Properties

Label 783.2.k.a.487.1
Level $783$
Weight $2$
Character 783.487
Analytic conductor $6.252$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(82,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.k (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-2,0,-2,-8,0,-8,-7,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 487.1
Root \(0.222521 + 0.974928i\) of defining polynomial
Character \(\chi\) \(=\) 783.487
Dual form 783.2.k.a.82.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.12349 + 1.40881i) q^{2} +(-0.277479 - 1.21572i) q^{4} +(-1.27748 + 1.60191i) q^{5} +(-0.599031 + 2.62453i) q^{7} +(-1.22252 - 0.588735i) q^{8} +(-0.821552 - 3.59945i) q^{10} +(-3.82640 + 1.84270i) q^{11} +(-0.0990311 + 0.0476909i) q^{13} +(-3.02446 - 3.79255i) q^{14} +(4.44989 - 2.14295i) q^{16} +1.10992 q^{17} +(-0.291053 - 1.27518i) q^{19} +(2.30194 + 1.10855i) q^{20} +(1.70291 - 7.46092i) q^{22} +(-1.74698 - 2.19064i) q^{23} +(0.178448 + 0.781831i) q^{25} +(0.0440730 - 0.193096i) q^{26} +3.35690 q^{28} +(2.97554 + 4.48845i) q^{29} +(2.77748 - 3.48285i) q^{31} +(-1.37651 + 6.03089i) q^{32} +(-1.24698 + 1.56366i) q^{34} +(-3.43900 - 4.31237i) q^{35} +(-8.32036 - 4.00687i) q^{37} +(2.12349 + 1.02262i) q^{38} +(2.50484 - 1.20627i) q^{40} -6.19806 q^{41} +(-2.28836 - 2.86952i) q^{43} +(3.30194 + 4.14050i) q^{44} +5.04892 q^{46} +(6.49396 - 3.12733i) q^{47} +(-0.222521 - 0.107160i) q^{49} +(-1.30194 - 0.626980i) q^{50} +(0.0854576 + 0.107160i) q^{52} +(7.09783 - 8.90040i) q^{53} +(1.93631 - 8.48354i) q^{55} +(2.27748 - 2.85587i) q^{56} +(-9.66637 - 0.850747i) q^{58} -6.10992 q^{59} +(-2.02446 + 8.86973i) q^{61} +(1.78621 + 7.82589i) q^{62} +(-0.791053 - 0.991949i) q^{64} +(0.0501138 - 0.219563i) q^{65} +(-1.96950 - 0.948461i) q^{67} +(-0.307979 - 1.34934i) q^{68} +9.93900 q^{70} +(4.57338 - 2.20242i) q^{71} +(-5.57942 - 6.99637i) q^{73} +(14.9928 - 7.22013i) q^{74} +(-1.46950 + 0.707674i) q^{76} +(-2.54407 - 11.1463i) q^{77} +(-7.70560 - 3.71082i) q^{79} +(-2.25182 + 9.86589i) q^{80} +(6.96346 - 8.73190i) q^{82} +(-0.900969 - 3.94740i) q^{83} +(-1.41789 + 1.77798i) q^{85} +6.61356 q^{86} +5.76271 q^{88} +(-6.64526 + 8.33289i) q^{89} +(-0.0658433 - 0.288478i) q^{91} +(-2.17845 + 2.73169i) q^{92} +(-2.89008 + 12.6623i) q^{94} +(2.41454 + 1.16278i) q^{95} +(2.53588 + 11.1104i) q^{97} +(0.400969 - 0.193096i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - 2 q^{4} - 8 q^{5} - 8 q^{7} - 7 q^{8} - 9 q^{10} - 5 q^{11} - 5 q^{13} - 9 q^{14} + 4 q^{16} + 8 q^{17} + 4 q^{19} + 5 q^{20} - 3 q^{22} - q^{23} - 3 q^{25} + 4 q^{26} + 12 q^{28} + 27 q^{29}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{5}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.12349 + 1.40881i −0.794427 + 0.996180i 0.205419 + 0.978674i \(0.434144\pi\)
−0.999847 + 0.0175063i \(0.994427\pi\)
\(3\) 0 0
\(4\) −0.277479 1.21572i −0.138740 0.607858i
\(5\) −1.27748 + 1.60191i −0.571306 + 0.716395i −0.980603 0.196006i \(-0.937203\pi\)
0.409297 + 0.912401i \(0.365774\pi\)
\(6\) 0 0
\(7\) −0.599031 + 2.62453i −0.226412 + 0.991978i 0.726126 + 0.687561i \(0.241319\pi\)
−0.952539 + 0.304417i \(0.901538\pi\)
\(8\) −1.22252 0.588735i −0.432226 0.208149i
\(9\) 0 0
\(10\) −0.821552 3.59945i −0.259798 1.13825i
\(11\) −3.82640 + 1.84270i −1.15370 + 0.555594i −0.910144 0.414293i \(-0.864029\pi\)
−0.243558 + 0.969886i \(0.578315\pi\)
\(12\) 0 0
\(13\) −0.0990311 + 0.0476909i −0.0274663 + 0.0132271i −0.447566 0.894251i \(-0.647709\pi\)
0.420100 + 0.907478i \(0.361995\pi\)
\(14\) −3.02446 3.79255i −0.808321 1.01360i
\(15\) 0 0
\(16\) 4.44989 2.14295i 1.11247 0.535738i
\(17\) 1.10992 0.269194 0.134597 0.990900i \(-0.457026\pi\)
0.134597 + 0.990900i \(0.457026\pi\)
\(18\) 0 0
\(19\) −0.291053 1.27518i −0.0667720 0.292547i 0.930506 0.366276i \(-0.119367\pi\)
−0.997278 + 0.0737284i \(0.976510\pi\)
\(20\) 2.30194 + 1.10855i 0.514729 + 0.247880i
\(21\) 0 0
\(22\) 1.70291 7.46092i 0.363061 1.59067i
\(23\) −1.74698 2.19064i −0.364270 0.456781i 0.565594 0.824684i \(-0.308647\pi\)
−0.929864 + 0.367903i \(0.880076\pi\)
\(24\) 0 0
\(25\) 0.178448 + 0.781831i 0.0356896 + 0.156366i
\(26\) 0.0440730 0.193096i 0.00864343 0.0378693i
\(27\) 0 0
\(28\) 3.35690 0.634394
\(29\) 2.97554 + 4.48845i 0.552544 + 0.833484i
\(30\) 0 0
\(31\) 2.77748 3.48285i 0.498850 0.625538i −0.467120 0.884194i \(-0.654708\pi\)
0.965969 + 0.258656i \(0.0832796\pi\)
\(32\) −1.37651 + 6.03089i −0.243335 + 1.06612i
\(33\) 0 0
\(34\) −1.24698 + 1.56366i −0.213855 + 0.268166i
\(35\) −3.43900 4.31237i −0.581297 0.728924i
\(36\) 0 0
\(37\) −8.32036 4.00687i −1.36786 0.658726i −0.401484 0.915866i \(-0.631505\pi\)
−0.966374 + 0.257140i \(0.917220\pi\)
\(38\) 2.12349 + 1.02262i 0.344476 + 0.165891i
\(39\) 0 0
\(40\) 2.50484 1.20627i 0.396051 0.190728i
\(41\) −6.19806 −0.967975 −0.483987 0.875075i \(-0.660812\pi\)
−0.483987 + 0.875075i \(0.660812\pi\)
\(42\) 0 0
\(43\) −2.28836 2.86952i −0.348972 0.437597i 0.576105 0.817375i \(-0.304572\pi\)
−0.925078 + 0.379778i \(0.876000\pi\)
\(44\) 3.30194 + 4.14050i 0.497786 + 0.624204i
\(45\) 0 0
\(46\) 5.04892 0.744422
\(47\) 6.49396 3.12733i 0.947241 0.456167i 0.104523 0.994522i \(-0.466668\pi\)
0.842718 + 0.538355i \(0.180954\pi\)
\(48\) 0 0
\(49\) −0.222521 0.107160i −0.0317887 0.0153086i
\(50\) −1.30194 0.626980i −0.184122 0.0886684i
\(51\) 0 0
\(52\) 0.0854576 + 0.107160i 0.0118508 + 0.0148605i
\(53\) 7.09783 8.90040i 0.974963 1.22256i 4.45840e−5 1.00000i \(-0.499986\pi\)
0.974918 0.222564i \(-0.0714428\pi\)
\(54\) 0 0
\(55\) 1.93631 8.48354i 0.261092 1.14392i
\(56\) 2.27748 2.85587i 0.304341 0.381631i
\(57\) 0 0
\(58\) −9.66637 0.850747i −1.26926 0.111709i
\(59\) −6.10992 −0.795443 −0.397722 0.917506i \(-0.630199\pi\)
−0.397722 + 0.917506i \(0.630199\pi\)
\(60\) 0 0
\(61\) −2.02446 + 8.86973i −0.259205 + 1.13565i 0.662898 + 0.748710i \(0.269326\pi\)
−0.922103 + 0.386943i \(0.873531\pi\)
\(62\) 1.78621 + 7.82589i 0.226849 + 0.993889i
\(63\) 0 0
\(64\) −0.791053 0.991949i −0.0988816 0.123994i
\(65\) 0.0501138 0.219563i 0.00621585 0.0272334i
\(66\) 0 0
\(67\) −1.96950 0.948461i −0.240613 0.115873i 0.309692 0.950837i \(-0.399774\pi\)
−0.550305 + 0.834964i \(0.685488\pi\)
\(68\) −0.307979 1.34934i −0.0373479 0.163632i
\(69\) 0 0
\(70\) 9.93900 1.18794
\(71\) 4.57338 2.20242i 0.542760 0.261379i −0.142353 0.989816i \(-0.545467\pi\)
0.685113 + 0.728437i \(0.259753\pi\)
\(72\) 0 0
\(73\) −5.57942 6.99637i −0.653021 0.818863i 0.339542 0.940591i \(-0.389728\pi\)
−0.992563 + 0.121728i \(0.961156\pi\)
\(74\) 14.9928 7.22013i 1.74287 0.839324i
\(75\) 0 0
\(76\) −1.46950 + 0.707674i −0.168563 + 0.0811758i
\(77\) −2.54407 11.1463i −0.289924 1.27024i
\(78\) 0 0
\(79\) −7.70560 3.71082i −0.866947 0.417500i −0.0531072 0.998589i \(-0.516913\pi\)
−0.813840 + 0.581089i \(0.802627\pi\)
\(80\) −2.25182 + 9.86589i −0.251762 + 1.10304i
\(81\) 0 0
\(82\) 6.96346 8.73190i 0.768985 0.964277i
\(83\) −0.900969 3.94740i −0.0988942 0.433284i 0.901106 0.433599i \(-0.142757\pi\)
−1.00000 0.000315629i \(0.999900\pi\)
\(84\) 0 0
\(85\) −1.41789 + 1.77798i −0.153792 + 0.192849i
\(86\) 6.61356 0.713159
\(87\) 0 0
\(88\) 5.76271 0.614307
\(89\) −6.64526 + 8.33289i −0.704396 + 0.883285i −0.997343 0.0728438i \(-0.976793\pi\)
0.292947 + 0.956129i \(0.405364\pi\)
\(90\) 0 0
\(91\) −0.0658433 0.288478i −0.00690225 0.0302407i
\(92\) −2.17845 + 2.73169i −0.227119 + 0.284798i
\(93\) 0 0
\(94\) −2.89008 + 12.6623i −0.298089 + 1.30601i
\(95\) 2.41454 + 1.16278i 0.247727 + 0.119299i
\(96\) 0 0
\(97\) 2.53588 + 11.1104i 0.257479 + 1.12809i 0.923936 + 0.382547i \(0.124953\pi\)
−0.666457 + 0.745544i \(0.732190\pi\)
\(98\) 0.400969 0.193096i 0.0405040 0.0195057i
\(99\) 0 0
\(100\) 0.900969 0.433884i 0.0900969 0.0433884i
\(101\) −0.507533 0.636426i −0.0505014 0.0633267i 0.755939 0.654642i \(-0.227180\pi\)
−0.806441 + 0.591315i \(0.798609\pi\)
\(102\) 0 0
\(103\) 13.6114 6.55491i 1.34117 0.645874i 0.380816 0.924651i \(-0.375643\pi\)
0.960356 + 0.278777i \(0.0899289\pi\)
\(104\) 0.149145 0.0146249
\(105\) 0 0
\(106\) 4.56465 + 19.9990i 0.443358 + 1.94248i
\(107\) 4.48039 + 2.15764i 0.433135 + 0.208587i 0.637730 0.770260i \(-0.279873\pi\)
−0.204595 + 0.978847i \(0.565588\pi\)
\(108\) 0 0
\(109\) −1.99731 + 8.75079i −0.191308 + 0.838174i 0.784602 + 0.620000i \(0.212867\pi\)
−0.975910 + 0.218174i \(0.929990\pi\)
\(110\) 9.77628 + 12.2591i 0.932132 + 1.16886i
\(111\) 0 0
\(112\) 2.95862 + 12.9625i 0.279563 + 1.22484i
\(113\) 2.84817 12.4786i 0.267933 1.17389i −0.644480 0.764621i \(-0.722926\pi\)
0.912413 0.409270i \(-0.134217\pi\)
\(114\) 0 0
\(115\) 5.74094 0.535345
\(116\) 4.63102 4.86286i 0.429980 0.451505i
\(117\) 0 0
\(118\) 6.86443 8.60772i 0.631922 0.792405i
\(119\) −0.664874 + 2.91301i −0.0609489 + 0.267035i
\(120\) 0 0
\(121\) 4.38740 5.50162i 0.398854 0.500147i
\(122\) −10.2213 12.8171i −0.925395 1.16041i
\(123\) 0 0
\(124\) −5.00484 2.41021i −0.449448 0.216443i
\(125\) −10.7104 5.15788i −0.957971 0.461334i
\(126\) 0 0
\(127\) −13.7702 + 6.63140i −1.22191 + 0.588442i −0.929843 0.367956i \(-0.880058\pi\)
−0.292068 + 0.956398i \(0.594343\pi\)
\(128\) −10.0858 −0.891463
\(129\) 0 0
\(130\) 0.253020 + 0.317278i 0.0221914 + 0.0278271i
\(131\) −5.89493 7.39201i −0.515042 0.645843i 0.454506 0.890744i \(-0.349816\pi\)
−0.969548 + 0.244901i \(0.921244\pi\)
\(132\) 0 0
\(133\) 3.52111 0.305319
\(134\) 3.54892 1.70907i 0.306580 0.147641i
\(135\) 0 0
\(136\) −1.35690 0.653447i −0.116353 0.0560326i
\(137\) 17.2615 + 8.31271i 1.47475 + 0.710202i 0.986691 0.162608i \(-0.0519905\pi\)
0.488060 + 0.872810i \(0.337705\pi\)
\(138\) 0 0
\(139\) 2.96197 + 3.71419i 0.251231 + 0.315033i 0.891415 0.453188i \(-0.149713\pi\)
−0.640184 + 0.768222i \(0.721142\pi\)
\(140\) −4.28836 + 5.37744i −0.362433 + 0.454477i
\(141\) 0 0
\(142\) −2.03534 + 8.91742i −0.170802 + 0.748334i
\(143\) 0.291053 0.364968i 0.0243390 0.0305202i
\(144\) 0 0
\(145\) −10.9913 0.967353i −0.912775 0.0803343i
\(146\) 16.1250 1.33451
\(147\) 0 0
\(148\) −2.56249 + 11.2270i −0.210635 + 0.922854i
\(149\) −0.826396 3.62068i −0.0677010 0.296618i 0.929731 0.368240i \(-0.120040\pi\)
−0.997432 + 0.0716223i \(0.977182\pi\)
\(150\) 0 0
\(151\) −11.6298 14.5833i −0.946422 1.18678i −0.982280 0.187419i \(-0.939988\pi\)
0.0358583 0.999357i \(-0.488583\pi\)
\(152\) −0.394928 + 1.73029i −0.0320329 + 0.140345i
\(153\) 0 0
\(154\) 18.5613 + 8.93865i 1.49571 + 0.720297i
\(155\) 2.03103 + 8.89853i 0.163136 + 0.714747i
\(156\) 0 0
\(157\) −20.5743 −1.64201 −0.821005 0.570920i \(-0.806586\pi\)
−0.821005 + 0.570920i \(0.806586\pi\)
\(158\) 13.8850 6.68666i 1.10463 0.531962i
\(159\) 0 0
\(160\) −7.90246 9.90937i −0.624744 0.783405i
\(161\) 6.79590 3.27273i 0.535592 0.257927i
\(162\) 0 0
\(163\) −11.6516 + 5.61111i −0.912623 + 0.439496i −0.830432 0.557120i \(-0.811906\pi\)
−0.0821916 + 0.996617i \(0.526192\pi\)
\(164\) 1.71983 + 7.53508i 0.134296 + 0.588391i
\(165\) 0 0
\(166\) 6.57338 + 3.16557i 0.510193 + 0.245696i
\(167\) −3.73945 + 16.3836i −0.289367 + 1.26780i 0.596029 + 0.802963i \(0.296744\pi\)
−0.885396 + 0.464837i \(0.846113\pi\)
\(168\) 0 0
\(169\) −8.09783 + 10.1544i −0.622910 + 0.781105i
\(170\) −0.911854 3.99509i −0.0699360 0.306410i
\(171\) 0 0
\(172\) −2.85354 + 3.57823i −0.217581 + 0.272838i
\(173\) −20.3381 −1.54628 −0.773139 0.634237i \(-0.781314\pi\)
−0.773139 + 0.634237i \(0.781314\pi\)
\(174\) 0 0
\(175\) −2.15883 −0.163192
\(176\) −13.0782 + 16.3996i −0.985808 + 1.23616i
\(177\) 0 0
\(178\) −4.27359 18.7238i −0.320319 1.40341i
\(179\) −3.20895 + 4.02389i −0.239848 + 0.300760i −0.887157 0.461468i \(-0.847323\pi\)
0.647309 + 0.762228i \(0.275894\pi\)
\(180\) 0 0
\(181\) −5.85743 + 25.6631i −0.435379 + 1.90752i −0.0156368 + 0.999878i \(0.504978\pi\)
−0.419742 + 0.907643i \(0.637880\pi\)
\(182\) 0.480386 + 0.231342i 0.0356086 + 0.0171482i
\(183\) 0 0
\(184\) 0.846011 + 3.70662i 0.0623687 + 0.273255i
\(185\) 17.0477 8.20975i 1.25337 0.603593i
\(186\) 0 0
\(187\) −4.24698 + 2.04524i −0.310570 + 0.149563i
\(188\) −5.60388 7.02704i −0.408705 0.512499i
\(189\) 0 0
\(190\) −4.35086 + 2.09526i −0.315644 + 0.152006i
\(191\) −19.6993 −1.42539 −0.712696 0.701473i \(-0.752526\pi\)
−0.712696 + 0.701473i \(0.752526\pi\)
\(192\) 0 0
\(193\) −1.80529 7.90949i −0.129948 0.569338i −0.997416 0.0718451i \(-0.977111\pi\)
0.867468 0.497493i \(-0.165746\pi\)
\(194\) −18.5015 8.90985i −1.32833 0.639690i
\(195\) 0 0
\(196\) −0.0685317 + 0.300257i −0.00489512 + 0.0214469i
\(197\) −6.44049 8.07612i −0.458866 0.575400i 0.497540 0.867441i \(-0.334237\pi\)
−0.956406 + 0.292041i \(0.905666\pi\)
\(198\) 0 0
\(199\) 2.69441 + 11.8050i 0.191002 + 0.836834i 0.976076 + 0.217432i \(0.0697680\pi\)
−0.785074 + 0.619403i \(0.787375\pi\)
\(200\) 0.242135 1.06086i 0.0171215 0.0750144i
\(201\) 0 0
\(202\) 1.46681 0.103205
\(203\) −13.5625 + 5.12067i −0.951900 + 0.359400i
\(204\) 0 0
\(205\) 7.91789 9.92873i 0.553010 0.693452i
\(206\) −6.05765 + 26.5403i −0.422056 + 1.84915i
\(207\) 0 0
\(208\) −0.338478 + 0.424438i −0.0234692 + 0.0294295i
\(209\) 3.46346 + 4.34304i 0.239573 + 0.300414i
\(210\) 0 0
\(211\) 12.4330 + 5.98740i 0.855920 + 0.412189i 0.809772 0.586745i \(-0.199591\pi\)
0.0461486 + 0.998935i \(0.485305\pi\)
\(212\) −12.7899 6.15927i −0.878411 0.423020i
\(213\) 0 0
\(214\) −8.07338 + 3.88793i −0.551885 + 0.265774i
\(215\) 7.52004 0.512863
\(216\) 0 0
\(217\) 7.47703 + 9.37590i 0.507574 + 0.636478i
\(218\) −10.0843 12.6453i −0.682992 0.856445i
\(219\) 0 0
\(220\) −10.8509 −0.731564
\(221\) −0.109916 + 0.0529329i −0.00739377 + 0.00356065i
\(222\) 0 0
\(223\) −17.1516 8.25977i −1.14856 0.553115i −0.239956 0.970784i \(-0.577133\pi\)
−0.908600 + 0.417668i \(0.862847\pi\)
\(224\) −15.0036 7.22538i −1.00247 0.482766i
\(225\) 0 0
\(226\) 14.3802 + 18.0321i 0.956554 + 1.19948i
\(227\) −1.17092 + 1.46828i −0.0777164 + 0.0974532i −0.819170 0.573551i \(-0.805565\pi\)
0.741453 + 0.671004i \(0.234137\pi\)
\(228\) 0 0
\(229\) 0.769282 3.37045i 0.0508356 0.222725i −0.943129 0.332427i \(-0.892132\pi\)
0.993965 + 0.109702i \(0.0349896\pi\)
\(230\) −6.44989 + 8.08790i −0.425293 + 0.533300i
\(231\) 0 0
\(232\) −0.995156 7.23903i −0.0653352 0.475265i
\(233\) −0.567040 −0.0371480 −0.0185740 0.999827i \(-0.505913\pi\)
−0.0185740 + 0.999827i \(0.505913\pi\)
\(234\) 0 0
\(235\) −3.28621 + 14.3978i −0.214369 + 0.939210i
\(236\) 1.69537 + 7.42792i 0.110359 + 0.483516i
\(237\) 0 0
\(238\) −3.35690 4.20941i −0.217595 0.272856i
\(239\) −2.05161 + 8.98867i −0.132707 + 0.581429i 0.864221 + 0.503112i \(0.167812\pi\)
−0.996929 + 0.0783168i \(0.975045\pi\)
\(240\) 0 0
\(241\) 11.9025 + 5.73192i 0.766705 + 0.369226i 0.776001 0.630731i \(-0.217245\pi\)
−0.00929651 + 0.999957i \(0.502959\pi\)
\(242\) 2.82155 + 12.3620i 0.181376 + 0.794661i
\(243\) 0 0
\(244\) 11.3448 0.726277
\(245\) 0.455927 0.219563i 0.0291281 0.0140274i
\(246\) 0 0
\(247\) 0.0896380 + 0.112402i 0.00570353 + 0.00715200i
\(248\) −5.44600 + 2.62266i −0.345821 + 0.166539i
\(249\) 0 0
\(250\) 19.2995 9.29417i 1.22061 0.587815i
\(251\) −0.0864171 0.378618i −0.00545460 0.0238982i 0.972127 0.234453i \(-0.0753300\pi\)
−0.977582 + 0.210555i \(0.932473\pi\)
\(252\) 0 0
\(253\) 10.7213 + 5.16312i 0.674044 + 0.324602i
\(254\) 6.12833 26.8500i 0.384526 1.68472i
\(255\) 0 0
\(256\) 12.9133 16.1928i 0.807084 1.01205i
\(257\) 2.32520 + 10.1874i 0.145042 + 0.635470i 0.994220 + 0.107363i \(0.0342409\pi\)
−0.849178 + 0.528107i \(0.822902\pi\)
\(258\) 0 0
\(259\) 15.5003 19.4368i 0.963141 1.20774i
\(260\) −0.280831 −0.0174164
\(261\) 0 0
\(262\) 17.0368 1.05254
\(263\) −7.31886 + 9.17756i −0.451300 + 0.565913i −0.954482 0.298268i \(-0.903591\pi\)
0.503182 + 0.864181i \(0.332163\pi\)
\(264\) 0 0
\(265\) 5.19029 + 22.7402i 0.318837 + 1.39692i
\(266\) −3.95593 + 4.96058i −0.242553 + 0.304152i
\(267\) 0 0
\(268\) −0.606564 + 2.65753i −0.0370518 + 0.162334i
\(269\) 18.0673 + 8.70077i 1.10158 + 0.530495i 0.894156 0.447755i \(-0.147776\pi\)
0.207429 + 0.978250i \(0.433491\pi\)
\(270\) 0 0
\(271\) −4.62445 20.2610i −0.280915 1.23077i −0.896623 0.442795i \(-0.853987\pi\)
0.615707 0.787975i \(-0.288870\pi\)
\(272\) 4.93900 2.37850i 0.299471 0.144218i
\(273\) 0 0
\(274\) −31.1042 + 14.9790i −1.87907 + 0.904913i
\(275\) −2.12349 2.66277i −0.128051 0.160571i
\(276\) 0 0
\(277\) −7.87047 + 3.79022i −0.472891 + 0.227732i −0.655121 0.755524i \(-0.727383\pi\)
0.182231 + 0.983256i \(0.441668\pi\)
\(278\) −8.56033 −0.513415
\(279\) 0 0
\(280\) 1.66541 + 7.29662i 0.0995271 + 0.436057i
\(281\) 11.2349 + 5.41044i 0.670218 + 0.322760i 0.737864 0.674949i \(-0.235835\pi\)
−0.0676461 + 0.997709i \(0.521549\pi\)
\(282\) 0 0
\(283\) 2.52930 11.0816i 0.150351 0.658733i −0.842431 0.538804i \(-0.818876\pi\)
0.992783 0.119929i \(-0.0382666\pi\)
\(284\) −3.94653 4.94880i −0.234184 0.293657i
\(285\) 0 0
\(286\) 0.187177 + 0.820077i 0.0110680 + 0.0484921i
\(287\) 3.71283 16.2670i 0.219162 0.960210i
\(288\) 0 0
\(289\) −15.7681 −0.927534
\(290\) 13.7114 14.3978i 0.805161 0.845469i
\(291\) 0 0
\(292\) −6.95742 + 8.72433i −0.407152 + 0.510553i
\(293\) 1.50053 6.57426i 0.0876620 0.384073i −0.911997 0.410198i \(-0.865460\pi\)
0.999659 + 0.0261252i \(0.00831685\pi\)
\(294\) 0 0
\(295\) 7.80529 9.78752i 0.454442 0.569852i
\(296\) 7.81282 + 9.79697i 0.454111 + 0.569437i
\(297\) 0 0
\(298\) 6.02930 + 2.90356i 0.349268 + 0.168199i
\(299\) 0.277479 + 0.133627i 0.0160470 + 0.00772784i
\(300\) 0 0
\(301\) 8.90193 4.28694i 0.513099 0.247095i
\(302\) 33.6112 1.93411
\(303\) 0 0
\(304\) −4.02781 5.05072i −0.231011 0.289678i
\(305\) −11.6223 14.5739i −0.665491 0.834499i
\(306\) 0 0
\(307\) −4.59956 −0.262511 −0.131255 0.991349i \(-0.541901\pi\)
−0.131255 + 0.991349i \(0.541901\pi\)
\(308\) −12.8448 + 6.18574i −0.731901 + 0.352465i
\(309\) 0 0
\(310\) −14.8182 7.13607i −0.841617 0.405301i
\(311\) 26.2838 + 12.6576i 1.49042 + 0.717748i 0.989063 0.147494i \(-0.0471206\pi\)
0.501355 + 0.865241i \(0.332835\pi\)
\(312\) 0 0
\(313\) −8.12833 10.1926i −0.459441 0.576120i 0.497110 0.867688i \(-0.334395\pi\)
−0.956550 + 0.291567i \(0.905823\pi\)
\(314\) 23.1151 28.9854i 1.30446 1.63574i
\(315\) 0 0
\(316\) −2.37316 + 10.3975i −0.133501 + 0.584904i
\(317\) −18.9494 + 23.7617i −1.06430 + 1.33459i −0.124749 + 0.992188i \(0.539813\pi\)
−0.939553 + 0.342404i \(0.888759\pi\)
\(318\) 0 0
\(319\) −19.6564 11.6916i −1.10055 0.654602i
\(320\) 2.59956 0.145320
\(321\) 0 0
\(322\) −3.02446 + 13.2510i −0.168546 + 0.738450i
\(323\) −0.323044 1.41535i −0.0179747 0.0787521i
\(324\) 0 0
\(325\) −0.0549581 0.0689153i −0.00304853 0.00382273i
\(326\) 5.18545 22.7189i 0.287195 1.25829i
\(327\) 0 0
\(328\) 7.57726 + 3.64902i 0.418384 + 0.201483i
\(329\) 4.31767 + 18.9169i 0.238041 + 1.04292i
\(330\) 0 0
\(331\) −18.4655 −1.01495 −0.507477 0.861665i \(-0.669422\pi\)
−0.507477 + 0.861665i \(0.669422\pi\)
\(332\) −4.54892 + 2.19064i −0.249654 + 0.120227i
\(333\) 0 0
\(334\) −18.8802 23.6750i −1.03308 1.29544i
\(335\) 4.03534 1.94332i 0.220474 0.106175i
\(336\) 0 0
\(337\) 29.3904 14.1537i 1.60100 0.770999i 0.601387 0.798958i \(-0.294615\pi\)
0.999609 + 0.0279589i \(0.00890076\pi\)
\(338\) −5.20775 22.8166i −0.283264 1.24106i
\(339\) 0 0
\(340\) 2.55496 + 1.23040i 0.138562 + 0.0667280i
\(341\) −4.20991 + 18.4448i −0.227979 + 0.998842i
\(342\) 0 0
\(343\) −11.3346 + 14.2131i −0.612011 + 0.767437i
\(344\) 1.10819 + 4.85529i 0.0597495 + 0.261779i
\(345\) 0 0
\(346\) 22.8497 28.6526i 1.22841 1.54037i
\(347\) 8.29829 0.445476 0.222738 0.974878i \(-0.428501\pi\)
0.222738 + 0.974878i \(0.428501\pi\)
\(348\) 0 0
\(349\) 28.0127 1.49948 0.749742 0.661730i \(-0.230178\pi\)
0.749742 + 0.661730i \(0.230178\pi\)
\(350\) 2.42543 3.04139i 0.129645 0.162569i
\(351\) 0 0
\(352\) −5.84601 25.6130i −0.311593 1.36518i
\(353\) 5.14340 6.44962i 0.273756 0.343279i −0.625881 0.779919i \(-0.715260\pi\)
0.899636 + 0.436640i \(0.143832\pi\)
\(354\) 0 0
\(355\) −2.31431 + 10.1397i −0.122831 + 0.538158i
\(356\) 11.9743 + 5.76654i 0.634639 + 0.305626i
\(357\) 0 0
\(358\) −2.06369 9.04160i −0.109069 0.477864i
\(359\) 13.1489 6.33218i 0.693973 0.334200i −0.0534293 0.998572i \(-0.517015\pi\)
0.747402 + 0.664372i \(0.231301\pi\)
\(360\) 0 0
\(361\) 15.5770 7.50150i 0.819843 0.394816i
\(362\) −29.5737 37.0842i −1.55436 1.94910i
\(363\) 0 0
\(364\) −0.332437 + 0.160093i −0.0174244 + 0.00839117i
\(365\) 18.3351 0.959704
\(366\) 0 0
\(367\) −6.44869 28.2536i −0.336619 1.47482i −0.806046 0.591853i \(-0.798397\pi\)
0.469427 0.882971i \(-0.344460\pi\)
\(368\) −12.4683 6.00442i −0.649955 0.313002i
\(369\) 0 0
\(370\) −7.58695 + 33.2406i −0.394427 + 1.72810i
\(371\) 19.1075 + 23.9601i 0.992013 + 1.24395i
\(372\) 0 0
\(373\) 4.77844 + 20.9357i 0.247418 + 1.08401i 0.934089 + 0.357041i \(0.116214\pi\)
−0.686671 + 0.726969i \(0.740928\pi\)
\(374\) 1.89008 8.28100i 0.0977339 0.428200i
\(375\) 0 0
\(376\) −9.78017 −0.504374
\(377\) −0.508729 0.302590i −0.0262009 0.0155842i
\(378\) 0 0
\(379\) 14.1746 17.7743i 0.728098 0.913007i −0.270667 0.962673i \(-0.587244\pi\)
0.998766 + 0.0496664i \(0.0158158\pi\)
\(380\) 0.743627 3.25804i 0.0381473 0.167134i
\(381\) 0 0
\(382\) 22.1320 27.7526i 1.13237 1.41995i
\(383\) −2.16003 2.70859i −0.110372 0.138403i 0.723577 0.690244i \(-0.242497\pi\)
−0.833949 + 0.551841i \(0.813925\pi\)
\(384\) 0 0
\(385\) 21.1054 + 10.1638i 1.07563 + 0.517996i
\(386\) 13.1712 + 6.34292i 0.670397 + 0.322846i
\(387\) 0 0
\(388\) 12.8034 6.16581i 0.649996 0.313021i
\(389\) 8.49635 0.430782 0.215391 0.976528i \(-0.430897\pi\)
0.215391 + 0.976528i \(0.430897\pi\)
\(390\) 0 0
\(391\) −1.93900 2.43143i −0.0980595 0.122963i
\(392\) 0.208947 + 0.262012i 0.0105534 + 0.0132336i
\(393\) 0 0
\(394\) 18.6136 0.937738
\(395\) 15.7881 7.60316i 0.794387 0.382557i
\(396\) 0 0
\(397\) −25.1356 12.1047i −1.26152 0.607517i −0.320944 0.947098i \(-0.604000\pi\)
−0.940577 + 0.339581i \(0.889715\pi\)
\(398\) −19.6582 9.46688i −0.985375 0.474532i
\(399\) 0 0
\(400\) 2.46950 + 3.09666i 0.123475 + 0.154833i
\(401\) 11.5565 14.4913i 0.577102 0.723662i −0.404514 0.914532i \(-0.632559\pi\)
0.981615 + 0.190869i \(0.0611307\pi\)
\(402\) 0 0
\(403\) −0.108957 + 0.477371i −0.00542752 + 0.0237795i
\(404\) −0.632883 + 0.793610i −0.0314871 + 0.0394836i
\(405\) 0 0
\(406\) 8.02326 24.8600i 0.398188 1.23378i
\(407\) 39.2204 1.94408
\(408\) 0 0
\(409\) −7.90485 + 34.6334i −0.390870 + 1.71251i 0.270730 + 0.962655i \(0.412735\pi\)
−0.661600 + 0.749857i \(0.730122\pi\)
\(410\) 5.09203 + 22.3096i 0.251477 + 1.10179i
\(411\) 0 0
\(412\) −11.7458 14.7287i −0.578673 0.725633i
\(413\) 3.66003 16.0356i 0.180098 0.789062i
\(414\) 0 0
\(415\) 7.47434 + 3.59945i 0.366901 + 0.176690i
\(416\) −0.151301 0.662892i −0.00741813 0.0325010i
\(417\) 0 0
\(418\) −10.0097 −0.489590
\(419\) 0.825437 0.397509i 0.0403252 0.0194196i −0.413612 0.910453i \(-0.635733\pi\)
0.453938 + 0.891033i \(0.350019\pi\)
\(420\) 0 0
\(421\) −11.5395 14.4701i −0.562402 0.705230i 0.416598 0.909091i \(-0.363222\pi\)
−0.979000 + 0.203861i \(0.934651\pi\)
\(422\) −22.4034 + 10.7889i −1.09058 + 0.525196i
\(423\) 0 0
\(424\) −13.9172 + 6.70219i −0.675880 + 0.325487i
\(425\) 0.198062 + 0.867767i 0.00960743 + 0.0420929i
\(426\) 0 0
\(427\) −22.0661 10.6265i −1.06786 0.514252i
\(428\) 1.37986 6.04557i 0.0666982 0.292224i
\(429\) 0 0
\(430\) −8.44869 + 10.5943i −0.407432 + 0.510904i
\(431\) 7.08844 + 31.0565i 0.341438 + 1.49594i 0.796040 + 0.605244i \(0.206924\pi\)
−0.454602 + 0.890695i \(0.650218\pi\)
\(432\) 0 0
\(433\) 10.9227 13.6967i 0.524913 0.658221i −0.446731 0.894668i \(-0.647412\pi\)
0.971644 + 0.236448i \(0.0759833\pi\)
\(434\) −21.6093 −1.03728
\(435\) 0 0
\(436\) 11.1927 0.536032
\(437\) −2.28501 + 2.86531i −0.109307 + 0.137067i
\(438\) 0 0
\(439\) −2.20828 9.67512i −0.105396 0.461768i −0.999892 0.0146933i \(-0.995323\pi\)
0.894496 0.447075i \(-0.147534\pi\)
\(440\) −7.36174 + 9.23133i −0.350957 + 0.440086i
\(441\) 0 0
\(442\) 0.0489173 0.214321i 0.00232676 0.0101942i
\(443\) −29.0819 14.0051i −1.38172 0.665402i −0.412355 0.911023i \(-0.635294\pi\)
−0.969366 + 0.245621i \(0.921008\pi\)
\(444\) 0 0
\(445\) −4.85935 21.2902i −0.230355 1.00925i
\(446\) 30.9061 14.8836i 1.46345 0.704759i
\(447\) 0 0
\(448\) 3.07726 1.48193i 0.145387 0.0700146i
\(449\) 3.09568 + 3.88186i 0.146094 + 0.183196i 0.849494 0.527598i \(-0.176907\pi\)
−0.703400 + 0.710794i \(0.748336\pi\)
\(450\) 0 0
\(451\) 23.7162 11.4211i 1.11675 0.537801i
\(452\) −15.9608 −0.750732
\(453\) 0 0
\(454\) −0.753020 3.29920i −0.0353410 0.154839i
\(455\) 0.546229 + 0.263050i 0.0256076 + 0.0123320i
\(456\) 0 0
\(457\) −8.19806 + 35.9181i −0.383489 + 1.68018i 0.302964 + 0.953002i \(0.402024\pi\)
−0.686453 + 0.727174i \(0.740833\pi\)
\(458\) 3.88404 + 4.87044i 0.181489 + 0.227581i
\(459\) 0 0
\(460\) −1.59299 6.97935i −0.0742736 0.325414i
\(461\) −2.78783 + 12.2143i −0.129842 + 0.568876i 0.867591 + 0.497278i \(0.165667\pi\)
−0.997434 + 0.0715982i \(0.977190\pi\)
\(462\) 0 0
\(463\) 20.6396 0.959206 0.479603 0.877486i \(-0.340781\pi\)
0.479603 + 0.877486i \(0.340781\pi\)
\(464\) 22.8593 + 13.5966i 1.06122 + 0.631208i
\(465\) 0 0
\(466\) 0.637063 0.798852i 0.0295114 0.0370061i
\(467\) 3.59664 15.7579i 0.166433 0.729189i −0.820971 0.570969i \(-0.806568\pi\)
0.987404 0.158219i \(-0.0505753\pi\)
\(468\) 0 0
\(469\) 3.66905 4.60085i 0.169421 0.212447i
\(470\) −16.5918 20.8055i −0.765322 0.959684i
\(471\) 0 0
\(472\) 7.46950 + 3.59712i 0.343812 + 0.165571i
\(473\) 14.0438 + 6.76315i 0.645736 + 0.310970i
\(474\) 0 0
\(475\) 0.945042 0.455108i 0.0433615 0.0208818i
\(476\) 3.72587 0.170775
\(477\) 0 0
\(478\) −10.3584 12.9890i −0.473782 0.594103i
\(479\) −15.8014 19.8143i −0.721985 0.905340i 0.276464 0.961024i \(-0.410837\pi\)
−0.998448 + 0.0556842i \(0.982266\pi\)
\(480\) 0 0
\(481\) 1.01507 0.0462830
\(482\) −21.4475 + 10.3286i −0.976907 + 0.470453i
\(483\) 0 0
\(484\) −7.90581 3.80724i −0.359355 0.173056i
\(485\) −21.0374 10.1311i −0.955258 0.460028i
\(486\) 0 0
\(487\) −13.9973 17.5521i −0.634279 0.795360i 0.355996 0.934488i \(-0.384142\pi\)
−0.990275 + 0.139127i \(0.955570\pi\)
\(488\) 7.69687 9.65156i 0.348421 0.436906i
\(489\) 0 0
\(490\) −0.202907 + 0.888992i −0.00916639 + 0.0401606i
\(491\) −0.682628 + 0.855989i −0.0308066 + 0.0386302i −0.796996 0.603984i \(-0.793579\pi\)
0.766190 + 0.642615i \(0.222150\pi\)
\(492\) 0 0
\(493\) 3.30260 + 4.98180i 0.148742 + 0.224369i
\(494\) −0.259061 −0.0116557
\(495\) 0 0
\(496\) 4.89589 21.4503i 0.219832 0.963146i
\(497\) 3.04072 + 13.3223i 0.136395 + 0.597585i
\(498\) 0 0
\(499\) −7.16786 8.98821i −0.320877 0.402368i 0.595065 0.803678i \(-0.297126\pi\)
−0.915942 + 0.401310i \(0.868555\pi\)
\(500\) −3.29859 + 14.4520i −0.147517 + 0.646315i
\(501\) 0 0
\(502\) 0.630490 + 0.303628i 0.0281401 + 0.0135516i
\(503\) −5.67898 24.8812i −0.253213 1.10940i −0.928350 0.371707i \(-0.878773\pi\)
0.675137 0.737693i \(-0.264085\pi\)
\(504\) 0 0
\(505\) 1.66786 0.0742187
\(506\) −19.3192 + 9.30362i −0.858841 + 0.413596i
\(507\) 0 0
\(508\) 11.8828 + 14.9006i 0.527216 + 0.661108i
\(509\) −35.2923 + 16.9959i −1.56430 + 0.753329i −0.997510 0.0705302i \(-0.977531\pi\)
−0.566794 + 0.823859i \(0.691817\pi\)
\(510\) 0 0
\(511\) 21.7044 10.4523i 0.960146 0.462382i
\(512\) 3.81604 + 16.7192i 0.168647 + 0.738890i
\(513\) 0 0
\(514\) −16.9644 8.16963i −0.748268 0.360347i
\(515\) −6.88793 + 30.1780i −0.303518 + 1.32980i
\(516\) 0 0
\(517\) −19.0858 + 23.9328i −0.839390 + 1.05256i
\(518\) 9.96830 + 43.6740i 0.437982 + 1.91893i
\(519\) 0 0
\(520\) −0.190530 + 0.238916i −0.00835527 + 0.0104772i
\(521\) −20.1142 −0.881220 −0.440610 0.897699i \(-0.645238\pi\)
−0.440610 + 0.897699i \(0.645238\pi\)
\(522\) 0 0
\(523\) 22.2295 0.972029 0.486015 0.873951i \(-0.338450\pi\)
0.486015 + 0.873951i \(0.338450\pi\)
\(524\) −7.35086 + 9.21768i −0.321124 + 0.402676i
\(525\) 0 0
\(526\) −4.70679 20.6218i −0.205226 0.899153i
\(527\) 3.08277 3.86567i 0.134288 0.168391i
\(528\) 0 0
\(529\) 3.37100 14.7693i 0.146565 0.642145i
\(530\) −37.8678 18.2362i −1.64487 0.792129i
\(531\) 0 0
\(532\) −0.977033 4.28066i −0.0423598 0.185590i
\(533\) 0.613801 0.295591i 0.0265867 0.0128035i
\(534\) 0 0
\(535\) −9.17994 + 4.42083i −0.396883 + 0.191129i
\(536\) 1.84936 + 2.31903i 0.0798803 + 0.100167i
\(537\) 0 0
\(538\) −32.5562 + 15.6782i −1.40360 + 0.675937i
\(539\) 1.04892 0.0451801
\(540\) 0 0
\(541\) 5.05161 + 22.1325i 0.217185 + 0.951552i 0.959546 + 0.281551i \(0.0908490\pi\)
−0.742361 + 0.670000i \(0.766294\pi\)
\(542\) 33.7395 + 16.2481i 1.44924 + 0.697915i
\(543\) 0 0
\(544\) −1.52781 + 6.69378i −0.0655044 + 0.286993i
\(545\) −11.4664 14.3785i −0.491168 0.615906i
\(546\) 0 0
\(547\) 2.30367 + 10.0930i 0.0984977 + 0.431547i 0.999999 0.00122932i \(-0.000391306\pi\)
−0.901502 + 0.432776i \(0.857534\pi\)
\(548\) 5.31618 23.2917i 0.227096 0.994971i
\(549\) 0 0
\(550\) 6.13706 0.261685
\(551\) 4.85756 5.10074i 0.206939 0.217299i
\(552\) 0 0
\(553\) 14.3550 18.0006i 0.610438 0.765465i
\(554\) 3.50269 15.3463i 0.148815 0.652001i
\(555\) 0 0
\(556\) 3.69351 4.63152i 0.156640 0.196420i
\(557\) −1.89948 2.38187i −0.0804834 0.100923i 0.739960 0.672651i \(-0.234845\pi\)
−0.820443 + 0.571728i \(0.806273\pi\)
\(558\) 0 0
\(559\) 0.363469 + 0.175038i 0.0153731 + 0.00740330i
\(560\) −24.5444 11.8199i −1.03719 0.499484i
\(561\) 0 0
\(562\) −20.2446 + 9.74928i −0.853966 + 0.411249i
\(563\) −6.08144 −0.256302 −0.128151 0.991755i \(-0.540904\pi\)
−0.128151 + 0.991755i \(0.540904\pi\)
\(564\) 0 0
\(565\) 16.3512 + 20.5037i 0.687898 + 0.862597i
\(566\) 12.7702 + 16.0134i 0.536773 + 0.673092i
\(567\) 0 0
\(568\) −6.88769 −0.289001
\(569\) −31.3245 + 15.0851i −1.31319 + 0.632400i −0.953703 0.300749i \(-0.902763\pi\)
−0.359489 + 0.933149i \(0.617049\pi\)
\(570\) 0 0
\(571\) −1.53534 0.739383i −0.0642521 0.0309422i 0.401482 0.915867i \(-0.368495\pi\)
−0.465734 + 0.884925i \(0.654210\pi\)
\(572\) −0.524459 0.252566i −0.0219287 0.0105603i
\(573\) 0 0
\(574\) 18.7458 + 23.5065i 0.782434 + 0.981141i
\(575\) 1.40097 1.75676i 0.0584244 0.0732619i
\(576\) 0 0
\(577\) 5.98374 26.2165i 0.249106 1.09141i −0.683341 0.730099i \(-0.739474\pi\)
0.932447 0.361306i \(-0.117669\pi\)
\(578\) 17.7153 22.2143i 0.736859 0.923992i
\(579\) 0 0
\(580\) 1.87382 + 13.6307i 0.0778062 + 0.565983i
\(581\) 10.8998 0.452199
\(582\) 0 0
\(583\) −10.7584 + 47.1356i −0.445567 + 1.95216i
\(584\) 2.70195 + 11.8380i 0.111807 + 0.489860i
\(585\) 0 0
\(586\) 7.57606 + 9.50008i 0.312964 + 0.392445i
\(587\) 2.24794 9.84886i 0.0927824 0.406506i −0.907114 0.420884i \(-0.861720\pi\)
0.999897 + 0.0143783i \(0.00457692\pi\)
\(588\) 0 0
\(589\) −5.24967 2.52811i −0.216309 0.104169i
\(590\) 5.01961 + 21.9924i 0.206654 + 0.905411i
\(591\) 0 0
\(592\) −45.6112 −1.87461
\(593\) −29.7681 + 14.3356i −1.22243 + 0.588691i −0.929987 0.367593i \(-0.880182\pi\)
−0.292442 + 0.956283i \(0.594468\pi\)
\(594\) 0 0
\(595\) −3.81700 4.78637i −0.156482 0.196222i
\(596\) −4.17241 + 2.00933i −0.170908 + 0.0823052i
\(597\) 0 0
\(598\) −0.500000 + 0.240787i −0.0204465 + 0.00984653i
\(599\) −1.70267 7.45988i −0.0695692 0.304803i 0.928158 0.372187i \(-0.121392\pi\)
−0.997727 + 0.0673841i \(0.978535\pi\)
\(600\) 0 0
\(601\) 26.5698 + 12.7953i 1.08380 + 0.521933i 0.888531 0.458816i \(-0.151726\pi\)
0.195273 + 0.980749i \(0.437441\pi\)
\(602\) −3.96173 + 17.3575i −0.161468 + 0.707438i
\(603\) 0 0
\(604\) −14.5022 + 18.1851i −0.590084 + 0.739942i
\(605\) 3.20828 + 14.0564i 0.130435 + 0.571474i
\(606\) 0 0
\(607\) 9.38703 11.7710i 0.381008 0.477769i −0.553939 0.832557i \(-0.686876\pi\)
0.934946 + 0.354789i \(0.115447\pi\)
\(608\) 8.09113 0.328139
\(609\) 0 0
\(610\) 33.5894 1.36000
\(611\) −0.493959 + 0.619405i −0.0199835 + 0.0250585i
\(612\) 0 0
\(613\) 3.26122 + 14.2883i 0.131719 + 0.577100i 0.997108 + 0.0759987i \(0.0242145\pi\)
−0.865389 + 0.501101i \(0.832928\pi\)
\(614\) 5.16756 6.47992i 0.208546 0.261508i
\(615\) 0 0
\(616\) −3.45204 + 15.1244i −0.139087 + 0.609379i
\(617\) 31.6521 + 15.2429i 1.27427 + 0.613655i 0.943910 0.330202i \(-0.107117\pi\)
0.330356 + 0.943856i \(0.392831\pi\)
\(618\) 0 0
\(619\) 8.46668 + 37.0950i 0.340305 + 1.49097i 0.798432 + 0.602085i \(0.205663\pi\)
−0.458127 + 0.888887i \(0.651480\pi\)
\(620\) 10.2545 4.93831i 0.411831 0.198327i
\(621\) 0 0
\(622\) −47.3618 + 22.8082i −1.89904 + 0.914527i
\(623\) −17.8892 22.4323i −0.716715 0.898732i
\(624\) 0 0
\(625\) 18.3322 8.82832i 0.733288 0.353133i
\(626\) 23.4916 0.938912
\(627\) 0 0
\(628\) 5.70895 + 25.0125i 0.227812 + 0.998109i
\(629\) −9.23490 4.44729i −0.368219 0.177325i
\(630\) 0 0
\(631\) 5.09269 22.3126i 0.202737 0.888249i −0.766524 0.642215i \(-0.778016\pi\)
0.969261 0.246033i \(-0.0791273\pi\)
\(632\) 7.23556 + 9.07311i 0.287815 + 0.360909i
\(633\) 0 0
\(634\) −12.1864 53.3921i −0.483984 2.12047i
\(635\) 6.96830 30.5301i 0.276529 1.21155i
\(636\) 0 0
\(637\) 0.0271471 0.00107561
\(638\) 38.5550 14.5569i 1.52641 0.576312i
\(639\) 0 0
\(640\) 12.8843 16.1564i 0.509298 0.638640i
\(641\) −6.10358 + 26.7415i −0.241077 + 1.05623i 0.698962 + 0.715159i \(0.253646\pi\)
−0.940039 + 0.341068i \(0.889211\pi\)
\(642\) 0 0
\(643\) 7.56853 9.49064i 0.298474 0.374274i −0.609868 0.792503i \(-0.708778\pi\)
0.908342 + 0.418229i \(0.137349\pi\)
\(644\) −5.86443 7.35376i −0.231091 0.289779i
\(645\) 0 0
\(646\) 2.35690 + 1.13502i 0.0927308 + 0.0446568i
\(647\) −33.9502 16.3495i −1.33472 0.642767i −0.375867 0.926673i \(-0.622655\pi\)
−0.958852 + 0.283906i \(0.908369\pi\)
\(648\) 0 0
\(649\) 23.3790 11.2587i 0.917705 0.441943i
\(650\) 0.158834 0.00622997
\(651\) 0 0
\(652\) 10.0546 + 12.6081i 0.393768 + 0.493770i
\(653\) −1.12498 1.41068i −0.0440239 0.0552043i 0.759332 0.650703i \(-0.225526\pi\)
−0.803356 + 0.595499i \(0.796954\pi\)
\(654\) 0 0
\(655\) 19.3720 0.756925
\(656\) −27.5807 + 13.2822i −1.07684 + 0.518581i
\(657\) 0 0
\(658\) −31.5013 15.1702i −1.22805 0.591396i
\(659\) −38.1863 18.3895i −1.48753 0.716355i −0.498888 0.866667i \(-0.666258\pi\)
−0.988639 + 0.150312i \(0.951972\pi\)
\(660\) 0 0
\(661\) 23.8391 + 29.8932i 0.927232 + 1.16271i 0.986383 + 0.164463i \(0.0525893\pi\)
−0.0591509 + 0.998249i \(0.518839\pi\)
\(662\) 20.7458 26.0144i 0.806308 1.01108i
\(663\) 0 0
\(664\) −1.22252 + 5.35621i −0.0474430 + 0.207861i
\(665\) −4.49814 + 5.64049i −0.174430 + 0.218729i
\(666\) 0 0
\(667\) 4.63437 14.3596i 0.179444 0.556005i
\(668\) 20.9554 0.810789
\(669\) 0 0
\(670\) −1.79590 + 7.86834i −0.0693816 + 0.303980i
\(671\) −8.59783 37.6696i −0.331916 1.45422i
\(672\) 0 0
\(673\) 17.0843 + 21.4230i 0.658550 + 0.825795i 0.993185 0.116553i \(-0.0371843\pi\)
−0.334635 + 0.942348i \(0.608613\pi\)
\(674\) −13.0799 + 57.3070i −0.503821 + 2.20738i
\(675\) 0 0
\(676\) 14.5918 + 7.02704i 0.561223 + 0.270271i
\(677\) −7.06920 30.9722i −0.271691 1.19036i −0.908016 0.418936i \(-0.862403\pi\)
0.636325 0.771421i \(-0.280454\pi\)
\(678\) 0 0
\(679\) −30.6786 −1.17734
\(680\) 2.78017 1.33886i 0.106615 0.0513429i
\(681\) 0 0
\(682\) −21.2555 26.6535i −0.813914 1.02062i
\(683\) 12.3509 5.94786i 0.472592 0.227588i −0.182399 0.983225i \(-0.558386\pi\)
0.654992 + 0.755636i \(0.272672\pi\)
\(684\) 0 0
\(685\) −35.3674 + 17.0320i −1.35132 + 0.650761i
\(686\) −7.28932 31.9366i −0.278308 1.21935i
\(687\) 0 0
\(688\) −16.3322 7.86517i −0.622659 0.299857i
\(689\) −0.278439 + 1.21992i −0.0106077 + 0.0464752i
\(690\) 0 0
\(691\) −1.38822 + 1.74078i −0.0528105 + 0.0662223i −0.807535 0.589819i \(-0.799199\pi\)
0.754725 + 0.656042i \(0.227770\pi\)
\(692\) 5.64340 + 24.7253i 0.214530 + 0.939917i
\(693\) 0 0
\(694\) −9.32304 + 11.6907i −0.353898 + 0.443774i
\(695\) −9.73364 −0.369218
\(696\) 0 0
\(697\) −6.87933 −0.260573
\(698\) −31.4720 + 39.4646i −1.19123 + 1.49376i
\(699\) 0 0
\(700\) 0.599031 + 2.62453i 0.0226412 + 0.0991978i
\(701\) 10.4426 13.0947i 0.394413 0.494579i −0.544486 0.838770i \(-0.683275\pi\)
0.938900 + 0.344191i \(0.111847\pi\)
\(702\) 0 0
\(703\) −2.68784 + 11.7762i −0.101374 + 0.444148i
\(704\) 4.85474 + 2.33792i 0.182970 + 0.0881137i
\(705\) 0 0
\(706\) 3.30774 + 14.4922i 0.124488 + 0.545420i
\(707\) 1.97434 0.950794i 0.0742529 0.0357583i
\(708\) 0 0
\(709\) −27.0824 + 13.0422i −1.01710 + 0.489810i −0.866708 0.498816i \(-0.833768\pi\)
−0.150393 + 0.988626i \(0.548054\pi\)
\(710\) −11.6848 14.6523i −0.438522 0.549889i
\(711\) 0 0
\(712\) 13.0298 6.27484i 0.488314 0.235159i
\(713\) −12.4819 −0.467450
\(714\) 0 0
\(715\) 0.212832 + 0.932479i 0.00795948 + 0.0348727i
\(716\) 5.78232 + 2.78462i 0.216096 + 0.104066i
\(717\) 0 0
\(718\) −5.85181 + 25.6385i −0.218388 + 0.956819i
\(719\) 25.1719 + 31.5645i 0.938753 + 1.17716i 0.983997 + 0.178183i \(0.0570217\pi\)
−0.0452449 + 0.998976i \(0.514407\pi\)
\(720\) 0 0
\(721\) 9.04988 + 39.6501i 0.337035 + 1.47665i
\(722\) −6.93243 + 30.3730i −0.257998 + 1.13036i
\(723\) 0 0
\(724\) 32.8243 1.21991
\(725\) −2.97823 + 3.12733i −0.110609 + 0.116146i
\(726\) 0 0
\(727\) 17.4291 21.8554i 0.646409 0.810571i −0.345379 0.938463i \(-0.612250\pi\)
0.991788 + 0.127892i \(0.0408212\pi\)
\(728\) −0.0893425 + 0.391435i −0.00331125 + 0.0145075i
\(729\) 0 0
\(730\) −20.5993 + 25.8307i −0.762415 + 0.956039i
\(731\) −2.53989 3.18492i −0.0939413 0.117799i
\(732\) 0 0
\(733\) −1.28932 0.620906i −0.0476223 0.0229337i 0.409921 0.912121i \(-0.365556\pi\)
−0.457543 + 0.889187i \(0.651271\pi\)
\(734\) 47.0490 + 22.6576i 1.73661 + 0.836307i
\(735\) 0 0
\(736\) 15.6163 7.52039i 0.575623 0.277205i
\(737\) 9.28382 0.341974
\(738\) 0 0
\(739\) −20.9483 26.2684i −0.770596 0.966297i 0.229379 0.973337i \(-0.426331\pi\)
−0.999975 + 0.00703985i \(0.997759\pi\)
\(740\) −14.7111 18.4471i −0.540791 0.678130i
\(741\) 0 0
\(742\) −55.2223 −2.02728
\(743\) −23.2150 + 11.1798i −0.851677 + 0.410146i −0.808200 0.588908i \(-0.799558\pi\)
−0.0434775 + 0.999054i \(0.513844\pi\)
\(744\) 0 0
\(745\) 6.85570 + 3.30153i 0.251173 + 0.120959i
\(746\) −34.8630 16.7891i −1.27642 0.614694i
\(747\) 0 0
\(748\) 3.66487 + 4.59561i 0.134001 + 0.168032i
\(749\) −8.34667 + 10.4664i −0.304981 + 0.382434i
\(750\) 0 0
\(751\) 5.88955 25.8038i 0.214913 0.941594i −0.746262 0.665653i \(-0.768153\pi\)
0.961174 0.275942i \(-0.0889897\pi\)
\(752\) 22.1957 27.8325i 0.809393 1.01495i
\(753\) 0 0
\(754\) 0.997844 0.376747i 0.0363393 0.0137203i
\(755\) 38.2180 1.39090
\(756\) 0 0
\(757\) −4.67187 + 20.4688i −0.169802 + 0.743952i 0.816275 + 0.577664i \(0.196035\pi\)
−0.986077 + 0.166288i \(0.946822\pi\)
\(758\) 9.11572 + 39.9386i 0.331098 + 1.45063i
\(759\) 0 0
\(760\) −2.26726 2.84305i −0.0822421 0.103128i
\(761\) −7.85019 + 34.3939i −0.284569 + 1.24678i 0.607295 + 0.794476i \(0.292255\pi\)
−0.891864 + 0.452303i \(0.850603\pi\)
\(762\) 0 0
\(763\) −21.7702 10.4840i −0.788136 0.379546i
\(764\) 5.46615 + 23.9488i 0.197758 + 0.866436i
\(765\) 0 0
\(766\) 6.24267 0.225557
\(767\) 0.605072 0.291387i 0.0218479 0.0105214i
\(768\) 0 0
\(769\) −15.7860 19.7950i −0.569257 0.713825i 0.410982 0.911643i \(-0.365186\pi\)
−0.980239 + 0.197818i \(0.936614\pi\)
\(770\) −38.0306 + 18.3146i −1.37053 + 0.660011i
\(771\) 0 0
\(772\) −9.11476 + 4.38944i −0.328047 + 0.157979i
\(773\) −5.06949 22.2109i −0.182337 0.798870i −0.980514 0.196448i \(-0.937059\pi\)
0.798177 0.602423i \(-0.205798\pi\)
\(774\) 0 0
\(775\) 3.21864 + 1.55001i 0.115617 + 0.0556781i
\(776\) 3.44092 15.0757i 0.123522 0.541185i
\(777\) 0 0
\(778\) −9.54556 + 11.9698i −0.342225 + 0.429137i
\(779\) 1.80396 + 7.90367i 0.0646337 + 0.283179i
\(780\) 0 0
\(781\) −13.4412 + 16.8547i −0.480962 + 0.603108i
\(782\) 5.60388 0.200394
\(783\) 0 0
\(784\) −1.21983 −0.0435654
\(785\) 26.2833 32.9582i 0.938091 1.17633i
\(786\) 0 0
\(787\) 3.15010 + 13.8015i 0.112289 + 0.491971i 0.999530 + 0.0306638i \(0.00976213\pi\)
−0.887241 + 0.461307i \(0.847381\pi\)
\(788\) −8.03116 + 10.0708i −0.286098 + 0.358756i
\(789\) 0 0
\(790\) −7.02638 + 30.7846i −0.249987 + 1.09527i
\(791\) 31.0444 + 14.9502i 1.10381 + 0.531567i
\(792\) 0 0
\(793\) −0.222521 0.974928i −0.00790195 0.0346207i
\(794\) 45.2928 21.8119i 1.60738 0.774075i
\(795\) 0 0
\(796\) 13.6039 6.55128i 0.482177 0.232204i
\(797\) −1.79523 2.25115i −0.0635904 0.0797399i 0.749019 0.662548i \(-0.230525\pi\)
−0.812609 + 0.582809i \(0.801954\pi\)
\(798\) 0 0
\(799\) 7.20775 3.47107i 0.254992 0.122798i
\(800\) −4.96077 −0.175390
\(801\) 0 0
\(802\) 7.43200 + 32.5617i 0.262433 + 1.14979i
\(803\) 34.2412 + 16.4897i 1.20835 + 0.581909i
\(804\) 0 0
\(805\) −3.43900 + 15.0672i −0.121209 + 0.531051i
\(806\) −0.550114 0.689821i −0.0193769 0.0242979i
\(807\) 0 0
\(808\) 0.245783 + 1.07685i 0.00864662 + 0.0378833i
\(809\) 0.254749 1.11613i 0.00895651 0.0392410i −0.970252 0.242096i \(-0.922165\pi\)
0.979209 + 0.202855i \(0.0650221\pi\)
\(810\) 0 0
\(811\) 40.1021 1.40818 0.704088 0.710112i \(-0.251356\pi\)
0.704088 + 0.710112i \(0.251356\pi\)
\(812\) 9.98858 + 15.0672i 0.350531 + 0.528757i
\(813\) 0 0
\(814\) −44.0637 + 55.2542i −1.54443 + 1.93666i
\(815\) 5.89618 25.8329i 0.206534 0.904886i
\(816\) 0 0
\(817\) −2.99313 + 3.75327i −0.104716 + 0.131310i
\(818\) −39.9110 50.0468i −1.39545 1.74984i
\(819\) 0 0
\(820\) −14.2676 6.87089i −0.498245 0.239942i
\(821\) −31.4654 15.1529i −1.09815 0.528841i −0.205073 0.978747i \(-0.565743\pi\)
−0.893076 + 0.449906i \(0.851458\pi\)
\(822\) 0 0
\(823\) 40.4834 19.4958i 1.41116 0.679580i 0.435770 0.900058i \(-0.356476\pi\)
0.975392 + 0.220479i \(0.0707619\pi\)
\(824\) −20.4993 −0.714128
\(825\) 0 0
\(826\) 18.4792 + 23.1722i 0.642973 + 0.806263i
\(827\) 5.62751 + 7.05667i 0.195688 + 0.245384i 0.869988 0.493072i \(-0.164126\pi\)
−0.674301 + 0.738457i \(0.735555\pi\)
\(828\) 0 0
\(829\) 41.5362 1.44261 0.721305 0.692617i \(-0.243542\pi\)
0.721305 + 0.692617i \(0.243542\pi\)
\(830\) −13.4683 + 6.48599i −0.467492 + 0.225132i
\(831\) 0 0
\(832\) 0.125646 + 0.0605078i 0.00435598 + 0.00209773i
\(833\) −0.246980 0.118939i −0.00855734 0.00412100i
\(834\) 0 0
\(835\) −21.4679 26.9199i −0.742929 0.931603i
\(836\) 4.31886 5.41568i 0.149371 0.187305i
\(837\) 0 0
\(838\) −0.367354 + 1.60948i −0.0126900 + 0.0555987i
\(839\) −30.5604 + 38.3215i −1.05506 + 1.32301i −0.110788 + 0.993844i \(0.535338\pi\)
−0.944274 + 0.329162i \(0.893234\pi\)
\(840\) 0 0
\(841\) −11.2923 + 26.7111i −0.389390 + 0.921073i
\(842\) 33.3502 1.14932
\(843\) 0 0
\(844\) 3.82908 16.7763i 0.131803 0.577465i
\(845\) −5.92154 25.9440i −0.203707 0.892500i
\(846\) 0 0
\(847\) 11.8110 + 14.8105i 0.405829 + 0.508894i
\(848\) 12.5114 54.8161i 0.429644 1.88239i
\(849\) 0 0
\(850\) −1.44504 0.695895i −0.0495645 0.0238690i
\(851\) 5.75786 + 25.2269i 0.197377 + 0.864765i
\(852\) 0 0
\(853\) −57.0974 −1.95498 −0.977488 0.210990i \(-0.932331\pi\)
−0.977488 + 0.210990i \(0.932331\pi\)
\(854\) 39.7618 19.1483i 1.36062 0.655241i
\(855\) 0 0
\(856\) −4.20709 5.27552i −0.143795 0.180314i
\(857\) 50.5250 24.3316i 1.72590 0.831151i 0.738243 0.674534i \(-0.235656\pi\)
0.987659 0.156616i \(-0.0500587\pi\)
\(858\) 0 0
\(859\) −5.70506 + 2.74741i −0.194654 + 0.0937405i −0.528672 0.848826i \(-0.677310\pi\)
0.334018 + 0.942567i \(0.391595\pi\)
\(860\) −2.08665 9.14223i −0.0711543 0.311747i
\(861\) 0 0
\(862\) −51.7165 24.9054i −1.76147 0.848280i
\(863\) 12.6667 55.4963i 0.431178 1.88912i −0.0258555 0.999666i \(-0.508231\pi\)
0.457034 0.889449i \(-0.348912\pi\)
\(864\) 0 0
\(865\) 25.9815 32.5798i 0.883398 1.10775i
\(866\) 7.02446 + 30.7762i 0.238701 + 1.04582i
\(867\) 0 0
\(868\) 9.32371 11.6916i 0.316467 0.396837i
\(869\) 36.3226 1.23216
\(870\) 0 0
\(871\) 0.240275 0.00814140
\(872\) 7.59365 9.52214i 0.257154 0.322460i
\(873\) 0 0
\(874\) −1.46950 6.43830i −0.0497066 0.217779i
\(875\) 19.9529 25.0201i 0.674530 0.845834i
\(876\) 0 0
\(877\) −9.94414 + 43.5681i −0.335790 + 1.47119i 0.471936 + 0.881633i \(0.343555\pi\)
−0.807726 + 0.589558i \(0.799302\pi\)
\(878\) 16.1114 + 7.75885i 0.543734 + 0.261848i
\(879\) 0 0
\(880\) −9.56345 41.9002i −0.322384 1.41246i
\(881\) −5.57218 + 2.68342i −0.187731 + 0.0904067i −0.525388 0.850863i \(-0.676080\pi\)
0.337657 + 0.941269i \(0.390366\pi\)
\(882\) 0 0
\(883\) −33.5100 + 16.1376i −1.12770 + 0.543072i −0.902263 0.431186i \(-0.858095\pi\)
−0.225437 + 0.974258i \(0.572381\pi\)
\(884\) 0.0948508 + 0.118939i 0.00319018 + 0.00400036i
\(885\) 0 0
\(886\) 52.4037 25.2363i 1.76054 0.847830i
\(887\) −58.1651 −1.95299 −0.976496 0.215536i \(-0.930850\pi\)
−0.976496 + 0.215536i \(0.930850\pi\)
\(888\) 0 0
\(889\) −9.15548 40.1128i −0.307065 1.34534i
\(890\) 35.4533 + 17.0734i 1.18840 + 0.572302i
\(891\) 0 0
\(892\) −5.28232 + 23.1434i −0.176865 + 0.774897i
\(893\) −5.87800 7.37078i −0.196700 0.246654i
\(894\) 0 0
\(895\) −2.34654 10.2809i −0.0784363 0.343652i
\(896\) 6.04168 26.4703i 0.201838 0.884312i
\(897\) 0 0
\(898\) −8.94677 −0.298558
\(899\) 23.8971 + 2.10321i 0.797012 + 0.0701459i
\(900\) 0 0
\(901\) 7.87800 9.87870i 0.262454 0.329107i
\(902\) −10.5547 + 46.2433i −0.351434 + 1.53973i
\(903\) 0 0
\(904\) −10.8286 + 13.5786i −0.360152 + 0.451617i
\(905\) −33.6271 42.1671i −1.11780 1.40168i
\(906\) 0 0
\(907\) 39.8935 + 19.2117i 1.32464 + 0.637914i 0.956466 0.291843i \(-0.0942683\pi\)
0.368175 + 0.929756i \(0.379983\pi\)
\(908\) 2.10992 + 1.01608i 0.0700200 + 0.0337199i
\(909\) 0 0
\(910\) −0.984271 + 0.474000i −0.0326283 + 0.0157129i
\(911\) 50.6886 1.67939 0.839694 0.543061i \(-0.182735\pi\)
0.839694 + 0.543061i \(0.182735\pi\)
\(912\) 0 0
\(913\) 10.7213 + 13.4441i 0.354824 + 0.444935i
\(914\) −41.3913 51.9031i −1.36910 1.71680i
\(915\) 0 0
\(916\) −4.31096 −0.142438
\(917\) 22.9318 11.0434i 0.757274 0.364684i
\(918\) 0 0
\(919\) 11.8029 + 5.68398i 0.389342 + 0.187497i 0.618305 0.785938i \(-0.287819\pi\)
−0.228964 + 0.973435i \(0.573534\pi\)
\(920\) −7.01842 3.37989i −0.231390 0.111432i
\(921\) 0 0
\(922\) −14.0755 17.6502i −0.463553 0.581277i
\(923\) −0.347871 + 0.436217i −0.0114503 + 0.0143582i
\(924\) 0 0
\(925\) 1.64795 7.22013i 0.0541842 0.237397i
\(926\) −23.1884 + 29.0774i −0.762019 + 0.955542i
\(927\) 0 0
\(928\) −31.1652 + 11.7668i −1.02305 + 0.386263i
\(929\) −8.04759 −0.264033 −0.132016 0.991248i \(-0.542145\pi\)
−0.132016 + 0.991248i \(0.542145\pi\)
\(930\) 0 0
\(931\) −0.0718841 + 0.314945i −0.00235590 + 0.0103219i
\(932\) 0.157342 + 0.689359i 0.00515390 + 0.0225807i
\(933\) 0 0
\(934\) 18.1591 + 22.7708i 0.594185 + 0.745084i
\(935\) 2.14914 9.41602i 0.0702846 0.307937i
\(936\) 0 0
\(937\) −2.46585 1.18749i −0.0805559 0.0387937i 0.393172 0.919465i \(-0.371378\pi\)
−0.473728 + 0.880671i \(0.657092\pi\)
\(938\) 2.35958 + 10.3380i 0.0770432 + 0.337548i
\(939\) 0 0
\(940\) 18.4155 0.600647
\(941\) 38.9816 18.7726i 1.27077 0.611968i 0.327765 0.944759i \(-0.393705\pi\)
0.943001 + 0.332791i \(0.107990\pi\)
\(942\) 0 0
\(943\) 10.8279 + 13.5777i 0.352605 + 0.442152i
\(944\) −27.1884 + 13.0933i −0.884908 + 0.426149i
\(945\) 0 0
\(946\) −25.3061 + 12.1868i −0.822773 + 0.396227i
\(947\) 2.63946 + 11.5642i 0.0857708 + 0.375786i 0.999536 0.0304561i \(-0.00969596\pi\)
−0.913765 + 0.406243i \(0.866839\pi\)
\(948\) 0 0
\(949\) 0.886199 + 0.426771i 0.0287672 + 0.0138536i
\(950\) −0.420583 + 1.84270i −0.0136455 + 0.0597849i
\(951\) 0 0
\(952\) 2.52781 3.16977i 0.0819268 0.102733i
\(953\) 2.81647 + 12.3398i 0.0912344 + 0.399724i 0.999839 0.0179328i \(-0.00570851\pi\)
−0.908605 + 0.417657i \(0.862851\pi\)
\(954\) 0 0
\(955\) 25.1655 31.5565i 0.814335 1.02114i
\(956\) 11.4969 0.371838
\(957\) 0 0
\(958\) 45.6674 1.47545
\(959\) −32.1571 + 40.3237i −1.03841 + 1.30212i
\(960\) 0 0
\(961\) 2.48230 + 10.8757i 0.0800743 + 0.350829i
\(962\) −1.14042 + 1.43004i −0.0367685 + 0.0461062i
\(963\) 0 0
\(964\) 3.66570 16.0605i 0.118064 0.517274i
\(965\) 14.9765 + 7.21230i 0.482111 + 0.232172i
\(966\) 0 0
\(967\) −2.42357 10.6183i −0.0779367 0.341463i 0.920894 0.389814i \(-0.127461\pi\)
−0.998830 + 0.0483508i \(0.984603\pi\)
\(968\) −8.60268 + 4.14283i −0.276501 + 0.133156i
\(969\) 0 0
\(970\) 37.9080 18.2555i 1.21715 0.586150i
\(971\) 6.70626 + 8.40938i 0.215214 + 0.269870i 0.877706 0.479199i \(-0.159073\pi\)
−0.662492 + 0.749069i \(0.730501\pi\)
\(972\) 0 0
\(973\) −11.5223 + 5.54885i −0.369388 + 0.177888i
\(974\) 40.4534 1.29621
\(975\) 0 0
\(976\) 9.99880 + 43.8076i 0.320054 + 1.40225i
\(977\) 37.5388 + 18.0777i 1.20097 + 0.578357i 0.923952 0.382507i \(-0.124939\pi\)
0.277019 + 0.960865i \(0.410654\pi\)
\(978\) 0 0
\(979\) 10.0724 44.1301i 0.321916 1.41041i
\(980\) −0.393436 0.493353i −0.0125679 0.0157596i
\(981\) 0 0
\(982\) −0.439001 1.92339i −0.0140091 0.0613778i
\(983\) −5.82616 + 25.5261i −0.185826 + 0.814155i 0.792961 + 0.609273i \(0.208538\pi\)
−0.978787 + 0.204883i \(0.934319\pi\)
\(984\) 0 0
\(985\) 21.1648 0.674367
\(986\) −10.7289 0.944258i −0.341676 0.0300713i
\(987\) 0 0
\(988\) 0.111777 0.140164i 0.00355609 0.00445920i
\(989\) −2.28836 + 10.0260i −0.0727657 + 0.318808i
\(990\) 0 0
\(991\) −28.4983 + 35.7357i −0.905277 + 1.13518i 0.0850424 + 0.996377i \(0.472897\pi\)
−0.990320 + 0.138805i \(0.955674\pi\)
\(992\) 17.1814 + 21.5448i 0.545511 + 0.684049i
\(993\) 0 0
\(994\) −22.1848 10.6836i −0.703659 0.338864i
\(995\) −22.3526 10.7644i −0.708625 0.341256i
\(996\) 0 0
\(997\) −14.4753 + 6.97094i −0.458437 + 0.220772i −0.648826 0.760937i \(-0.724740\pi\)
0.190388 + 0.981709i \(0.439025\pi\)
\(998\) 20.7157 0.655744
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.k.a.487.1 yes 6
3.2 odd 2 783.2.k.b.487.1 yes 6
29.24 even 7 inner 783.2.k.a.82.1 6
87.53 odd 14 783.2.k.b.82.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
783.2.k.a.82.1 6 29.24 even 7 inner
783.2.k.a.487.1 yes 6 1.1 even 1 trivial
783.2.k.b.82.1 yes 6 87.53 odd 14
783.2.k.b.487.1 yes 6 3.2 odd 2