Properties

Label 783.2.v
Level $783$
Weight $2$
Character orbit 783.v
Rep. character $\chi_{783}(26,\cdot)$
Character field $\Q(\zeta_{28})$
Dimension $480$
Newform subspaces $2$
Sturm bound $180$
Trace bound $10$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.v (of order \(28\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 87 \)
Character field: \(\Q(\zeta_{28})\)
Newform subspaces: \( 2 \)
Sturm bound: \(180\)
Trace bound: \(10\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(783, [\chi])\).

Total New Old
Modular forms 1152 480 672
Cusp forms 1008 480 528
Eisenstein series 144 0 144

Trace form

\( 480 q - 12 q^{10} + 144 q^{16} + 4 q^{19} - 80 q^{25} - 8 q^{31} - 52 q^{37} + 52 q^{40} - 8 q^{43} - 160 q^{46} - 64 q^{49} + 124 q^{52} - 208 q^{55} + 64 q^{58} + 84 q^{61} + 56 q^{67} + 104 q^{70} - 104 q^{73}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(783, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
783.2.v.a 783.v 87.k $240$ $6.252$ None 783.2.v.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{28}]$
783.2.v.b 783.v 87.k $240$ $6.252$ None 783.2.v.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{28}]$

Decomposition of \(S_{2}^{\mathrm{old}}(783, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(783, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(261, [\chi])\)\(^{\oplus 2}\)