\)
−0.963373 + 0.268166i \(0.913582\pi\)
\(812\) 27.8106 + 20.6441i 0.975962 + 0.724467i
\(813\) 0 0
\(814\) 0.0223939 0.0356398i 0.000784907 0.00124917i
\(815\) 50.7291 17.7509i 1.77696 0.621786i
\(816\) 0 0
\(817\) 17.9238 4.09098i 0.627073 0.143125i
\(818\) 2.48354 10.8811i 0.0868350 0.380449i
\(819\) 0 0
\(820\) 16.4503 + 1.85350i 0.574469 + 0.0647271i
\(821\) 32.3595 + 40.5775i 1.12935 + 1.41616i 0.896158 + 0.443735i \(0.146347\pi\)
0.233196 + 0.972430i \(0.425082\pi\)
\(822\) 0 0
\(823\) 47.3526 5.33535i 1.65061 0.185979i 0.762942 0.646468i \(-0.223754\pi\)
0.887666 + 0.460489i \(0.152326\pi\)
\(824\) 13.4769 + 13.4769i 0.469491 + 0.469491i
\(825\) 0 0
\(826\) −12.1312 + 7.62252i −0.422097 + 0.265221i
\(827\) 15.3143 9.62258i 0.532529 0.334610i −0.238777 0.971074i \(-0.576747\pi\)
0.771306 + 0.636464i \(0.219604\pi\)
\(828\) 0 0
\(829\) −32.0906 32.0906i −1.11455 1.11455i −0.992527 0.122025i \(-0.961061\pi\)
−0.122025 0.992527i \(-0.538939\pi\)
\(830\) 33.8083 3.80929i 1.17350 0.132222i
\(831\) 0 0
\(832\) −0.586251 0.735136i −0.0203246 0.0254863i
\(833\) −48.1402 5.42410i −1.66796 0.187934i
\(834\) 0 0
\(835\) 0.447204 1.95933i 0.0154761 0.0678054i
\(836\) 5.38212 1.22843i 0.186144 0.0424862i
\(837\) 0 0
\(838\) −0.594460 + 0.208011i −0.0205353 + 0.00718561i
\(839\) 1.76116 2.80288i 0.0608021 0.0967661i −0.814940 0.579546i \(-0.803230\pi\)
0.875742 + 0.482780i \(0.160373\pi\)
\(840\) 0 0
\(841\) −8.39463 27.7584i −0.289470 0.957187i
\(842\) 16.3111i 0.562119i
\(843\) 0 0
\(844\) −7.93023 22.6633i −0.272970 0.780103i
\(845\) 41.0014 19.7452i 1.41049 0.679257i
\(846\) 0 0
\(847\) 43.0350 + 9.82246i 1.47870 + 0.337504i
\(848\) −9.57864 + 19.8903i −0.328932 + 0.683034i
\(849\) 0 0
\(850\) −28.7008 + 22.8881i −0.984429 + 0.785056i
\(851\) −0.124921 0.0437116i −0.00428222 0.00149841i
\(852\) 0 0
\(853\) 3.88408 3.88408i 0.132988 0.132988i −0.637479 0.770468i \(-0.720023\pi\)
0.770468 + 0.637479i \(0.220023\pi\)
\(854\) 14.7885 18.5442i 0.506052 0.634569i
\(855\) 0 0
\(856\) −14.0739 22.3984i −0.481034 0.765562i
\(857\) 3.88843 + 3.10092i 0.132826 + 0.105925i 0.687649 0.726043i \(-0.258643\pi\)
−0.554823 + 0.831968i \(0.687214\pi\)
\(858\) 0 0
\(859\) 0.628263 + 5.57599i 0.0214361 + 0.190250i 0.999867 0.0163252i \(-0.00519669\pi\)
−0.978431 + 0.206575i \(0.933768\pi\)
\(860\) −5.86597 + 16.7640i −0.200028 + 0.571647i
\(861\) 0 0
\(862\) 0.0360604 0.320045i 0.00122822 0.0109008i
\(863\) −9.32653 4.49142i −0.317479 0.152890i 0.268357 0.963320i \(-0.413519\pi\)
−0.585836 + 0.810430i \(0.699234\pi\)
\(864\) 0 0
\(865\) 20.5333 + 89.9622i 0.698153 + 3.05881i
\(866\) −8.61205 17.8831i −0.292650 0.607693i
\(867\) 0 0
\(868\) −22.2816 14.0004i −0.756286 0.475206i
\(869\) −2.76866 −0.0939202
\(870\) 0 0
\(871\) 18.8475 0.638622
\(872\) −34.3458 21.5809i −1.16310 0.730821i
\(873\) 0 0
\(874\) 2.12335 + 4.40919i 0.0718234 + 0.149143i
\(875\) −23.8622 104.547i −0.806689 3.53433i
\(876\) 0 0
\(877\) 4.27851 + 2.06042i 0.144475 + 0.0695755i 0.504724 0.863281i \(-0.331594\pi\)
−0.360249 + 0.932856i \(0.617308\pi\)
\(878\) −1.70105 + 15.0973i −0.0574078 + 0.509508i
\(879\) 0 0
\(880\) −1.12481 + 3.21453i −0.0379174 + 0.108362i
\(881\) 3.38332 + 30.0278i 0.113987 + 1.01166i 0.912329 + 0.409458i \(0.134282\pi\)
−0.798342 + 0.602204i \(0.794289\pi\)
\(882\) 0 0
\(883\) −26.5058 21.1376i −0.891990 0.711338i 0.0660976 0.997813i \(-0.478945\pi\)
−0.958088 + 0.286475i \(0.907517\pi\)
\(884\) 5.35150 + 8.51686i 0.179990 + 0.286453i
\(885\) 0 0
\(886\) 11.9207 14.9481i 0.400484 0.502191i
\(887\) 14.0492 14.0492i 0.471726 0.471726i −0.430747 0.902473i \(-0.641750\pi\)
0.902473 + 0.430747i \(0.141750\pi\)
\(888\) 0 0
\(889\) 50.0893 + 17.5270i 1.67994 + 0.587837i
\(890\) −29.8822 + 23.8303i −1.00165 + 0.798793i
\(891\) 0 0
\(892\) 4.08588 8.48442i 0.136805 0.284080i
\(893\) 29.1871 + 6.66175i 0.976707 + 0.222927i
\(894\) 0 0
\(895\) −31.9922 + 15.4067i −1.06938 + 0.514988i
\(896\) −15.0282 42.9482i −0.502057 1.43480i
\(897\) 0 0
\(898\) 8.40503i 0.280479i
\(899\) 7.99300 + 20.5325i 0.266581 + 0.684796i
\(900\) 0 0
\(901\) −36.6269 + 58.2914i −1.22022 + 1.94197i
\(902\) −0.886368 + 0.310154i −0.0295128 + 0.0103270i
\(903\) 0 0
\(904\) −26.7374 + 6.10264i −0.889273 + 0.202971i
\(905\) −1.74057 + 7.62593i −0.0578584 + 0.253494i
\(906\) 0 0
\(907\) −35.8138 4.03525i −1.18918 0.133988i −0.504879 0.863190i \(-0.668463\pi\)
−0.684299 + 0.729202i \(0.739892\pi\)
\(908\) −10.3654 12.9978i −0.343987 0.431346i
\(909\) 0 0
\(910\) 14.6436 1.64993i 0.485429 0.0546948i
\(911\) 24.0144 + 24.0144i 0.795632 + 0.795632i 0.982403 0.186772i \(-0.0598025\pi\)
−0.186772 + 0.982403i \(0.559802\pi\)
\(912\) 0 0
\(913\) 5.79619 3.64199i 0.191826 0.120532i
\(914\) 0.845998 0.531576i 0.0279831 0.0175830i
\(915\) 0 0
\(916\) −20.6236 20.6236i −0.681423 0.681423i
\(917\) 2.01638 0.227191i 0.0665867 0.00750252i
\(918\) 0 0
\(919\) 10.9781 + 13.7661i 0.362135 + 0.454103i 0.929204 0.369567i \(-0.120494\pi\)
−0.567069 + 0.823670i \(0.691923\pi\)
\(920\) −10.7205 1.20791i −0.353444 0.0398235i
\(921\) 0 0
\(922\) 3.66398 16.0529i 0.120667 0.528675i
\(923\) −3.87629 + 0.884739i −0.127590 + 0.0291215i
\(924\) 0 0
\(925\) 1.26512 0.442684i 0.0415968 0.0145554i
\(926\) −8.64866 + 13.7643i −0.284213 + 0.452322i
\(927\) 0 0
\(928\) −9.21378 + 29.5799i −0.302457 + 0.971008i
\(929\) 37.1827i 1.21993i −0.792430 0.609963i \(-0.791184\pi\)
0.792430 0.609963i \(-0.208816\pi\)
\(930\) 0 0
\(931\) −21.6020 61.7348i −0.707975 2.02328i
\(932\) −35.5373 + 17.1139i −1.16406 + 0.560584i
\(933\) 0 0
\(934\) −18.6846 4.26464i −0.611379 0.139543i
\(935\) −4.60792 + 9.56844i −0.150695 + 0.312921i
\(936\) 0 0
\(937\) −30.9134 + 24.6526i −1.00990 + 0.805366i −0.980959 0.194215i \(-0.937784\pi\)
−0.0289385 + 0.999581i \(0.509213\pi\)
\(938\) −36.5669 12.7953i −1.19395 0.417782i
\(939\) 0 0
\(940\) −20.4505 + 20.4505i −0.667023 + 0.667023i
\(941\) 15.3585 19.2589i 0.500672 0.627822i −0.465709 0.884938i \(-0.654201\pi\)
0.966381 + 0.257116i \(0.0827721\pi\)
\(942\) 0 0
\(943\) 1.57093 + 2.50012i 0.0511565 + 0.0814151i
\(944\) 6.36808 + 5.07837i 0.207263 + 0.165287i
\(945\) 0 0
\(946\) −0.112803 1.00116i −0.00366755 0.0325504i
\(947\) −10.2116 + 29.1832i −0.331834 + 0.948327i 0.650223 + 0.759743i \(0.274675\pi\)
−0.982057 + 0.188584i \(0.939610\pi\)
\(948\) 0 0
\(949\) −2.05381 + 18.2281i −0.0666695 + 0.591708i
\(950\) −44.6535 21.5040i −1.44875 0.697681i
\(951\) 0 0
\(952\) −10.4985 45.9970i −0.340259 1.49077i
\(953\) −18.3588 38.1225i −0.594701 1.23491i −0.953471 0.301484i \(-0.902518\pi\)
0.358770 0.933426i \(-0.383196\pi\)
\(954\) 0 0
\(955\) 35.0296 + 22.0105i 1.13353 + 0.712244i
\(956\) −42.9048 −1.38764
\(957\) 0 0
\(958\) −26.7450 −0.864091
\(959\) 12.1929 + 7.66129i 0.393728 + 0.247396i
\(960\) 0 0
\(961\) 6.18703 + 12.8475i 0.199581 + 0.414435i
\(962\) 0.0230401 + 0.100945i 0.000742844 + 0.00325461i
\(963\) 0 0
\(964\) −15.9485 7.68038i −0.513666 0.247369i
\(965\) 1.68201 14.9282i 0.0541458 0.480557i
\(966\) 0 0
\(967\) −4.59839 + 13.1414i −0.147874 + 0.422600i −0.993865 0.110597i \(-0.964724\pi\)
0.845991 + 0.533197i \(0.179010\pi\)
\(968\) 2.83071 + 25.1233i 0.0909826 + 0.807493i
\(969\) 0 0
\(970\) 2.54471 + 2.02934i 0.0817056 + 0.0651581i
\(971\) 20.4384 + 32.5275i 0.655899 + 1.04386i 0.994682 + 0.102993i \(0.0328419\pi\)
−0.338783 + 0.940865i \(0.610015\pi\)
\(972\) 0 0
\(973\) −13.8849 + 17.4112i −0.445131 + 0.558176i
\(974\) 10.8545 10.8545i 0.347799 0.347799i
\(975\) 0 0
\(976\) −12.7276 4.45359i −0.407402 0.142556i
\(977\) 10.3154 8.22623i 0.330018 0.263181i −0.444436 0.895810i \(-0.646596\pi\)
0.774454 + 0.632630i \(0.218025\pi\)
\(978\) 0 0
\(979\) −3.33665 + 6.92863i −0.106640 + 0.221440i
\(980\) 61.6008 + 14.0600i 1.96777 + 0.449130i
\(981\) 0 0
\(982\) 3.77731 1.81906i 0.120539 0.0580485i
\(983\) 1.21002 + 3.45804i 0.0385937 + 0.110294i 0.961568 0.274568i \(-0.0885347\pi\)
−0.922974 + 0.384862i \(0.874249\pi\)
\(984\) 0 0
\(985\) 62.2939i 1.98485i
\(986\) −6.96651 + 15.8478i −0.221859 + 0.504696i
\(987\) 0 0
\(988\) −7.22504 + 11.4986i −0.229859 + 0.365819i
\(989\) −2.99008 + 1.04627i −0.0950790 + 0.0332696i
\(990\) 0 0
\(991\) −5.42316 + 1.23780i −0.172272 + 0.0393201i −0.307787 0.951455i \(-0.599588\pi\)
0.135515 + 0.990775i \(0.456731\pi\)
\(992\) 5.23792 22.9488i 0.166304 0.728627i
\(993\) 0 0
\(994\) 8.12123 + 0.915043i 0.257590 + 0.0290234i
\(995\) 16.2815 + 20.4164i 0.516158 + 0.647242i
\(996\) 0 0
\(997\) 14.8919 1.67792i 0.471633 0.0531402i 0.127050 0.991896i \(-0.459449\pi\)
0.344582 + 0.938756i \(0.388021\pi\)
\(998\) 5.27995 + 5.27995i 0.167134 + 0.167134i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.v.b.26.9 240
3.2 odd 2 inner 783.2.v.b.26.12 yes 240
29.19 odd 28 inner 783.2.v.b.512.12 yes 240
87.77 even 28 inner 783.2.v.b.512.9 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
783.2.v.b.26.9 240 1.1 even 1 trivial
783.2.v.b.26.12 yes 240 3.2 odd 2 inner
783.2.v.b.512.9 yes 240 87.77 even 28 inner
783.2.v.b.512.12 yes 240 29.19 odd 28 inner