Properties

Label 783.2.v.b.26.12
Level $783$
Weight $2$
Character 783.26
Analytic conductor $6.252$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(26,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(28)) chi = DirichletCharacter(H, H._module([14, 19])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.v (of order \(28\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [240,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(20\) over \(\Q(\zeta_{28})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 26.12
Character \(\chi\) \(=\) 783.26
Dual form 783.2.v.b.512.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.561561 + 0.352852i) q^{2} +(-0.676921 - 1.40564i) q^{4} +(-0.901677 - 3.95051i) q^{5} +(3.71421 + 1.78867i) q^{7} +(0.264364 - 2.34630i) q^{8} +(0.887598 - 2.53661i) q^{10} +(0.0605415 + 0.537321i) q^{11} +(1.03994 + 0.829323i) q^{13} +(1.45462 + 2.31501i) q^{14} +(-0.969115 + 1.21523i) q^{16} +(3.42739 - 3.42739i) q^{17} +(-6.17677 - 2.16134i) q^{19} +(-4.94263 + 3.94162i) q^{20} +(-0.155597 + 0.323101i) q^{22} +(-1.09932 - 0.250912i) q^{23} +(-10.2886 + 4.95474i) q^{25} +(0.291360 + 0.832660i) q^{26} -6.43163i q^{28} +(3.20978 - 4.32404i) q^{29} +(2.17681 - 3.46437i) q^{31} +(-5.43031 + 1.90015i) q^{32} +(3.13405 - 0.715326i) q^{34} +(3.71713 - 16.2858i) q^{35} +(-0.116634 - 0.0131415i) q^{37} +(-2.70600 - 3.39321i) q^{38} +(-9.50744 + 1.07123i) q^{40} +(-1.85162 - 1.85162i) q^{41} +(-2.37879 + 1.49469i) q^{43} +(0.714298 - 0.448823i) q^{44} +(-0.528799 - 0.528799i) q^{46} +(4.54606 - 0.512218i) q^{47} +(6.23158 + 7.81416i) q^{49} +(-7.52598 - 0.847975i) q^{50} +(0.461775 - 2.02317i) q^{52} +(-13.8470 + 3.16050i) q^{53} +(2.06810 - 0.723659i) q^{55} +(5.17866 - 8.24178i) q^{56} +(3.32823 - 1.29563i) q^{58} +5.24021i q^{59} +(2.86526 + 8.18845i) q^{61} +(2.44482 - 1.17736i) q^{62} +(-0.689180 - 0.157301i) q^{64} +(2.33856 - 4.85606i) q^{65} +(11.0783 - 8.83463i) q^{67} +(-7.13775 - 2.49761i) q^{68} +(7.83388 - 7.83388i) q^{70} +(1.86371 - 2.33702i) q^{71} +(7.33708 + 11.6769i) q^{73} +(-0.0608602 - 0.0485344i) q^{74} +(1.14311 + 10.1454i) q^{76} +(-0.736225 + 2.10401i) q^{77} +(0.573293 - 5.08811i) q^{79} +(5.67461 + 2.73275i) q^{80} +(-0.386450 - 1.69315i) q^{82} +(-5.49290 - 11.4061i) q^{83} +(-16.6303 - 10.4495i) q^{85} -1.86324 q^{86} +1.27672 q^{88} +(12.0422 + 7.56663i) q^{89} +(2.37916 + 4.94039i) q^{91} +(0.391459 + 1.71509i) q^{92} +(2.73363 + 1.31645i) q^{94} +(-2.96895 + 26.3502i) q^{95} +(-0.400010 + 1.14316i) q^{97} +(0.742172 + 6.58696i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q + 72 q^{16} + 8 q^{19} - 40 q^{25} + 8 q^{31} - 32 q^{37} - 16 q^{40} - 16 q^{43} - 104 q^{46} - 8 q^{49} + 8 q^{52} - 128 q^{55} + 272 q^{58} - 24 q^{61} + 112 q^{67} - 56 q^{70} - 64 q^{73} - 160 q^{76}+ \cdots + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{19}{28}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.561561 + 0.352852i 0.397084 + 0.249504i 0.715741 0.698366i \(-0.246089\pi\)
−0.318657 + 0.947870i \(0.603232\pi\)
\(3\) 0 0
\(4\) −0.676921 1.40564i −0.338461 0.702821i
\(5\) −0.901677 3.95051i −0.403242 1.76672i −0.614125 0.789209i \(-0.710491\pi\)
0.210883 0.977511i \(-0.432366\pi\)
\(6\) 0 0
\(7\) 3.71421 + 1.78867i 1.40384 + 0.676053i 0.973936 0.226822i \(-0.0728335\pi\)
0.429903 + 0.902875i \(0.358548\pi\)
\(8\) 0.264364 2.34630i 0.0934669 0.829542i
\(9\) 0 0
\(10\) 0.887598 2.53661i 0.280683 0.802146i
\(11\) 0.0605415 + 0.537321i 0.0182539 + 0.162008i 0.999532 0.0305877i \(-0.00973789\pi\)
−0.981278 + 0.192596i \(0.938309\pi\)
\(12\) 0 0
\(13\) 1.03994 + 0.829323i 0.288427 + 0.230013i 0.757005 0.653409i \(-0.226662\pi\)
−0.468578 + 0.883422i \(0.655233\pi\)
\(14\) 1.45462 + 2.31501i 0.388763 + 0.618713i
\(15\) 0 0
\(16\) −0.969115 + 1.21523i −0.242279 + 0.303808i
\(17\) 3.42739 3.42739i 0.831263 0.831263i −0.156426 0.987690i \(-0.549997\pi\)
0.987690 + 0.156426i \(0.0499974\pi\)
\(18\) 0 0
\(19\) −6.17677 2.16134i −1.41705 0.495846i −0.490307 0.871550i \(-0.663116\pi\)
−0.926740 + 0.375703i \(0.877401\pi\)
\(20\) −4.94263 + 3.94162i −1.10521 + 0.881372i
\(21\) 0 0
\(22\) −0.155597 + 0.323101i −0.0331734 + 0.0688853i
\(23\) −1.09932 0.250912i −0.229224 0.0523188i 0.106366 0.994327i \(-0.466078\pi\)
−0.335590 + 0.942008i \(0.608936\pi\)
\(24\) 0 0
\(25\) −10.2886 + 4.95474i −2.05773 + 0.990948i
\(26\) 0.291360 + 0.832660i 0.0571405 + 0.163298i
\(27\) 0 0
\(28\) 6.43163i 1.21546i
\(29\) 3.20978 4.32404i 0.596041 0.802954i
\(30\) 0 0
\(31\) 2.17681 3.46437i 0.390966 0.622219i −0.592015 0.805927i \(-0.701667\pi\)
0.982981 + 0.183708i \(0.0588101\pi\)
\(32\) −5.43031 + 1.90015i −0.959951 + 0.335902i
\(33\) 0 0
\(34\) 3.13405 0.715326i 0.537485 0.122677i
\(35\) 3.71713 16.2858i 0.628309 2.75280i
\(36\) 0 0
\(37\) −0.116634 0.0131415i −0.0191745 0.00216045i 0.102372 0.994746i \(-0.467357\pi\)
−0.121547 + 0.992586i \(0.538785\pi\)
\(38\) −2.70600 3.39321i −0.438971 0.550452i
\(39\) 0 0
\(40\) −9.50744 + 1.07123i −1.50326 + 0.169376i
\(41\) −1.85162 1.85162i −0.289175 0.289175i 0.547579 0.836754i \(-0.315550\pi\)
−0.836754 + 0.547579i \(0.815550\pi\)
\(42\) 0 0
\(43\) −2.37879 + 1.49469i −0.362762 + 0.227938i −0.701063 0.713100i \(-0.747291\pi\)
0.338301 + 0.941038i \(0.390148\pi\)
\(44\) 0.714298 0.448823i 0.107685 0.0676627i
\(45\) 0 0
\(46\) −0.528799 0.528799i −0.0779672 0.0779672i
\(47\) 4.54606 0.512218i 0.663111 0.0747147i 0.226007 0.974126i \(-0.427433\pi\)
0.437104 + 0.899411i \(0.356004\pi\)
\(48\) 0 0
\(49\) 6.23158 + 7.81416i 0.890226 + 1.11631i
\(50\) −7.52598 0.847975i −1.06433 0.119922i
\(51\) 0 0
\(52\) 0.461775 2.02317i 0.0640366 0.280563i
\(53\) −13.8470 + 3.16050i −1.90204 + 0.434128i −0.902041 + 0.431650i \(0.857932\pi\)
−0.999997 + 0.00247771i \(0.999211\pi\)
\(54\) 0 0
\(55\) 2.06810 0.723659i 0.278862 0.0975782i
\(56\) 5.17866 8.24178i 0.692027 1.10135i
\(57\) 0 0
\(58\) 3.32823 1.29563i 0.437019 0.170125i
\(59\) 5.24021i 0.682218i 0.940024 + 0.341109i \(0.110802\pi\)
−0.940024 + 0.341109i \(0.889198\pi\)
\(60\) 0 0
\(61\) 2.86526 + 8.18845i 0.366859 + 1.04842i 0.968361 + 0.249552i \(0.0802834\pi\)
−0.601502 + 0.798871i \(0.705431\pi\)
\(62\) 2.44482 1.17736i 0.310493 0.149525i
\(63\) 0 0
\(64\) −0.689180 0.157301i −0.0861475 0.0196626i
\(65\) 2.33856 4.85606i 0.290062 0.602321i
\(66\) 0 0
\(67\) 11.0783 8.83463i 1.35343 1.07932i 0.364454 0.931222i \(-0.381256\pi\)
0.988972 0.148100i \(-0.0473156\pi\)
\(68\) −7.13775 2.49761i −0.865579 0.302879i
\(69\) 0 0
\(70\) 7.83388 7.83388i 0.936327 0.936327i
\(71\) 1.86371 2.33702i 0.221182 0.277353i −0.658843 0.752280i \(-0.728954\pi\)
0.880025 + 0.474927i \(0.157525\pi\)
\(72\) 0 0
\(73\) 7.33708 + 11.6769i 0.858741 + 1.36668i 0.929360 + 0.369175i \(0.120360\pi\)
−0.0706193 + 0.997503i \(0.522498\pi\)
\(74\) −0.0608602 0.0485344i −0.00707485 0.00564200i
\(75\) 0 0
\(76\) 1.14311 + 10.1454i 0.131124 + 1.16375i
\(77\) −0.736225 + 2.10401i −0.0839006 + 0.239774i
\(78\) 0 0
\(79\) 0.573293 5.08811i 0.0645005 0.572457i −0.919347 0.393448i \(-0.871282\pi\)
0.983847 0.179009i \(-0.0572893\pi\)
\(80\) 5.67461 + 2.73275i 0.634441 + 0.305530i
\(81\) 0 0
\(82\) −0.386450 1.69315i −0.0426763 0.186977i
\(83\) −5.49290 11.4061i −0.602924 1.25198i −0.949442 0.313941i \(-0.898351\pi\)
0.346519 0.938043i \(-0.387364\pi\)
\(84\) 0 0
\(85\) −16.6303 10.4495i −1.80381 1.13341i
\(86\) −1.86324 −0.200918
\(87\) 0 0
\(88\) 1.27672 0.136099
\(89\) 12.0422 + 7.56663i 1.27647 + 0.802061i 0.987854 0.155383i \(-0.0496613\pi\)
0.288618 + 0.957444i \(0.406804\pi\)
\(90\) 0 0
\(91\) 2.37916 + 4.94039i 0.249404 + 0.517893i
\(92\) 0.391459 + 1.71509i 0.0408124 + 0.178811i
\(93\) 0 0
\(94\) 2.73363 + 1.31645i 0.281952 + 0.135781i
\(95\) −2.96895 + 26.3502i −0.304608 + 2.70347i
\(96\) 0 0
\(97\) −0.400010 + 1.14316i −0.0406148 + 0.116071i −0.962405 0.271619i \(-0.912441\pi\)
0.921790 + 0.387689i \(0.126727\pi\)
\(98\) 0.742172 + 6.58696i 0.0749707 + 0.665383i
\(99\) 0 0
\(100\) 13.9292 + 11.1082i 1.39292 + 1.11082i
\(101\) 7.94123 + 12.6384i 0.790182 + 1.25757i 0.962165 + 0.272467i \(0.0878395\pi\)
−0.171984 + 0.985100i \(0.555018\pi\)
\(102\) 0 0
\(103\) 5.03284 6.31098i 0.495900 0.621839i −0.469399 0.882986i \(-0.655529\pi\)
0.965299 + 0.261147i \(0.0841008\pi\)
\(104\) 2.22076 2.22076i 0.217764 0.217764i
\(105\) 0 0
\(106\) −8.89115 3.11115i −0.863585 0.302181i
\(107\) 8.75922 6.98525i 0.846786 0.675289i −0.100759 0.994911i \(-0.532127\pi\)
0.947545 + 0.319621i \(0.103556\pi\)
\(108\) 0 0
\(109\) −7.45388 + 15.4781i −0.713952 + 1.48254i 0.155143 + 0.987892i \(0.450416\pi\)
−0.869095 + 0.494645i \(0.835298\pi\)
\(110\) 1.41671 + 0.323355i 0.135078 + 0.0308306i
\(111\) 0 0
\(112\) −5.77314 + 2.78020i −0.545511 + 0.262704i
\(113\) −3.83624 10.9633i −0.360883 1.03134i −0.971010 0.239040i \(-0.923167\pi\)
0.610127 0.792304i \(-0.291118\pi\)
\(114\) 0 0
\(115\) 4.56910i 0.426071i
\(116\) −8.25082 1.58477i −0.766069 0.147142i
\(117\) 0 0
\(118\) −1.84902 + 2.94270i −0.170216 + 0.270898i
\(119\) 18.8605 6.59957i 1.72894 0.604982i
\(120\) 0 0
\(121\) 10.4392 2.38267i 0.949014 0.216606i
\(122\) −1.28029 + 5.60933i −0.115912 + 0.507845i
\(123\) 0 0
\(124\) −6.34319 0.714706i −0.569635 0.0641825i
\(125\) 16.2185 + 20.3374i 1.45063 + 1.81903i
\(126\) 0 0
\(127\) 12.7918 1.44129i 1.13509 0.127894i 0.475636 0.879642i \(-0.342218\pi\)
0.659450 + 0.751748i \(0.270789\pi\)
\(128\) 7.80467 + 7.80467i 0.689842 + 0.689842i
\(129\) 0 0
\(130\) 3.02672 1.90181i 0.265461 0.166800i
\(131\) −0.416771 + 0.261874i −0.0364134 + 0.0228801i −0.550116 0.835088i \(-0.685416\pi\)
0.513702 + 0.857968i \(0.328274\pi\)
\(132\) 0 0
\(133\) −19.0759 19.0759i −1.65409 1.65409i
\(134\) 9.33844 1.05219i 0.806718 0.0908953i
\(135\) 0 0
\(136\) −7.13559 8.94775i −0.611872 0.767263i
\(137\) −3.47111 0.391100i −0.296557 0.0334139i −0.0375674 0.999294i \(-0.511961\pi\)
−0.258989 + 0.965880i \(0.583389\pi\)
\(138\) 0 0
\(139\) −1.20207 + 5.26660i −0.101958 + 0.446707i 0.898019 + 0.439956i \(0.145006\pi\)
−0.999977 + 0.00675108i \(0.997851\pi\)
\(140\) −25.4082 + 5.79926i −2.14739 + 0.490127i
\(141\) 0 0
\(142\) 1.87121 0.654765i 0.157029 0.0549467i
\(143\) −0.382653 + 0.608989i −0.0319991 + 0.0509262i
\(144\) 0 0
\(145\) −19.9763 8.78137i −1.65894 0.729253i
\(146\) 9.14620i 0.756945i
\(147\) 0 0
\(148\) 0.0604799 + 0.172842i 0.00497141 + 0.0142075i
\(149\) 1.04175 0.501679i 0.0853433 0.0410992i −0.390725 0.920507i \(-0.627776\pi\)
0.476068 + 0.879408i \(0.342061\pi\)
\(150\) 0 0
\(151\) 11.4192 + 2.60636i 0.929283 + 0.212103i 0.660265 0.751032i \(-0.270444\pi\)
0.269018 + 0.963135i \(0.413301\pi\)
\(152\) −6.70408 + 13.9212i −0.543772 + 1.12915i
\(153\) 0 0
\(154\) −1.15584 + 0.921751i −0.0931402 + 0.0742768i
\(155\) −15.6488 5.47575i −1.25694 0.439823i
\(156\) 0 0
\(157\) 0.882364 0.882364i 0.0704203 0.0704203i −0.671019 0.741440i \(-0.734143\pi\)
0.741440 + 0.671019i \(0.234143\pi\)
\(158\) 2.11729 2.65500i 0.168443 0.211220i
\(159\) 0 0
\(160\) 12.4029 + 19.7391i 0.980537 + 1.56052i
\(161\) −3.63430 2.89825i −0.286423 0.228414i
\(162\) 0 0
\(163\) −1.48504 13.1801i −0.116317 1.03235i −0.907293 0.420498i \(-0.861855\pi\)
0.790976 0.611847i \(-0.209573\pi\)
\(164\) −1.34932 + 3.85613i −0.105364 + 0.301113i
\(165\) 0 0
\(166\) 0.940077 8.34341i 0.0729641 0.647574i
\(167\) 0.446853 + 0.215193i 0.0345785 + 0.0166521i 0.451093 0.892477i \(-0.351034\pi\)
−0.416515 + 0.909129i \(0.636749\pi\)
\(168\) 0 0
\(169\) −2.49908 10.9492i −0.192237 0.842244i
\(170\) −5.65180 11.7361i −0.433473 0.900116i
\(171\) 0 0
\(172\) 3.71125 + 2.33193i 0.282980 + 0.177808i
\(173\) −22.7723 −1.73135 −0.865674 0.500608i \(-0.833110\pi\)
−0.865674 + 0.500608i \(0.833110\pi\)
\(174\) 0 0
\(175\) −47.0765 −3.55865
\(176\) −0.711641 0.447154i −0.0536419 0.0337055i
\(177\) 0 0
\(178\) 4.09254 + 8.49825i 0.306749 + 0.636971i
\(179\) −1.94996 8.54333i −0.145747 0.638558i −0.994039 0.109029i \(-0.965226\pi\)
0.848292 0.529529i \(-0.177631\pi\)
\(180\) 0 0
\(181\) 1.73920 + 0.837555i 0.129274 + 0.0622550i 0.497403 0.867520i \(-0.334287\pi\)
−0.368129 + 0.929775i \(0.620001\pi\)
\(182\) −0.407180 + 3.61382i −0.0301822 + 0.267874i
\(183\) 0 0
\(184\) −0.879335 + 2.51300i −0.0648254 + 0.185260i
\(185\) 0.0532507 + 0.472613i 0.00391507 + 0.0347472i
\(186\) 0 0
\(187\) 2.04910 + 1.63411i 0.149845 + 0.119498i
\(188\) −3.79732 6.04340i −0.276948 0.440761i
\(189\) 0 0
\(190\) −10.9650 + 13.7496i −0.795483 + 0.997504i
\(191\) −7.21934 + 7.21934i −0.522373 + 0.522373i −0.918288 0.395914i \(-0.870428\pi\)
0.395914 + 0.918288i \(0.370428\pi\)
\(192\) 0 0
\(193\) −3.49934 1.22447i −0.251888 0.0881394i 0.201382 0.979513i \(-0.435457\pi\)
−0.453270 + 0.891373i \(0.649743\pi\)
\(194\) −0.627997 + 0.500811i −0.0450876 + 0.0359561i
\(195\) 0 0
\(196\) 6.76561 14.0489i 0.483258 1.00350i
\(197\) 14.9878 + 3.42087i 1.06784 + 0.243727i 0.720103 0.693867i \(-0.244095\pi\)
0.347733 + 0.937594i \(0.386952\pi\)
\(198\) 0 0
\(199\) 5.80624 2.79614i 0.411593 0.198213i −0.216617 0.976257i \(-0.569502\pi\)
0.628210 + 0.778044i \(0.283788\pi\)
\(200\) 8.90536 + 25.4501i 0.629704 + 1.79959i
\(201\) 0 0
\(202\) 9.89931i 0.696513i
\(203\) 19.6561 10.3192i 1.37959 0.724262i
\(204\) 0 0
\(205\) −5.64529 + 8.98442i −0.394284 + 0.627499i
\(206\) 5.05309 1.76815i 0.352065 0.123193i
\(207\) 0 0
\(208\) −2.01564 + 0.460057i −0.139759 + 0.0318992i
\(209\) 0.787384 3.44976i 0.0544645 0.238625i
\(210\) 0 0
\(211\) 15.2933 + 1.72314i 1.05283 + 0.118626i 0.621380 0.783510i \(-0.286572\pi\)
0.431453 + 0.902135i \(0.358001\pi\)
\(212\) 13.8159 + 17.3246i 0.948879 + 1.18986i
\(213\) 0 0
\(214\) 7.38360 0.831932i 0.504733 0.0568697i
\(215\) 8.04969 + 8.04969i 0.548984 + 0.548984i
\(216\) 0 0
\(217\) 14.2817 8.97381i 0.969507 0.609182i
\(218\) −9.64730 + 6.06180i −0.653398 + 0.410557i
\(219\) 0 0
\(220\) −2.41715 2.41715i −0.162964 0.162964i
\(221\) 6.40668 0.721860i 0.430960 0.0485575i
\(222\) 0 0
\(223\) 3.76337 + 4.71912i 0.252014 + 0.316016i 0.891705 0.452616i \(-0.149509\pi\)
−0.639691 + 0.768632i \(0.720938\pi\)
\(224\) −23.5680 2.65548i −1.57470 0.177427i
\(225\) 0 0
\(226\) 1.71416 7.51020i 0.114024 0.499571i
\(227\) −10.3888 + 2.37116i −0.689526 + 0.157380i −0.552906 0.833244i \(-0.686481\pi\)
−0.136620 + 0.990624i \(0.543624\pi\)
\(228\) 0 0
\(229\) 17.6455 6.17441i 1.16604 0.408017i 0.323282 0.946303i \(-0.395214\pi\)
0.842762 + 0.538286i \(0.180928\pi\)
\(230\) −1.61222 + 2.56583i −0.106306 + 0.169186i
\(231\) 0 0
\(232\) −9.29694 8.67422i −0.610374 0.569491i
\(233\) 25.2819i 1.65627i 0.560526 + 0.828137i \(0.310599\pi\)
−0.560526 + 0.828137i \(0.689401\pi\)
\(234\) 0 0
\(235\) −6.12260 17.4974i −0.399395 1.14140i
\(236\) 7.36586 3.54721i 0.479477 0.230904i
\(237\) 0 0
\(238\) 12.9200 + 2.94890i 0.837479 + 0.191149i
\(239\) −11.9320 + 24.7771i −0.771819 + 1.60270i 0.0258962 + 0.999665i \(0.491756\pi\)
−0.797715 + 0.603034i \(0.793958\pi\)
\(240\) 0 0
\(241\) 8.87070 7.07415i 0.571412 0.455686i −0.294662 0.955602i \(-0.595207\pi\)
0.866074 + 0.499916i \(0.166636\pi\)
\(242\) 6.70296 + 2.34547i 0.430882 + 0.150772i
\(243\) 0 0
\(244\) 9.57047 9.57047i 0.612686 0.612686i
\(245\) 25.2510 31.6638i 1.61323 2.02292i
\(246\) 0 0
\(247\) −4.63100 7.37020i −0.294664 0.468955i
\(248\) −7.55298 6.02330i −0.479615 0.382480i
\(249\) 0 0
\(250\) 1.93160 + 17.1434i 0.122165 + 1.08425i
\(251\) 5.48814 15.6842i 0.346408 0.989978i −0.630476 0.776209i \(-0.717140\pi\)
0.976884 0.213769i \(-0.0685741\pi\)
\(252\) 0 0
\(253\) 0.0682659 0.605877i 0.00429184 0.0380911i
\(254\) 7.69192 + 3.70423i 0.482634 + 0.232424i
\(255\) 0 0
\(256\) 1.94351 + 8.51506i 0.121469 + 0.532191i
\(257\) 8.20818 + 17.0445i 0.512012 + 1.06320i 0.983429 + 0.181293i \(0.0580284\pi\)
−0.471417 + 0.881910i \(0.656257\pi\)
\(258\) 0 0
\(259\) −0.409698 0.257430i −0.0254574 0.0159959i
\(260\) −8.40891 −0.521498
\(261\) 0 0
\(262\) −0.326445 −0.0201679
\(263\) 26.7374 + 16.8002i 1.64870 + 1.03595i 0.945848 + 0.324609i \(0.105233\pi\)
0.702851 + 0.711337i \(0.251910\pi\)
\(264\) 0 0
\(265\) 24.9711 + 51.8531i 1.53396 + 3.18531i
\(266\) −3.98130 17.4432i −0.244109 1.06951i
\(267\) 0 0
\(268\) −19.9174 9.59173i −1.21665 0.585908i
\(269\) 1.21694 10.8007i 0.0741983 0.658528i −0.900477 0.434903i \(-0.856782\pi\)
0.974675 0.223625i \(-0.0717889\pi\)
\(270\) 0 0
\(271\) −1.10464 + 3.15688i −0.0671022 + 0.191767i −0.972552 0.232687i \(-0.925248\pi\)
0.905450 + 0.424454i \(0.139534\pi\)
\(272\) 0.843537 + 7.48660i 0.0511470 + 0.453942i
\(273\) 0 0
\(274\) −1.81124 1.44441i −0.109421 0.0872603i
\(275\) −3.28517 5.22832i −0.198103 0.315280i
\(276\) 0 0
\(277\) 1.73796 2.17934i 0.104424 0.130944i −0.726873 0.686772i \(-0.759027\pi\)
0.831297 + 0.555828i \(0.187599\pi\)
\(278\) −2.53337 + 2.53337i −0.151941 + 0.151941i
\(279\) 0 0
\(280\) −37.2287 13.0269i −2.22484 0.778505i
\(281\) −1.35528 + 1.08080i −0.0808490 + 0.0644749i −0.663080 0.748548i \(-0.730751\pi\)
0.582231 + 0.813023i \(0.302180\pi\)
\(282\) 0 0
\(283\) −6.88206 + 14.2908i −0.409096 + 0.849497i 0.590017 + 0.807391i \(0.299121\pi\)
−0.999113 + 0.0421063i \(0.986593\pi\)
\(284\) −4.54660 1.03773i −0.269791 0.0615781i
\(285\) 0 0
\(286\) −0.429766 + 0.206964i −0.0254126 + 0.0122381i
\(287\) −3.56538 10.1893i −0.210458 0.601453i
\(288\) 0 0
\(289\) 6.49396i 0.381998i
\(290\) −8.11940 11.9800i −0.476788 0.703488i
\(291\) 0 0
\(292\) 11.4469 18.2177i 0.669880 1.06611i
\(293\) −10.2053 + 3.57099i −0.596199 + 0.208619i −0.611475 0.791264i \(-0.709423\pi\)
0.0152751 + 0.999883i \(0.495138\pi\)
\(294\) 0 0
\(295\) 20.7015 4.72498i 1.20529 0.275099i
\(296\) −0.0616678 + 0.270184i −0.00358437 + 0.0157041i
\(297\) 0 0
\(298\) 0.762024 + 0.0858595i 0.0441429 + 0.00497371i
\(299\) −0.935135 1.17262i −0.0540803 0.0678145i
\(300\) 0 0
\(301\) −11.5088 + 1.29673i −0.663358 + 0.0747424i
\(302\) 5.49293 + 5.49293i 0.316083 + 0.316083i
\(303\) 0 0
\(304\) 8.61253 5.41161i 0.493963 0.310377i
\(305\) 29.7650 18.7026i 1.70434 1.07091i
\(306\) 0 0
\(307\) 10.8666 + 10.8666i 0.620191 + 0.620191i 0.945580 0.325389i \(-0.105495\pi\)
−0.325389 + 0.945580i \(0.605495\pi\)
\(308\) 3.45585 0.389381i 0.196915 0.0221870i
\(309\) 0 0
\(310\) −6.85562 8.59668i −0.389373 0.488259i
\(311\) −11.2187 1.26404i −0.636152 0.0716771i −0.212002 0.977269i \(-0.567998\pi\)
−0.424150 + 0.905592i \(0.639427\pi\)
\(312\) 0 0
\(313\) −1.78340 + 7.81360i −0.100804 + 0.441651i 0.899188 + 0.437563i \(0.144158\pi\)
−0.999992 + 0.00408780i \(0.998699\pi\)
\(314\) 0.806845 0.184157i 0.0455329 0.0103926i
\(315\) 0 0
\(316\) −7.54014 + 2.63841i −0.424166 + 0.148422i
\(317\) 8.75043 13.9262i 0.491473 0.782175i −0.505258 0.862968i \(-0.668603\pi\)
0.996731 + 0.0807937i \(0.0257455\pi\)
\(318\) 0 0
\(319\) 2.51772 + 1.46290i 0.140965 + 0.0819065i
\(320\) 2.86444i 0.160127i
\(321\) 0 0
\(322\) −1.01822 2.90992i −0.0567434 0.162163i
\(323\) −28.5779 + 13.7624i −1.59012 + 0.765761i
\(324\) 0 0
\(325\) −14.8086 3.37997i −0.821435 0.187487i
\(326\) 3.81669 7.92543i 0.211387 0.438949i
\(327\) 0 0
\(328\) −4.83397 + 3.85496i −0.266911 + 0.212855i
\(329\) 17.8012 + 6.22892i 0.981413 + 0.343411i
\(330\) 0 0
\(331\) 3.35519 3.35519i 0.184418 0.184418i −0.608860 0.793278i \(-0.708373\pi\)
0.793278 + 0.608860i \(0.208373\pi\)
\(332\) −12.3147 + 15.4421i −0.675855 + 0.847495i
\(333\) 0 0
\(334\) 0.175004 + 0.278517i 0.00957579 + 0.0152398i
\(335\) −44.8903 35.7988i −2.45262 1.95590i
\(336\) 0 0
\(337\) −1.07577 9.54770i −0.0586008 0.520096i −0.988383 0.151986i \(-0.951433\pi\)
0.929782 0.368111i \(-0.119995\pi\)
\(338\) 2.46006 7.03043i 0.133809 0.382405i
\(339\) 0 0
\(340\) −3.43086 + 30.4498i −0.186065 + 1.65137i
\(341\) 1.99326 + 0.959906i 0.107941 + 0.0519818i
\(342\) 0 0
\(343\) 2.74713 + 12.0359i 0.148331 + 0.649880i
\(344\) 2.87813 + 5.97649i 0.155178 + 0.322231i
\(345\) 0 0
\(346\) −12.7881 8.03527i −0.687490 0.431979i
\(347\) −3.15691 −0.169472 −0.0847360 0.996403i \(-0.527005\pi\)
−0.0847360 + 0.996403i \(0.527005\pi\)
\(348\) 0 0
\(349\) −13.5471 −0.725158 −0.362579 0.931953i \(-0.618104\pi\)
−0.362579 + 0.931953i \(0.618104\pi\)
\(350\) −26.4363 16.6110i −1.41308 0.887898i
\(351\) 0 0
\(352\) −1.34975 2.80278i −0.0719417 0.149389i
\(353\) 4.10593 + 17.9893i 0.218537 + 0.957471i 0.958560 + 0.284890i \(0.0919572\pi\)
−0.740024 + 0.672581i \(0.765186\pi\)
\(354\) 0 0
\(355\) −10.9129 5.25537i −0.579196 0.278926i
\(356\) 2.48433 22.0491i 0.131669 1.16860i
\(357\) 0 0
\(358\) 1.91951 5.48565i 0.101449 0.289926i
\(359\) −1.71399 15.2121i −0.0904608 0.802862i −0.954250 0.299009i \(-0.903344\pi\)
0.863790 0.503853i \(-0.168085\pi\)
\(360\) 0 0
\(361\) 18.6262 + 14.8539i 0.980329 + 0.781786i
\(362\) 0.681134 + 1.08402i 0.0357996 + 0.0569748i
\(363\) 0 0
\(364\) 5.33390 6.68850i 0.279573 0.350573i
\(365\) 39.5140 39.5140i 2.06826 2.06826i
\(366\) 0 0
\(367\) −10.6427 3.72403i −0.555543 0.194393i 0.0378820 0.999282i \(-0.487939\pi\)
−0.593425 + 0.804889i \(0.702225\pi\)
\(368\) 1.37028 1.09276i 0.0714309 0.0569642i
\(369\) 0 0
\(370\) −0.136859 + 0.284191i −0.00711496 + 0.0147744i
\(371\) −57.0839 13.0290i −2.96365 0.676433i
\(372\) 0 0
\(373\) −23.3176 + 11.2292i −1.20734 + 0.581425i −0.925760 0.378112i \(-0.876573\pi\)
−0.281582 + 0.959537i \(0.590859\pi\)
\(374\) 0.574099 + 1.64068i 0.0296860 + 0.0848376i
\(375\) 0 0
\(376\) 10.8018i 0.557062i
\(377\) 6.92400 1.83479i 0.356604 0.0944965i
\(378\) 0 0
\(379\) 8.05998 12.8274i 0.414013 0.658898i −0.572997 0.819558i \(-0.694219\pi\)
0.987010 + 0.160659i \(0.0513621\pi\)
\(380\) 39.0487 13.6637i 2.00315 0.700934i
\(381\) 0 0
\(382\) −6.60146 + 1.50674i −0.337760 + 0.0770916i
\(383\) 6.31524 27.6689i 0.322693 1.41381i −0.510046 0.860147i \(-0.670372\pi\)
0.832739 0.553665i \(-0.186771\pi\)
\(384\) 0 0
\(385\) 8.97574 + 1.01132i 0.457446 + 0.0515418i
\(386\) −1.53304 1.92237i −0.0780295 0.0978458i
\(387\) 0 0
\(388\) 1.87765 0.211561i 0.0953233 0.0107404i
\(389\) 15.2482 + 15.2482i 0.773116 + 0.773116i 0.978650 0.205534i \(-0.0658932\pi\)
−0.205534 + 0.978650i \(0.565893\pi\)
\(390\) 0 0
\(391\) −4.62776 + 2.90781i −0.234036 + 0.147054i
\(392\) 19.9818 12.5554i 1.00923 0.634142i
\(393\) 0 0
\(394\) 7.20950 + 7.20950i 0.363209 + 0.363209i
\(395\) −20.6175 + 2.32304i −1.03738 + 0.116885i
\(396\) 0 0
\(397\) 5.67395 + 7.11491i 0.284767 + 0.357087i 0.903556 0.428471i \(-0.140948\pi\)
−0.618788 + 0.785558i \(0.712376\pi\)
\(398\) 4.24718 + 0.478542i 0.212892 + 0.0239872i
\(399\) 0 0
\(400\) 3.94970 17.3048i 0.197485 0.865239i
\(401\) −21.6183 + 4.93424i −1.07957 + 0.246404i −0.725086 0.688659i \(-0.758200\pi\)
−0.354482 + 0.935063i \(0.615343\pi\)
\(402\) 0 0
\(403\) 5.13683 1.79745i 0.255884 0.0895376i
\(404\) 12.3895 19.7177i 0.616399 0.980993i
\(405\) 0 0
\(406\) 14.6792 + 1.14085i 0.728517 + 0.0566196i
\(407\) 0.0634655i 0.00314587i
\(408\) 0 0
\(409\) 5.55810 + 15.8841i 0.274830 + 0.785420i 0.995724 + 0.0923748i \(0.0294458\pi\)
−0.720894 + 0.693045i \(0.756268\pi\)
\(410\) −6.34035 + 3.05335i −0.313127 + 0.150794i
\(411\) 0 0
\(412\) −12.2778 2.80233i −0.604884 0.138061i
\(413\) −9.37301 + 19.4633i −0.461216 + 0.957724i
\(414\) 0 0
\(415\) −40.1071 + 31.9844i −1.96878 + 1.57005i
\(416\) −7.22302 2.52744i −0.354138 0.123918i
\(417\) 0 0
\(418\) 1.65942 1.65942i 0.0811648 0.0811648i
\(419\) −0.592078 + 0.742442i −0.0289249 + 0.0362707i −0.796084 0.605187i \(-0.793098\pi\)
0.767159 + 0.641457i \(0.221670\pi\)
\(420\) 0 0
\(421\) −13.0848 20.8243i −0.637714 1.01492i −0.996668 0.0815612i \(-0.974009\pi\)
0.358954 0.933355i \(-0.383133\pi\)
\(422\) 7.98010 + 6.36391i 0.388465 + 0.309790i
\(423\) 0 0
\(424\) 3.75481 + 33.3248i 0.182350 + 1.61840i
\(425\) −18.2813 + 52.2449i −0.886773 + 2.53425i
\(426\) 0 0
\(427\) −4.00424 + 35.5386i −0.193779 + 1.71983i
\(428\) −15.7481 7.58387i −0.761211 0.366580i
\(429\) 0 0
\(430\) 1.68004 + 7.36074i 0.0810188 + 0.354966i
\(431\) −0.210702 0.437527i −0.0101491 0.0210749i 0.895833 0.444392i \(-0.146580\pi\)
−0.905982 + 0.423317i \(0.860866\pi\)
\(432\) 0 0
\(433\) 25.3408 + 15.9227i 1.21780 + 0.765195i 0.978599 0.205775i \(-0.0659714\pi\)
0.239202 + 0.970970i \(0.423114\pi\)
\(434\) 11.1865 0.536969
\(435\) 0 0
\(436\) 26.8024 1.28360
\(437\) 6.24792 + 3.92583i 0.298879 + 0.187798i
\(438\) 0 0
\(439\) −9.93931 20.6392i −0.474377 0.985055i −0.991617 0.129214i \(-0.958755\pi\)
0.517239 0.855841i \(-0.326960\pi\)
\(440\) −1.15119 5.04369i −0.0548808 0.240448i
\(441\) 0 0
\(442\) 3.85245 + 1.85524i 0.183243 + 0.0882449i
\(443\) 3.22774 28.6470i 0.153354 1.36106i −0.647439 0.762117i \(-0.724160\pi\)
0.800794 0.598941i \(-0.204411\pi\)
\(444\) 0 0
\(445\) 19.0338 54.3955i 0.902289 2.57859i
\(446\) 0.448212 + 3.97799i 0.0212234 + 0.188363i
\(447\) 0 0
\(448\) −2.27840 1.81696i −0.107644 0.0858434i
\(449\) 6.74252 + 10.7307i 0.318199 + 0.506411i 0.967078 0.254481i \(-0.0819046\pi\)
−0.648879 + 0.760892i \(0.724762\pi\)
\(450\) 0 0
\(451\) 0.882816 1.10702i 0.0415702 0.0521274i
\(452\) −12.8137 + 12.8137i −0.602705 + 0.602705i
\(453\) 0 0
\(454\) −6.67059 2.33414i −0.313066 0.109547i
\(455\) 17.3718 13.8535i 0.814402 0.649464i
\(456\) 0 0
\(457\) −0.653651 + 1.35732i −0.0305765 + 0.0634928i −0.915698 0.401868i \(-0.868361\pi\)
0.885121 + 0.465361i \(0.154075\pi\)
\(458\) 12.0877 + 2.75893i 0.564819 + 0.128916i
\(459\) 0 0
\(460\) 6.42252 3.09292i 0.299452 0.144208i
\(461\) −8.19989 23.4339i −0.381907 1.09143i −0.961091 0.276230i \(-0.910915\pi\)
0.579185 0.815196i \(-0.303371\pi\)
\(462\) 0 0
\(463\) 24.5107i 1.13911i −0.821953 0.569555i \(-0.807116\pi\)
0.821953 0.569555i \(-0.192884\pi\)
\(464\) 2.14406 + 8.09112i 0.0995357 + 0.375621i
\(465\) 0 0
\(466\) −8.92078 + 14.1973i −0.413247 + 0.657679i
\(467\) −27.2756 + 9.54416i −1.26217 + 0.441651i −0.876685 0.481065i \(-0.840250\pi\)
−0.385481 + 0.922716i \(0.625964\pi\)
\(468\) 0 0
\(469\) 56.9492 12.9983i 2.62967 0.600205i
\(470\) 2.73578 11.9862i 0.126192 0.552883i
\(471\) 0 0
\(472\) 12.2951 + 1.38533i 0.565928 + 0.0637648i
\(473\) −0.947144 1.18768i −0.0435497 0.0546096i
\(474\) 0 0
\(475\) 74.2594 8.36702i 3.40725 0.383905i
\(476\) −22.0437 22.0437i −1.01037 1.01037i
\(477\) 0 0
\(478\) −15.4432 + 9.70362i −0.706357 + 0.443833i
\(479\) −34.1452 + 21.4548i −1.56013 + 0.980296i −0.573153 + 0.819449i \(0.694280\pi\)
−0.986979 + 0.160847i \(0.948577\pi\)
\(480\) 0 0
\(481\) −0.110394 0.110394i −0.00503352 0.00503352i
\(482\) 7.47757 0.842520i 0.340594 0.0383757i
\(483\) 0 0
\(484\) −10.4157 13.0608i −0.473440 0.593674i
\(485\) 4.87675 + 0.549478i 0.221442 + 0.0249505i
\(486\) 0 0
\(487\) −5.15038 + 22.5653i −0.233386 + 1.02253i 0.713423 + 0.700734i \(0.247144\pi\)
−0.946809 + 0.321797i \(0.895713\pi\)
\(488\) 19.9700 4.55803i 0.904000 0.206332i
\(489\) 0 0
\(490\) 25.3526 8.87126i 1.14531 0.400763i
\(491\) 3.36323 5.35254i 0.151780 0.241557i −0.762176 0.647370i \(-0.775869\pi\)
0.913956 + 0.405813i \(0.133012\pi\)
\(492\) 0 0
\(493\) −3.81900 25.8213i −0.171999 1.16293i
\(494\) 5.77288i 0.259734i
\(495\) 0 0
\(496\) 2.10044 + 6.00270i 0.0943124 + 0.269529i
\(497\) 11.1024 5.34662i 0.498010 0.239829i
\(498\) 0 0
\(499\) −10.9765 2.50531i −0.491374 0.112153i −0.0303478 0.999539i \(-0.509661\pi\)
−0.461026 + 0.887386i \(0.652519\pi\)
\(500\) 17.6084 36.5643i 0.787473 1.63520i
\(501\) 0 0
\(502\) 8.61613 6.87114i 0.384557 0.306674i
\(503\) −24.2139 8.47280i −1.07964 0.377784i −0.268890 0.963171i \(-0.586657\pi\)
−0.810754 + 0.585387i \(0.800942\pi\)
\(504\) 0 0
\(505\) 42.7676 42.7676i 1.90313 1.90313i
\(506\) 0.252120 0.316149i 0.0112081 0.0140545i
\(507\) 0 0
\(508\) −10.6850 17.0050i −0.474068 0.754475i
\(509\) 19.8602 + 15.8380i 0.880288 + 0.702006i 0.955446 0.295166i \(-0.0953748\pi\)
−0.0751585 + 0.997172i \(0.523946\pi\)
\(510\) 0 0
\(511\) 6.36535 + 56.4941i 0.281587 + 2.49915i
\(512\) 5.37774 15.3687i 0.237665 0.679206i
\(513\) 0 0
\(514\) −1.40478 + 12.4678i −0.0619622 + 0.549930i
\(515\) −29.4695 14.1918i −1.29858 0.625365i
\(516\) 0 0
\(517\) 0.550451 + 2.41168i 0.0242088 + 0.106066i
\(518\) −0.139235 0.289125i −0.00611765 0.0127034i
\(519\) 0 0
\(520\) −10.7755 6.77072i −0.472539 0.296916i
\(521\) −6.74973 −0.295711 −0.147855 0.989009i \(-0.547237\pi\)
−0.147855 + 0.989009i \(0.547237\pi\)
\(522\) 0 0
\(523\) −13.9628 −0.610553 −0.305276 0.952264i \(-0.598749\pi\)
−0.305276 + 0.952264i \(0.598749\pi\)
\(524\) 0.650223 + 0.408562i 0.0284051 + 0.0178481i
\(525\) 0 0
\(526\) 9.08669 + 18.8687i 0.396198 + 0.822715i
\(527\) −4.41297 19.3345i −0.192232 0.842224i
\(528\) 0 0
\(529\) −19.5767 9.42766i −0.851163 0.409898i
\(530\) −4.27366 + 37.9298i −0.185636 + 1.64756i
\(531\) 0 0
\(532\) −13.9010 + 39.7267i −0.602684 + 1.72237i
\(533\) −0.389980 3.46117i −0.0168919 0.149920i
\(534\) 0 0
\(535\) −35.4933 28.3049i −1.53451 1.22373i
\(536\) −17.8000 28.3285i −0.768842 1.22360i
\(537\) 0 0
\(538\) 4.49442 5.63583i 0.193768 0.242978i
\(539\) −3.82144 + 3.82144i −0.164601 + 0.164601i
\(540\) 0 0
\(541\) −26.5010 9.27311i −1.13937 0.398682i −0.306345 0.951921i \(-0.599106\pi\)
−0.833023 + 0.553238i \(0.813392\pi\)
\(542\) −1.73424 + 1.38301i −0.0744918 + 0.0594053i
\(543\) 0 0
\(544\) −12.0992 + 25.1243i −0.518750 + 1.07720i
\(545\) 67.8675 + 15.4903i 2.90712 + 0.663532i
\(546\) 0 0
\(547\) −38.6354 + 18.6058i −1.65193 + 0.795528i −0.652649 + 0.757661i \(0.726342\pi\)
−0.999283 + 0.0378678i \(0.987943\pi\)
\(548\) 1.79992 + 5.14388i 0.0768888 + 0.219736i
\(549\) 0 0
\(550\) 4.09520i 0.174620i
\(551\) −29.1718 + 19.7711i −1.24276 + 0.842279i
\(552\) 0 0
\(553\) 11.2303 17.8729i 0.477560 0.760032i
\(554\) 1.74496 0.610587i 0.0741361 0.0259414i
\(555\) 0 0
\(556\) 8.21666 1.87540i 0.348464 0.0795347i
\(557\) −6.81818 + 29.8724i −0.288896 + 1.26573i 0.597148 + 0.802131i \(0.296301\pi\)
−0.886043 + 0.463603i \(0.846556\pi\)
\(558\) 0 0
\(559\) −3.71338 0.418397i −0.157059 0.0176963i
\(560\) 16.1887 + 20.3000i 0.684098 + 0.857831i
\(561\) 0 0
\(562\) −1.14243 + 0.128721i −0.0481906 + 0.00542977i
\(563\) 25.1567 + 25.1567i 1.06023 + 1.06023i 0.998066 + 0.0621640i \(0.0198002\pi\)
0.0621640 + 0.998066i \(0.480200\pi\)
\(564\) 0 0
\(565\) −39.8517 + 25.0405i −1.67657 + 1.05346i
\(566\) −8.90722 + 5.59678i −0.374399 + 0.235250i
\(567\) 0 0
\(568\) −4.99065 4.99065i −0.209403 0.209403i
\(569\) −25.2658 + 2.84677i −1.05920 + 0.119343i −0.624336 0.781156i \(-0.714631\pi\)
−0.434860 + 0.900498i \(0.643202\pi\)
\(570\) 0 0
\(571\) −2.88233 3.61433i −0.120622 0.151255i 0.717854 0.696193i \(-0.245124\pi\)
−0.838476 + 0.544938i \(0.816553\pi\)
\(572\) 1.11505 + 0.125636i 0.0466224 + 0.00525308i
\(573\) 0 0
\(574\) 1.59313 6.97995i 0.0664958 0.291337i
\(575\) 12.5537 2.86529i 0.523524 0.119491i
\(576\) 0 0
\(577\) −21.5333 + 7.53483i −0.896443 + 0.313679i −0.738886 0.673831i \(-0.764648\pi\)
−0.157557 + 0.987510i \(0.550362\pi\)
\(578\) 2.29141 3.64675i 0.0953100 0.151685i
\(579\) 0 0
\(580\) 1.17895 + 34.0238i 0.0489531 + 1.41276i
\(581\) 52.1897i 2.16519i
\(582\) 0 0
\(583\) −2.53652 7.24896i −0.105052 0.300221i
\(584\) 29.3372 14.1280i 1.21398 0.584622i
\(585\) 0 0
\(586\) −6.99092 1.59563i −0.288792 0.0659150i
\(587\) 4.13272 8.58169i 0.170576 0.354204i −0.798103 0.602521i \(-0.794163\pi\)
0.968679 + 0.248317i \(0.0798773\pi\)
\(588\) 0 0
\(589\) −20.9333 + 16.6938i −0.862543 + 0.687855i
\(590\) 13.2924 + 4.65120i 0.547238 + 0.191487i
\(591\) 0 0
\(592\) 0.129002 0.129002i 0.00530194 0.00530194i
\(593\) −0.358513 + 0.449561i −0.0147223 + 0.0184612i −0.789138 0.614216i \(-0.789472\pi\)
0.774416 + 0.632677i \(0.218044\pi\)
\(594\) 0 0
\(595\) −43.0777 68.5578i −1.76601 2.81060i
\(596\) −1.41036 1.12473i −0.0577707 0.0460706i
\(597\) 0 0
\(598\) −0.111373 0.988464i −0.00455439 0.0404213i
\(599\) −8.41878 + 24.0595i −0.343982 + 0.983044i 0.633814 + 0.773486i \(0.281488\pi\)
−0.977796 + 0.209559i \(0.932797\pi\)
\(600\) 0 0
\(601\) 2.55298 22.6583i 0.104138 0.924253i −0.827648 0.561247i \(-0.810322\pi\)
0.931787 0.363006i \(-0.118250\pi\)
\(602\) −6.92046 3.33272i −0.282057 0.135831i
\(603\) 0 0
\(604\) −4.06630 17.8156i −0.165456 0.724908i
\(605\) −18.8255 39.0916i −0.765365 1.58930i
\(606\) 0 0
\(607\) 26.6597 + 16.7514i 1.08208 + 0.679919i 0.950293 0.311358i \(-0.100784\pi\)
0.131792 + 0.991277i \(0.457927\pi\)
\(608\) 37.6486 1.52685
\(609\) 0 0
\(610\) 23.3141 0.943960
\(611\) 5.15242 + 3.23748i 0.208445 + 0.130974i
\(612\) 0 0
\(613\) −16.3387 33.9277i −0.659914 1.37033i −0.915019 0.403412i \(-0.867824\pi\)
0.255105 0.966913i \(-0.417890\pi\)
\(614\) 2.26796 + 9.93658i 0.0915274 + 0.401008i
\(615\) 0 0
\(616\) 4.74200 + 2.28363i 0.191061 + 0.0920100i
\(617\) −0.532966 + 4.73020i −0.0214564 + 0.190431i −0.999868 0.0162339i \(-0.994832\pi\)
0.978412 + 0.206665i \(0.0662609\pi\)
\(618\) 0 0
\(619\) −8.97421 + 25.6468i −0.360704 + 1.03083i 0.610383 + 0.792106i \(0.291016\pi\)
−0.971087 + 0.238726i \(0.923270\pi\)
\(620\) 2.89606 + 25.7032i 0.116309 + 1.03227i
\(621\) 0 0
\(622\) −5.85394 4.66836i −0.234722 0.187184i
\(623\) 31.1931 + 49.6436i 1.24973 + 1.98893i
\(624\) 0 0
\(625\) 30.1194 37.7685i 1.20478 1.51074i
\(626\) −3.75854 + 3.75854i −0.150221 + 0.150221i
\(627\) 0 0
\(628\) −1.83758 0.642996i −0.0733273 0.0256583i
\(629\) −0.444791 + 0.354709i −0.0177350 + 0.0141432i
\(630\) 0 0
\(631\) 0.961079 1.99570i 0.0382600 0.0794476i −0.880963 0.473186i \(-0.843104\pi\)
0.919223 + 0.393738i \(0.128818\pi\)
\(632\) −11.7867 2.69023i −0.468849 0.107012i
\(633\) 0 0
\(634\) 9.82780 4.73282i 0.390312 0.187964i
\(635\) −17.2279 49.2344i −0.683667 1.95381i
\(636\) 0 0
\(637\) 13.2942i 0.526737i
\(638\) 0.897667 + 1.70989i 0.0355390 + 0.0676952i
\(639\) 0 0
\(640\) 23.7951 37.8697i 0.940584 1.49693i
\(641\) 4.96248 1.73645i 0.196006 0.0685855i −0.230491 0.973074i \(-0.574033\pi\)
0.426497 + 0.904489i \(0.359747\pi\)
\(642\) 0 0
\(643\) −19.5291 + 4.45740i −0.770154 + 0.175783i −0.589505 0.807765i \(-0.700677\pi\)
−0.180649 + 0.983548i \(0.557820\pi\)
\(644\) −1.61377 + 7.07041i −0.0635916 + 0.278613i
\(645\) 0 0
\(646\) −20.9043 2.35535i −0.822471 0.0926702i
\(647\) 2.13062 + 2.67172i 0.0837634 + 0.105036i 0.821947 0.569564i \(-0.192888\pi\)
−0.738184 + 0.674600i \(0.764316\pi\)
\(648\) 0 0
\(649\) −2.81568 + 0.317250i −0.110525 + 0.0124532i
\(650\) −7.12332 7.12332i −0.279399 0.279399i
\(651\) 0 0
\(652\) −17.5212 + 11.0093i −0.686185 + 0.431159i
\(653\) 2.06425 1.29705i 0.0807802 0.0507575i −0.491036 0.871139i \(-0.663382\pi\)
0.571817 + 0.820382i \(0.306239\pi\)
\(654\) 0 0
\(655\) 1.41033 + 1.41033i 0.0551061 + 0.0551061i
\(656\) 4.04459 0.455716i 0.157915 0.0177927i
\(657\) 0 0
\(658\) 7.79858 + 9.77911i 0.304020 + 0.381230i
\(659\) 38.6654 + 4.35655i 1.50619 + 0.169707i 0.826143 0.563461i \(-0.190530\pi\)
0.680048 + 0.733168i \(0.261959\pi\)
\(660\) 0 0
\(661\) −9.84055 + 43.1143i −0.382753 + 1.67695i 0.306060 + 0.952012i \(0.400989\pi\)
−0.688813 + 0.724939i \(0.741868\pi\)
\(662\) 3.06803 0.700258i 0.119242 0.0272163i
\(663\) 0 0
\(664\) −28.2143 + 9.87261i −1.09493 + 0.383131i
\(665\) −58.1591 + 92.5596i −2.25531 + 3.58931i
\(666\) 0 0
\(667\) −4.61352 + 3.94812i −0.178636 + 0.152872i
\(668\) 0.773784i 0.0299386i
\(669\) 0 0
\(670\) −12.5769 35.9428i −0.485890 1.38859i
\(671\) −4.22636 + 2.03531i −0.163157 + 0.0785721i
\(672\) 0 0
\(673\) 15.6749 + 3.57770i 0.604224 + 0.137910i 0.513679 0.857982i \(-0.328282\pi\)
0.0905444 + 0.995892i \(0.471139\pi\)
\(674\) 2.76482 5.74120i 0.106497 0.221143i
\(675\) 0 0
\(676\) −13.6989 + 10.9245i −0.526882 + 0.420174i
\(677\) 14.2726 + 4.99419i 0.548539 + 0.191942i 0.590298 0.807186i \(-0.299010\pi\)
−0.0417586 + 0.999128i \(0.513296\pi\)
\(678\) 0 0
\(679\) −3.53046 + 3.53046i −0.135487 + 0.135487i
\(680\) −28.9141 + 36.2572i −1.10881 + 1.39040i
\(681\) 0 0
\(682\) 0.780635 + 1.24237i 0.0298921 + 0.0475729i
\(683\) 29.4103 + 23.4539i 1.12535 + 0.897439i 0.995563 0.0941026i \(-0.0299982\pi\)
0.129790 + 0.991541i \(0.458570\pi\)
\(684\) 0 0
\(685\) 1.58478 + 14.0653i 0.0605512 + 0.537407i
\(686\) −2.70423 + 7.72824i −0.103248 + 0.295066i
\(687\) 0 0
\(688\) 0.488922 4.33931i 0.0186400 0.165435i
\(689\) −17.0211 8.19695i −0.648454 0.312279i
\(690\) 0 0
\(691\) 4.75600 + 20.8374i 0.180927 + 0.792693i 0.981190 + 0.193044i \(0.0618359\pi\)
−0.800263 + 0.599649i \(0.795307\pi\)
\(692\) 15.4151 + 32.0097i 0.585993 + 1.21683i
\(693\) 0 0
\(694\) −1.77280 1.11392i −0.0672945 0.0422839i
\(695\) 21.8896 0.830321
\(696\) 0 0
\(697\) −12.6925 −0.480761
\(698\) −7.60751 4.78011i −0.287948 0.180930i
\(699\) 0 0
\(700\) 31.8671 + 66.1727i 1.20446 + 2.50109i
\(701\) −4.53501 19.8692i −0.171285 0.750449i −0.985471 0.169845i \(-0.945673\pi\)
0.814186 0.580605i \(-0.197184\pi\)
\(702\) 0 0
\(703\) 0.692018 + 0.333258i 0.0261000 + 0.0125691i
\(704\) 0.0427970 0.379834i 0.00161297 0.0143155i
\(705\) 0 0
\(706\) −4.04182 + 11.5508i −0.152116 + 0.434722i
\(707\) 6.88948 + 61.1458i 0.259106 + 2.29963i
\(708\) 0 0
\(709\) 14.5947 + 11.6389i 0.548116 + 0.437108i 0.857988 0.513670i \(-0.171715\pi\)
−0.309871 + 0.950779i \(0.600286\pi\)
\(710\) −4.27388 6.80185i −0.160396 0.255269i
\(711\) 0 0
\(712\) 20.9371 26.2543i 0.784651 0.983921i
\(713\) −3.26226 + 3.26226i −0.122172 + 0.122172i
\(714\) 0 0
\(715\) 2.75084 + 0.962562i 0.102876 + 0.0359978i
\(716\) −10.6889 + 8.52411i −0.399463 + 0.318561i
\(717\) 0 0
\(718\) 4.40510 9.14728i 0.164397 0.341374i
\(719\) −36.8464 8.40995i −1.37414 0.313638i −0.529198 0.848499i \(-0.677507\pi\)
−0.844940 + 0.534860i \(0.820364\pi\)
\(720\) 0 0
\(721\) 29.9813 14.4382i 1.11656 0.537707i
\(722\) 5.21853 + 14.9137i 0.194214 + 0.555030i
\(723\) 0 0
\(724\) 3.01165i 0.111927i
\(725\) −11.5997 + 60.3921i −0.430803 + 2.24290i
\(726\) 0 0
\(727\) 26.5998 42.3334i 0.986534 1.57006i 0.175981 0.984394i \(-0.443690\pi\)
0.810553 0.585666i \(-0.199167\pi\)
\(728\) 12.2206 4.27617i 0.452925 0.158485i
\(729\) 0 0
\(730\) 36.1321 8.24692i 1.33731 0.305232i
\(731\) −3.03014 + 13.2759i −0.112074 + 0.491027i
\(732\) 0 0
\(733\) 18.5172 + 2.08639i 0.683948 + 0.0770625i 0.447100 0.894484i \(-0.352457\pi\)
0.236849 + 0.971547i \(0.423885\pi\)
\(734\) −4.66248 5.84656i −0.172095 0.215801i
\(735\) 0 0
\(736\) 6.44640 0.726335i 0.237617 0.0267731i
\(737\) 5.41772 + 5.41772i 0.199564 + 0.199564i
\(738\) 0 0
\(739\) 5.79153 3.63906i 0.213045 0.133865i −0.421283 0.906929i \(-0.638420\pi\)
0.634328 + 0.773064i \(0.281277\pi\)
\(740\) 0.628278 0.394773i 0.0230960 0.0145122i
\(741\) 0 0
\(742\) −27.4588 27.4588i −1.00804 1.00804i
\(743\) 4.77591 0.538116i 0.175211 0.0197415i −0.0239230 0.999714i \(-0.507616\pi\)
0.199134 + 0.979972i \(0.436187\pi\)
\(744\) 0 0
\(745\) −2.92121 3.66308i −0.107025 0.134205i
\(746\) −17.0565 1.92181i −0.624484 0.0703624i
\(747\) 0 0
\(748\) 0.909885 3.98647i 0.0332687 0.145760i
\(749\) 45.0279 10.2773i 1.64528 0.375525i
\(750\) 0 0
\(751\) 41.9736 14.6872i 1.53164 0.535944i 0.572752 0.819729i \(-0.305876\pi\)
0.958888 + 0.283785i \(0.0915900\pi\)
\(752\) −3.78319 + 6.02092i −0.137959 + 0.219560i
\(753\) 0 0
\(754\) 4.53566 + 1.41280i 0.165179 + 0.0514512i
\(755\) 47.4618i 1.72731i
\(756\) 0 0
\(757\) −12.0529 34.4452i −0.438070 1.25193i −0.925493 0.378765i \(-0.876349\pi\)
0.487423 0.873166i \(-0.337937\pi\)
\(758\) 9.05234 4.35938i 0.328796 0.158340i
\(759\) 0 0
\(760\) 61.0405 + 13.9321i 2.21417 + 0.505370i
\(761\) −2.75922 + 5.72957i −0.100022 + 0.207697i −0.944975 0.327143i \(-0.893914\pi\)
0.844953 + 0.534840i \(0.179628\pi\)
\(762\) 0 0
\(763\) −55.3705 + 44.1565i −2.00455 + 1.59857i
\(764\) 15.0347 + 5.26088i 0.543938 + 0.190332i
\(765\) 0 0
\(766\) 13.3094 13.3094i 0.480888 0.480888i
\(767\) −4.34583 + 5.44950i −0.156919 + 0.196770i
\(768\) 0 0
\(769\) 3.51156 + 5.58861i 0.126630 + 0.201531i 0.904022 0.427486i \(-0.140601\pi\)
−0.777392 + 0.629016i \(0.783458\pi\)
\(770\) 4.68358 + 3.73503i 0.168784 + 0.134601i
\(771\) 0 0
\(772\) 0.647609 + 5.74769i 0.0233080 + 0.206864i
\(773\) −7.68076 + 21.9504i −0.276258 + 0.789500i 0.719244 + 0.694758i \(0.244488\pi\)
−0.995502 + 0.0947420i \(0.969797\pi\)
\(774\) 0 0
\(775\) −5.23131 + 46.4291i −0.187914 + 1.66778i
\(776\) 2.57645 + 1.24075i 0.0924892 + 0.0445405i
\(777\) 0 0
\(778\) 3.18244 + 13.9432i 0.114096 + 0.499887i
\(779\) 7.43506 + 15.4391i 0.266389 + 0.553161i
\(780\) 0 0
\(781\) 1.36856 + 0.859925i 0.0489710 + 0.0307705i
\(782\) −3.62480 −0.129623
\(783\) 0 0
\(784\) −15.5351 −0.554826
\(785\) −4.28139 2.69018i −0.152809 0.0960165i
\(786\) 0 0
\(787\) 13.9613 + 28.9909i 0.497666 + 1.03341i 0.986911 + 0.161268i \(0.0515583\pi\)
−0.489244 + 0.872147i \(0.662727\pi\)
\(788\) −5.33704 23.3831i −0.190124 0.832989i
\(789\) 0 0
\(790\) −12.3977 5.97042i −0.441090 0.212418i
\(791\) 5.36119 47.5819i 0.190622 1.69182i
\(792\) 0 0
\(793\) −3.81117 + 10.8917i −0.135339 + 0.386776i
\(794\) 0.675758 + 5.99752i 0.0239818 + 0.212844i
\(795\) 0 0
\(796\) −7.86073 6.26873i −0.278616 0.222189i
\(797\) −2.71716 4.32434i −0.0962468 0.153176i 0.795130 0.606439i \(-0.207403\pi\)
−0.891377 + 0.453263i \(0.850260\pi\)
\(798\) 0 0
\(799\) 13.8255 17.3367i 0.489113 0.613328i
\(800\) 46.4557 46.4557i 1.64246 1.64246i
\(801\) 0 0
\(802\) −13.8811 4.85720i −0.490158 0.171514i
\(803\) −5.83004 + 4.64930i −0.205738 + 0.164070i
\(804\) 0 0
\(805\) −8.17261 + 16.9706i −0.288047 + 0.598135i
\(806\) 3.51888 + 0.803161i 0.123947 + 0.0282901i
\(807\) 0 0
\(808\) 31.7528 15.2913i 1.11706 0.537948i
\(809\) 2.02647 + 5.79133i 0.0712470 + 0.203612i 0.974000 0.226546i \(-0.0727434\pi\)
−0.902753 + 0.430158i \(0.858458\pi\)
\(810\) 0 0
\(811\) 15.2737i 0.536332i 0.963373 + 0.268166i \(0.0864176\pi\)
−0.963373 + 0.268166i \(0.913582\pi\)
\(812\) −27.8106 20.6441i −0.975962 0.724467i
\(813\) 0 0
\(814\) 0.0223939 0.0356398i 0.000784907 0.00124917i
\(815\) −50.7291 + 17.7509i −1.77696 + 0.621786i
\(816\) 0 0
\(817\) 17.9238 4.09098i 0.627073 0.143125i
\(818\) −2.48354 + 10.8811i −0.0868350 + 0.380449i
\(819\) 0 0
\(820\) 16.4503 + 1.85350i 0.574469 + 0.0647271i
\(821\) −32.3595 40.5775i −1.12935 1.41616i −0.896158 0.443735i \(-0.853653\pi\)
−0.233196 0.972430i \(-0.574918\pi\)
\(822\) 0 0
\(823\) 47.3526 5.33535i 1.65061 0.185979i 0.762942 0.646468i \(-0.223754\pi\)
0.887666 + 0.460489i \(0.152326\pi\)
\(824\) −13.4769 13.4769i −0.469491 0.469491i
\(825\) 0 0
\(826\) −12.1312 + 7.62252i −0.422097 + 0.265221i
\(827\) −15.3143 + 9.62258i −0.532529 + 0.334610i −0.771306 0.636464i \(-0.780396\pi\)
0.238777 + 0.971074i \(0.423253\pi\)
\(828\) 0 0
\(829\) −32.0906 32.0906i −1.11455 1.11455i −0.992527 0.122025i \(-0.961061\pi\)
−0.122025 0.992527i \(-0.538939\pi\)
\(830\) −33.8083 + 3.80929i −1.17350 + 0.132222i
\(831\) 0 0
\(832\) −0.586251 0.735136i −0.0203246 0.0254863i
\(833\) 48.1402 + 5.42410i 1.66796 + 0.187934i
\(834\) 0 0
\(835\) 0.447204 1.95933i 0.0154761 0.0678054i
\(836\) −5.38212 + 1.22843i −0.186144 + 0.0424862i
\(837\) 0 0
\(838\) −0.594460 + 0.208011i −0.0205353 + 0.00718561i
\(839\) −1.76116 + 2.80288i −0.0608021 + 0.0967661i −0.875742 0.482780i \(-0.839627\pi\)
0.814940 + 0.579546i \(0.196770\pi\)
\(840\) 0 0
\(841\) −8.39463 27.7584i −0.289470 0.957187i
\(842\) 16.3111i 0.562119i
\(843\) 0 0
\(844\) −7.93023 22.6633i −0.272970 0.780103i
\(845\) −41.0014 + 19.7452i −1.41049 + 0.679257i
\(846\) 0 0
\(847\) 43.0350 + 9.82246i 1.47870 + 0.337504i
\(848\) 9.57864 19.8903i 0.328932 0.683034i
\(849\) 0 0
\(850\) −28.7008 + 22.8881i −0.984429 + 0.785056i
\(851\) 0.124921 + 0.0437116i 0.00428222 + 0.00149841i
\(852\) 0 0
\(853\) 3.88408 3.88408i 0.132988 0.132988i −0.637479 0.770468i \(-0.720023\pi\)
0.770468 + 0.637479i \(0.220023\pi\)
\(854\) −14.7885 + 18.5442i −0.506052 + 0.634569i
\(855\) 0 0
\(856\) −14.0739 22.3984i −0.481034 0.765562i
\(857\) −3.88843 3.10092i −0.132826 0.105925i 0.554823 0.831968i \(-0.312786\pi\)
−0.687649 + 0.726043i \(0.741357\pi\)
\(858\) 0 0
\(859\) 0.628263 + 5.57599i 0.0214361 + 0.190250i 0.999867 0.0163252i \(-0.00519669\pi\)
−0.978431 + 0.206575i \(0.933768\pi\)
\(860\) 5.86597 16.7640i 0.200028 0.571647i
\(861\) 0 0
\(862\) 0.0360604 0.320045i 0.00122822 0.0109008i
\(863\) 9.32653 + 4.49142i 0.317479 + 0.152890i 0.585836 0.810430i \(-0.300766\pi\)
−0.268357 + 0.963320i \(0.586481\pi\)
\(864\) 0 0
\(865\) 20.5333 + 89.9622i 0.698153 + 3.05881i
\(866\) 8.61205 + 17.8831i 0.292650 + 0.607693i
\(867\) 0 0
\(868\) −22.2816 14.0004i −0.756286 0.475206i
\(869\) 2.76866 0.0939202
\(870\) 0 0
\(871\) 18.8475 0.638622
\(872\) 34.3458 + 21.5809i 1.16310 + 0.730821i
\(873\) 0 0
\(874\) 2.12335 + 4.40919i 0.0718234 + 0.149143i
\(875\) 23.8622 + 104.547i 0.806689 + 3.53433i
\(876\) 0 0
\(877\) 4.27851 + 2.06042i 0.144475 + 0.0695755i 0.504724 0.863281i \(-0.331594\pi\)
−0.360249 + 0.932856i \(0.617308\pi\)
\(878\) 1.70105 15.0973i 0.0574078 0.509508i
\(879\) 0 0
\(880\) −1.12481 + 3.21453i −0.0379174 + 0.108362i
\(881\) −3.38332 30.0278i −0.113987 1.01166i −0.912329 0.409458i \(-0.865718\pi\)
0.798342 0.602204i \(-0.205711\pi\)
\(882\) 0 0
\(883\) −26.5058 21.1376i −0.891990 0.711338i 0.0660976 0.997813i \(-0.478945\pi\)
−0.958088 + 0.286475i \(0.907517\pi\)
\(884\) −5.35150 8.51686i −0.179990 0.286453i
\(885\) 0 0
\(886\) 11.9207 14.9481i 0.400484 0.502191i
\(887\) −14.0492 + 14.0492i −0.471726 + 0.471726i −0.902473 0.430747i \(-0.858250\pi\)
0.430747 + 0.902473i \(0.358250\pi\)
\(888\) 0 0
\(889\) 50.0893 + 17.5270i 1.67994 + 0.587837i
\(890\) 29.8822 23.8303i 1.00165 0.798793i
\(891\) 0 0
\(892\) 4.08588 8.48442i 0.136805 0.284080i
\(893\) −29.1871 6.66175i −0.976707 0.222927i
\(894\) 0 0
\(895\) −31.9922 + 15.4067i −1.06938 + 0.514988i
\(896\) 15.0282 + 42.9482i 0.502057 + 1.43480i
\(897\) 0 0
\(898\) 8.40503i 0.280479i
\(899\) −7.99300 20.5325i −0.266581 0.684796i
\(900\) 0 0
\(901\) −36.6269 + 58.2914i −1.22022 + 1.94197i
\(902\) 0.886368 0.310154i 0.0295128 0.0103270i
\(903\) 0 0
\(904\) −26.7374 + 6.10264i −0.889273 + 0.202971i
\(905\) 1.74057 7.62593i 0.0578584 0.253494i
\(906\) 0 0
\(907\) −35.8138 4.03525i −1.18918 0.133988i −0.504879 0.863190i \(-0.668463\pi\)
−0.684299 + 0.729202i \(0.739892\pi\)
\(908\) 10.3654 + 12.9978i 0.343987 + 0.431346i
\(909\) 0 0
\(910\) 14.6436 1.64993i 0.485429 0.0546948i
\(911\) −24.0144 24.0144i −0.795632 0.795632i 0.186772 0.982403i \(-0.440198\pi\)
−0.982403 + 0.186772i \(0.940198\pi\)
\(912\) 0 0
\(913\) 5.79619 3.64199i 0.191826 0.120532i
\(914\) −0.845998 + 0.531576i −0.0279831 + 0.0175830i
\(915\) 0 0
\(916\) −20.6236 20.6236i −0.681423 0.681423i
\(917\) −2.01638 + 0.227191i −0.0665867 + 0.00750252i
\(918\) 0 0
\(919\) 10.9781 + 13.7661i 0.362135 + 0.454103i 0.929204 0.369567i \(-0.120494\pi\)
−0.567069 + 0.823670i \(0.691923\pi\)
\(920\) 10.7205 + 1.20791i 0.353444 + 0.0398235i
\(921\) 0 0
\(922\) 3.66398 16.0529i 0.120667 0.528675i
\(923\) 3.87629 0.884739i 0.127590 0.0291215i
\(924\) 0 0
\(925\) 1.26512 0.442684i 0.0415968 0.0145554i
\(926\) 8.64866 13.7643i 0.284213 0.452322i
\(927\) 0 0
\(928\) −9.21378 + 29.5799i −0.302457 + 0.971008i
\(929\) 37.1827i 1.21993i 0.792430 + 0.609963i \(0.208816\pi\)
−0.792430 + 0.609963i \(0.791184\pi\)
\(930\) 0 0
\(931\) −21.6020 61.7348i −0.707975 2.02328i
\(932\) 35.5373 17.1139i 1.16406 0.560584i
\(933\) 0 0
\(934\) −18.6846 4.26464i −0.611379 0.139543i
\(935\) 4.60792 9.56844i 0.150695 0.312921i
\(936\) 0 0
\(937\) −30.9134 + 24.6526i −1.00990 + 0.805366i −0.980959 0.194215i \(-0.937784\pi\)
−0.0289385 + 0.999581i \(0.509213\pi\)
\(938\) 36.5669 + 12.7953i 1.19395 + 0.417782i
\(939\) 0 0
\(940\) −20.4505 + 20.4505i −0.667023 + 0.667023i
\(941\) −15.3585 + 19.2589i −0.500672 + 0.627822i −0.966381 0.257116i \(-0.917228\pi\)
0.465709 + 0.884938i \(0.345799\pi\)
\(942\) 0 0
\(943\) 1.57093 + 2.50012i 0.0511565 + 0.0814151i
\(944\) −6.36808 5.07837i −0.207263 0.165287i
\(945\) 0 0
\(946\) −0.112803 1.00116i −0.00366755 0.0325504i
\(947\) 10.2116 29.1832i 0.331834 0.948327i −0.650223 0.759743i \(-0.725325\pi\)
0.982057 0.188584i \(-0.0603897\pi\)
\(948\) 0 0
\(949\) −2.05381 + 18.2281i −0.0666695 + 0.591708i
\(950\) 44.6535 + 21.5040i 1.44875 + 0.697681i
\(951\) 0 0
\(952\) −10.4985 45.9970i −0.340259 1.49077i
\(953\) 18.3588 + 38.1225i 0.594701 + 1.23491i 0.953471 + 0.301484i \(0.0974820\pi\)
−0.358770 + 0.933426i \(0.616804\pi\)
\(954\) 0 0
\(955\) 35.0296 + 22.0105i 1.13353 + 0.712244i
\(956\) 42.9048 1.38764
\(957\) 0 0
\(958\) −26.7450 −0.864091
\(959\) −12.1929 7.66129i −0.393728 0.247396i
\(960\) 0 0
\(961\) 6.18703 + 12.8475i 0.199581 + 0.414435i
\(962\) −0.0230401 0.100945i −0.000742844 0.00325461i
\(963\) 0 0
\(964\) −15.9485 7.68038i −0.513666 0.247369i
\(965\) −1.68201 + 14.9282i −0.0541458 + 0.480557i
\(966\) 0 0
\(967\) −4.59839 + 13.1414i −0.147874 + 0.422600i −0.993865 0.110597i \(-0.964724\pi\)
0.845991 + 0.533197i \(0.179010\pi\)
\(968\) −2.83071 25.1233i −0.0909826 0.807493i
\(969\) 0 0
\(970\) 2.54471 + 2.02934i 0.0817056 + 0.0651581i
\(971\) −20.4384 32.5275i −0.655899 1.04386i −0.994682 0.102993i \(-0.967158\pi\)
0.338783 0.940865i \(-0.389985\pi\)
\(972\) 0 0
\(973\) −13.8849 + 17.4112i −0.445131 + 0.558176i
\(974\) −10.8545 + 10.8545i −0.347799 + 0.347799i
\(975\) 0 0
\(976\) −12.7276 4.45359i −0.407402 0.142556i
\(977\) −10.3154 + 8.22623i −0.330018 + 0.263181i −0.774454 0.632630i \(-0.781975\pi\)
0.444436 + 0.895810i \(0.353404\pi\)
\(978\) 0 0
\(979\) −3.33665 + 6.92863i −0.106640 + 0.221440i
\(980\) −61.6008 14.0600i −1.96777 0.449130i
\(981\) 0 0
\(982\) 3.77731 1.81906i 0.120539 0.0580485i
\(983\) −1.21002 3.45804i −0.0385937 0.110294i 0.922974 0.384862i \(-0.125751\pi\)
−0.961568 + 0.274568i \(0.911465\pi\)
\(984\) 0 0
\(985\) 62.2939i 1.98485i
\(986\) 6.96651 15.8478i 0.221859 0.504696i
\(987\) 0 0
\(988\) −7.22504 + 11.4986i −0.229859 + 0.365819i
\(989\) 2.99008 1.04627i 0.0950790 0.0332696i
\(990\) 0 0
\(991\) −5.42316 + 1.23780i −0.172272 + 0.0393201i −0.307787 0.951455i \(-0.599588\pi\)
0.135515 + 0.990775i \(0.456731\pi\)
\(992\) −5.23792 + 22.9488i −0.166304 + 0.728627i
\(993\) 0 0
\(994\) 8.12123 + 0.915043i 0.257590 + 0.0290234i
\(995\) −16.2815 20.4164i −0.516158 0.647242i
\(996\) 0 0
\(997\) 14.8919 1.67792i 0.471633 0.0531402i 0.127050 0.991896i \(-0.459449\pi\)
0.344582 + 0.938756i \(0.388021\pi\)
\(998\) −5.27995 5.27995i −0.167134 0.167134i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.v.b.26.12 yes 240
3.2 odd 2 inner 783.2.v.b.26.9 240
29.19 odd 28 inner 783.2.v.b.512.9 yes 240
87.77 even 28 inner 783.2.v.b.512.12 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
783.2.v.b.26.9 240 3.2 odd 2 inner
783.2.v.b.26.12 yes 240 1.1 even 1 trivial
783.2.v.b.512.9 yes 240 29.19 odd 28 inner
783.2.v.b.512.12 yes 240 87.77 even 28 inner