gp: [N,k,chi] = [783,2,Mod(26,783)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(783, base_ring=CyclotomicField(28))
chi = DirichletCharacter(H, H._module([14, 19]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("783.26");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [240,0,0,0,0,0,0,0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{240} - 158 T_{2}^{236} + 13877 T_{2}^{232} + 784 T_{2}^{230} - 986490 T_{2}^{228} + \cdots + 28\!\cdots\!61 \)
T2^240 - 158*T2^236 + 13877*T2^232 + 784*T2^230 - 986490*T2^228 - 123872*T2^226 + 65962900*T2^224 + 6653920*T2^222 - 4058575490*T2^220 - 209335952*T2^218 + 237020884235*T2^216 - 22676723636*T2^214 - 11961075841248*T2^212 + 2597688396688*T2^210 + 521568183492395*T2^208 - 158380418147896*T2^206 - 20727527849882966*T2^204 + 7765799017478460*T2^202 + 776931348837217346*T2^200 - 340284135416777580*T2^198 - 26858510659561595144*T2^196 + 13262209348345797084*T2^194 + 884348580056954595990*T2^192 - 391336768446332597392*T2^190 - 25242603633693700224286*T2^188 + 11889745450995660632552*T2^186 + 660517504337204409400263*T2^184 - 376530799161882126508880*T2^182 - 16311180757991581704732834*T2^180 + 8874876462881883346715116*T2^178 + 378840057101590696009405849*T2^176 - 147749836269020098344044072*T2^174 - 8078052563513780644895991356*T2^172 + 2561927434570054548544073268*T2^170 + 162019653881235286827437837065*T2^168 - 31516013493513785823951737744*T2^166 - 2845882370604819054202700817792*T2^164 + 453289878232954866741288367360*T2^162 + 48382214112790570645029531086696*T2^160 - 1032013465716186140331791478104*T2^158 - 758421671947258798000323472043640*T2^156 - 114644958671458059064154410231896*T2^154 + 11089843166411086276890927398528697*T2^152 + 3908456541050785961424992524575128*T2^150 - 147496002021603293482896999231854840*T2^148 - 75692729421524655080978434365289252*T2^146 + 1755669243345404078430900634929715879*T2^144 + 1090314851452269524741092445206849368*T2^142 - 18602288613621957353284632874424036706*T2^140 - 14513662669800757712272650819363865568*T2^138 + 189588941757502612781502338486204453218*T2^136 + 136841430433139575767226271132421642748*T2^134 - 1754679256614509842679876241601963422394*T2^132 - 1120205807403511130747040830552347483888*T2^130 + 15311268122459408164598666606253191774824*T2^128 + 6950722357140311661183250518486831451056*T2^126 - 119352402073362607490289802046276539512306*T2^124 - 36649693099551587517145336754023782321588*T2^122 + 830796125863172613755206436107215308807291*T2^120 + 181611392275730499575976772547298302029040*T2^118 - 5277752366345793127137937353918376279431482*T2^116 - 768289312732290194703603319320117470280300*T2^114 + 31037282113031838452822325420220237645063547*T2^112 + 2191330356332684803113556431023859361844728*T2^110 - 168931953839102841360662886920299676938445812*T2^108 + 8080133826171672377566584504309814862142768*T2^106 + 836509142506850743854620208574239654202741665*T2^104 - 148075611773649642117157188871455697901418760*T2^102 - 3416466811044303360105725711000166662671302584*T2^100 + 908497054990802804329383969239767830147044420*T2^98 + 10747099657729635168341749974078558170636792331*T2^96 - 2493070235515300024191316252182783676969896900*T2^94 - 25284220364891683493684808738476539525157326466*T2^92 + 409220835492035860637881981028401498301098220*T2^90 + 43244431454727492578978533863900018157656978987*T2^88 + 14920480464412489866270809030593746915441031984*T2^86 - 48496480794953992081435406956662916930727006462*T2^84 - 36138118870823110595444653444199020293885245100*T2^82 + 30399725108355853604896202349056586124259457765*T2^80 + 35946644786905530534000665397579112191186459404*T2^78 - 11621818188476464939851692484824116644773374696*T2^76 - 19263740062444787032931932773887706962658799684*T2^74 + 15099539003424915951187928317366084676279342894*T2^72 + 14044385702364685113967902542431334760576259792*T2^70 - 11462854270331324817565252339798761143129226446*T2^68 - 11798194749816622727726476473871499675398435696*T2^66 + 4775098219482703269147696798594024646604046277*T2^64 + 6060383243350405605392939356516230341713722168*T2^62 - 1747298815399657378704271684039537131878949744*T2^60 - 2430160257525517144727485392966305102297490936*T2^58 + 1031854495592910462375932107640974236447727401*T2^56 + 1063141162988798504542468166374965341240335384*T2^54 - 481872379761351559764651565164871528927184316*T2^52 - 348114166051359525189864907594504675861424200*T2^50 + 268351793196270956587085946696210169852428657*T2^48 + 58639172114508394351649750513963705042594876*T2^46 - 82528359333600498013995504392960989164775876*T2^44 - 4220385489274773029182611767805699950103672*T2^42 + 27459357844246032238734797531453225417168115*T2^40 - 11380602108512324124109254218724722384191988*T2^38 - 135627039964532281726005536058198574335776*T2^36 + 1456317435507904475747851940323331968471380*T2^34 - 408636603623006482590347751340621541786586*T2^32 + 31812348792687279103042130099099397979068*T2^30 + 9595500045525824473476431599402174007040*T2^28 - 4230730936341964668841469756110791265372*T2^26 + 2918751778701678959127962391454641522426*T2^24 - 1158479650717825591957407211197758954844*T2^22 + 280541545562493946521010849880662185670*T2^20 - 21970233993761992622301529176377638568*T2^18 - 883591517331874527916566463248125395*T2^16 + 86232511694435088080207268484034920*T2^14 + 4647446018227923271767861347744320*T2^12 + 106820046187138268790141842786112*T2^10 + 580369667369194488439064455562*T2^8 - 41953178035685947764732981500*T2^6 + 615229157427206462567165900*T2^4 + 65907442282190986578948*T2^2 + 2883821021683985761
acting on \(S_{2}^{\mathrm{new}}(783, [\chi])\).