Properties

Label 783.2.k.b.82.1
Level $783$
Weight $2$
Character 783.82
Analytic conductor $6.252$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(82,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.k (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,2,0,-2,8,0,-8,7,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 82.1
Root \(0.222521 - 0.974928i\) of defining polynomial
Character \(\chi\) \(=\) 783.82
Dual form 783.2.k.b.487.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.12349 + 1.40881i) q^{2} +(-0.277479 + 1.21572i) q^{4} +(1.27748 + 1.60191i) q^{5} +(-0.599031 - 2.62453i) q^{7} +(1.22252 - 0.588735i) q^{8} +(-0.821552 + 3.59945i) q^{10} +(3.82640 + 1.84270i) q^{11} +(-0.0990311 - 0.0476909i) q^{13} +(3.02446 - 3.79255i) q^{14} +(4.44989 + 2.14295i) q^{16} -1.10992 q^{17} +(-0.291053 + 1.27518i) q^{19} +(-2.30194 + 1.10855i) q^{20} +(1.70291 + 7.46092i) q^{22} +(1.74698 - 2.19064i) q^{23} +(0.178448 - 0.781831i) q^{25} +(-0.0440730 - 0.193096i) q^{26} +3.35690 q^{28} +(-2.97554 + 4.48845i) q^{29} +(2.77748 + 3.48285i) q^{31} +(1.37651 + 6.03089i) q^{32} +(-1.24698 - 1.56366i) q^{34} +(3.43900 - 4.31237i) q^{35} +(-8.32036 + 4.00687i) q^{37} +(-2.12349 + 1.02262i) q^{38} +(2.50484 + 1.20627i) q^{40} +6.19806 q^{41} +(-2.28836 + 2.86952i) q^{43} +(-3.30194 + 4.14050i) q^{44} +5.04892 q^{46} +(-6.49396 - 3.12733i) q^{47} +(-0.222521 + 0.107160i) q^{49} +(1.30194 - 0.626980i) q^{50} +(0.0854576 - 0.107160i) q^{52} +(-7.09783 - 8.90040i) q^{53} +(1.93631 + 8.48354i) q^{55} +(-2.27748 - 2.85587i) q^{56} +(-9.66637 + 0.850747i) q^{58} +6.10992 q^{59} +(-2.02446 - 8.86973i) q^{61} +(-1.78621 + 7.82589i) q^{62} +(-0.791053 + 0.991949i) q^{64} +(-0.0501138 - 0.219563i) q^{65} +(-1.96950 + 0.948461i) q^{67} +(0.307979 - 1.34934i) q^{68} +9.93900 q^{70} +(-4.57338 - 2.20242i) q^{71} +(-5.57942 + 6.99637i) q^{73} +(-14.9928 - 7.22013i) q^{74} +(-1.46950 - 0.707674i) q^{76} +(2.54407 - 11.1463i) q^{77} +(-7.70560 + 3.71082i) q^{79} +(2.25182 + 9.86589i) q^{80} +(6.96346 + 8.73190i) q^{82} +(0.900969 - 3.94740i) q^{83} +(-1.41789 - 1.77798i) q^{85} -6.61356 q^{86} +5.76271 q^{88} +(6.64526 + 8.33289i) q^{89} +(-0.0658433 + 0.288478i) q^{91} +(2.17845 + 2.73169i) q^{92} +(-2.89008 - 12.6623i) q^{94} +(-2.41454 + 1.16278i) q^{95} +(2.53588 - 11.1104i) q^{97} +(-0.400969 - 0.193096i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} - 2 q^{4} + 8 q^{5} - 8 q^{7} + 7 q^{8} - 9 q^{10} + 5 q^{11} - 5 q^{13} + 9 q^{14} + 4 q^{16} - 8 q^{17} + 4 q^{19} - 5 q^{20} - 3 q^{22} + q^{23} - 3 q^{25} - 4 q^{26} + 12 q^{28} - 27 q^{29}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.12349 + 1.40881i 0.794427 + 0.996180i 0.999847 + 0.0175063i \(0.00557270\pi\)
−0.205419 + 0.978674i \(0.565856\pi\)
\(3\) 0 0
\(4\) −0.277479 + 1.21572i −0.138740 + 0.607858i
\(5\) 1.27748 + 1.60191i 0.571306 + 0.716395i 0.980603 0.196006i \(-0.0627973\pi\)
−0.409297 + 0.912401i \(0.634226\pi\)
\(6\) 0 0
\(7\) −0.599031 2.62453i −0.226412 0.991978i −0.952539 0.304417i \(-0.901538\pi\)
0.726126 0.687561i \(-0.241319\pi\)
\(8\) 1.22252 0.588735i 0.432226 0.208149i
\(9\) 0 0
\(10\) −0.821552 + 3.59945i −0.259798 + 1.13825i
\(11\) 3.82640 + 1.84270i 1.15370 + 0.555594i 0.910144 0.414293i \(-0.135971\pi\)
0.243558 + 0.969886i \(0.421685\pi\)
\(12\) 0 0
\(13\) −0.0990311 0.0476909i −0.0274663 0.0132271i 0.420100 0.907478i \(-0.361995\pi\)
−0.447566 + 0.894251i \(0.647709\pi\)
\(14\) 3.02446 3.79255i 0.808321 1.01360i
\(15\) 0 0
\(16\) 4.44989 + 2.14295i 1.11247 + 0.535738i
\(17\) −1.10992 −0.269194 −0.134597 0.990900i \(-0.542974\pi\)
−0.134597 + 0.990900i \(0.542974\pi\)
\(18\) 0 0
\(19\) −0.291053 + 1.27518i −0.0667720 + 0.292547i −0.997278 0.0737284i \(-0.976510\pi\)
0.930506 + 0.366276i \(0.119367\pi\)
\(20\) −2.30194 + 1.10855i −0.514729 + 0.247880i
\(21\) 0 0
\(22\) 1.70291 + 7.46092i 0.363061 + 1.59067i
\(23\) 1.74698 2.19064i 0.364270 0.456781i −0.565594 0.824684i \(-0.691353\pi\)
0.929864 + 0.367903i \(0.119924\pi\)
\(24\) 0 0
\(25\) 0.178448 0.781831i 0.0356896 0.156366i
\(26\) −0.0440730 0.193096i −0.00864343 0.0378693i
\(27\) 0 0
\(28\) 3.35690 0.634394
\(29\) −2.97554 + 4.48845i −0.552544 + 0.833484i
\(30\) 0 0
\(31\) 2.77748 + 3.48285i 0.498850 + 0.625538i 0.965969 0.258656i \(-0.0832796\pi\)
−0.467120 + 0.884194i \(0.654708\pi\)
\(32\) 1.37651 + 6.03089i 0.243335 + 1.06612i
\(33\) 0 0
\(34\) −1.24698 1.56366i −0.213855 0.268166i
\(35\) 3.43900 4.31237i 0.581297 0.728924i
\(36\) 0 0
\(37\) −8.32036 + 4.00687i −1.36786 + 0.658726i −0.966374 0.257140i \(-0.917220\pi\)
−0.401484 + 0.915866i \(0.631505\pi\)
\(38\) −2.12349 + 1.02262i −0.344476 + 0.165891i
\(39\) 0 0
\(40\) 2.50484 + 1.20627i 0.396051 + 0.190728i
\(41\) 6.19806 0.967975 0.483987 0.875075i \(-0.339188\pi\)
0.483987 + 0.875075i \(0.339188\pi\)
\(42\) 0 0
\(43\) −2.28836 + 2.86952i −0.348972 + 0.437597i −0.925078 0.379778i \(-0.876000\pi\)
0.576105 + 0.817375i \(0.304572\pi\)
\(44\) −3.30194 + 4.14050i −0.497786 + 0.624204i
\(45\) 0 0
\(46\) 5.04892 0.744422
\(47\) −6.49396 3.12733i −0.947241 0.456167i −0.104523 0.994522i \(-0.533332\pi\)
−0.842718 + 0.538355i \(0.819046\pi\)
\(48\) 0 0
\(49\) −0.222521 + 0.107160i −0.0317887 + 0.0153086i
\(50\) 1.30194 0.626980i 0.184122 0.0886684i
\(51\) 0 0
\(52\) 0.0854576 0.107160i 0.0118508 0.0148605i
\(53\) −7.09783 8.90040i −0.974963 1.22256i −0.974918 0.222564i \(-0.928557\pi\)
−4.45840e−5 1.00000i \(-0.500014\pi\)
\(54\) 0 0
\(55\) 1.93631 + 8.48354i 0.261092 + 1.14392i
\(56\) −2.27748 2.85587i −0.304341 0.381631i
\(57\) 0 0
\(58\) −9.66637 + 0.850747i −1.26926 + 0.111709i
\(59\) 6.10992 0.795443 0.397722 0.917506i \(-0.369801\pi\)
0.397722 + 0.917506i \(0.369801\pi\)
\(60\) 0 0
\(61\) −2.02446 8.86973i −0.259205 1.13565i −0.922103 0.386943i \(-0.873531\pi\)
0.662898 0.748710i \(-0.269326\pi\)
\(62\) −1.78621 + 7.82589i −0.226849 + 0.993889i
\(63\) 0 0
\(64\) −0.791053 + 0.991949i −0.0988816 + 0.123994i
\(65\) −0.0501138 0.219563i −0.00621585 0.0272334i
\(66\) 0 0
\(67\) −1.96950 + 0.948461i −0.240613 + 0.115873i −0.550305 0.834964i \(-0.685488\pi\)
0.309692 + 0.950837i \(0.399774\pi\)
\(68\) 0.307979 1.34934i 0.0373479 0.163632i
\(69\) 0 0
\(70\) 9.93900 1.18794
\(71\) −4.57338 2.20242i −0.542760 0.261379i 0.142353 0.989816i \(-0.454533\pi\)
−0.685113 + 0.728437i \(0.740247\pi\)
\(72\) 0 0
\(73\) −5.57942 + 6.99637i −0.653021 + 0.818863i −0.992563 0.121728i \(-0.961156\pi\)
0.339542 + 0.940591i \(0.389728\pi\)
\(74\) −14.9928 7.22013i −1.74287 0.839324i
\(75\) 0 0
\(76\) −1.46950 0.707674i −0.168563 0.0811758i
\(77\) 2.54407 11.1463i 0.289924 1.27024i
\(78\) 0 0
\(79\) −7.70560 + 3.71082i −0.866947 + 0.417500i −0.813840 0.581089i \(-0.802627\pi\)
−0.0531072 + 0.998589i \(0.516913\pi\)
\(80\) 2.25182 + 9.86589i 0.251762 + 1.10304i
\(81\) 0 0
\(82\) 6.96346 + 8.73190i 0.768985 + 0.964277i
\(83\) 0.900969 3.94740i 0.0988942 0.433284i −0.901106 0.433599i \(-0.857243\pi\)
1.00000 0.000315629i \(0.000100468\pi\)
\(84\) 0 0
\(85\) −1.41789 1.77798i −0.153792 0.192849i
\(86\) −6.61356 −0.713159
\(87\) 0 0
\(88\) 5.76271 0.614307
\(89\) 6.64526 + 8.33289i 0.704396 + 0.883285i 0.997343 0.0728438i \(-0.0232074\pi\)
−0.292947 + 0.956129i \(0.594636\pi\)
\(90\) 0 0
\(91\) −0.0658433 + 0.288478i −0.00690225 + 0.0302407i
\(92\) 2.17845 + 2.73169i 0.227119 + 0.284798i
\(93\) 0 0
\(94\) −2.89008 12.6623i −0.298089 1.30601i
\(95\) −2.41454 + 1.16278i −0.247727 + 0.119299i
\(96\) 0 0
\(97\) 2.53588 11.1104i 0.257479 1.12809i −0.666457 0.745544i \(-0.732190\pi\)
0.923936 0.382547i \(-0.124953\pi\)
\(98\) −0.400969 0.193096i −0.0405040 0.0195057i
\(99\) 0 0
\(100\) 0.900969 + 0.433884i 0.0900969 + 0.0433884i
\(101\) 0.507533 0.636426i 0.0505014 0.0633267i −0.755939 0.654642i \(-0.772820\pi\)
0.806441 + 0.591315i \(0.201391\pi\)
\(102\) 0 0
\(103\) 13.6114 + 6.55491i 1.34117 + 0.645874i 0.960356 0.278777i \(-0.0899289\pi\)
0.380816 + 0.924651i \(0.375643\pi\)
\(104\) −0.149145 −0.0146249
\(105\) 0 0
\(106\) 4.56465 19.9990i 0.443358 1.94248i
\(107\) −4.48039 + 2.15764i −0.433135 + 0.208587i −0.637730 0.770260i \(-0.720127\pi\)
0.204595 + 0.978847i \(0.434412\pi\)
\(108\) 0 0
\(109\) −1.99731 8.75079i −0.191308 0.838174i −0.975910 0.218174i \(-0.929990\pi\)
0.784602 0.620000i \(-0.212867\pi\)
\(110\) −9.77628 + 12.2591i −0.932132 + 1.16886i
\(111\) 0 0
\(112\) 2.95862 12.9625i 0.279563 1.22484i
\(113\) −2.84817 12.4786i −0.267933 1.17389i −0.912413 0.409270i \(-0.865783\pi\)
0.644480 0.764621i \(-0.277074\pi\)
\(114\) 0 0
\(115\) 5.74094 0.535345
\(116\) −4.63102 4.86286i −0.429980 0.451505i
\(117\) 0 0
\(118\) 6.86443 + 8.60772i 0.631922 + 0.792405i
\(119\) 0.664874 + 2.91301i 0.0609489 + 0.267035i
\(120\) 0 0
\(121\) 4.38740 + 5.50162i 0.398854 + 0.500147i
\(122\) 10.2213 12.8171i 0.925395 1.16041i
\(123\) 0 0
\(124\) −5.00484 + 2.41021i −0.449448 + 0.216443i
\(125\) 10.7104 5.15788i 0.957971 0.461334i
\(126\) 0 0
\(127\) −13.7702 6.63140i −1.22191 0.588442i −0.292068 0.956398i \(-0.594343\pi\)
−0.929843 + 0.367956i \(0.880058\pi\)
\(128\) 10.0858 0.891463
\(129\) 0 0
\(130\) 0.253020 0.317278i 0.0221914 0.0278271i
\(131\) 5.89493 7.39201i 0.515042 0.645843i −0.454506 0.890744i \(-0.650184\pi\)
0.969548 + 0.244901i \(0.0787555\pi\)
\(132\) 0 0
\(133\) 3.52111 0.305319
\(134\) −3.54892 1.70907i −0.306580 0.147641i
\(135\) 0 0
\(136\) −1.35690 + 0.653447i −0.116353 + 0.0560326i
\(137\) −17.2615 + 8.31271i −1.47475 + 0.710202i −0.986691 0.162608i \(-0.948009\pi\)
−0.488060 + 0.872810i \(0.662295\pi\)
\(138\) 0 0
\(139\) 2.96197 3.71419i 0.251231 0.315033i −0.640184 0.768222i \(-0.721142\pi\)
0.891415 + 0.453188i \(0.149713\pi\)
\(140\) 4.28836 + 5.37744i 0.362433 + 0.454477i
\(141\) 0 0
\(142\) −2.03534 8.91742i −0.170802 0.748334i
\(143\) −0.291053 0.364968i −0.0243390 0.0305202i
\(144\) 0 0
\(145\) −10.9913 + 0.967353i −0.912775 + 0.0803343i
\(146\) −16.1250 −1.33451
\(147\) 0 0
\(148\) −2.56249 11.2270i −0.210635 0.922854i
\(149\) 0.826396 3.62068i 0.0677010 0.296618i −0.929731 0.368240i \(-0.879960\pi\)
0.997432 + 0.0716223i \(0.0228176\pi\)
\(150\) 0 0
\(151\) −11.6298 + 14.5833i −0.946422 + 1.18678i 0.0358583 + 0.999357i \(0.488583\pi\)
−0.982280 + 0.187419i \(0.939988\pi\)
\(152\) 0.394928 + 1.73029i 0.0320329 + 0.140345i
\(153\) 0 0
\(154\) 18.5613 8.93865i 1.49571 0.720297i
\(155\) −2.03103 + 8.89853i −0.163136 + 0.714747i
\(156\) 0 0
\(157\) −20.5743 −1.64201 −0.821005 0.570920i \(-0.806586\pi\)
−0.821005 + 0.570920i \(0.806586\pi\)
\(158\) −13.8850 6.68666i −1.10463 0.531962i
\(159\) 0 0
\(160\) −7.90246 + 9.90937i −0.624744 + 0.783405i
\(161\) −6.79590 3.27273i −0.535592 0.257927i
\(162\) 0 0
\(163\) −11.6516 5.61111i −0.912623 0.439496i −0.0821916 0.996617i \(-0.526192\pi\)
−0.830432 + 0.557120i \(0.811906\pi\)
\(164\) −1.71983 + 7.53508i −0.134296 + 0.588391i
\(165\) 0 0
\(166\) 6.57338 3.16557i 0.510193 0.245696i
\(167\) 3.73945 + 16.3836i 0.289367 + 1.26780i 0.885396 + 0.464837i \(0.153887\pi\)
−0.596029 + 0.802963i \(0.703256\pi\)
\(168\) 0 0
\(169\) −8.09783 10.1544i −0.622910 0.781105i
\(170\) 0.911854 3.99509i 0.0699360 0.306410i
\(171\) 0 0
\(172\) −2.85354 3.57823i −0.217581 0.272838i
\(173\) 20.3381 1.54628 0.773139 0.634237i \(-0.218686\pi\)
0.773139 + 0.634237i \(0.218686\pi\)
\(174\) 0 0
\(175\) −2.15883 −0.163192
\(176\) 13.0782 + 16.3996i 0.985808 + 1.23616i
\(177\) 0 0
\(178\) −4.27359 + 18.7238i −0.320319 + 1.40341i
\(179\) 3.20895 + 4.02389i 0.239848 + 0.300760i 0.887157 0.461468i \(-0.152677\pi\)
−0.647309 + 0.762228i \(0.724106\pi\)
\(180\) 0 0
\(181\) −5.85743 25.6631i −0.435379 1.90752i −0.419742 0.907643i \(-0.637880\pi\)
−0.0156368 0.999878i \(-0.504978\pi\)
\(182\) −0.480386 + 0.231342i −0.0356086 + 0.0171482i
\(183\) 0 0
\(184\) 0.846011 3.70662i 0.0623687 0.273255i
\(185\) −17.0477 8.20975i −1.25337 0.603593i
\(186\) 0 0
\(187\) −4.24698 2.04524i −0.310570 0.149563i
\(188\) 5.60388 7.02704i 0.408705 0.512499i
\(189\) 0 0
\(190\) −4.35086 2.09526i −0.315644 0.152006i
\(191\) 19.6993 1.42539 0.712696 0.701473i \(-0.247474\pi\)
0.712696 + 0.701473i \(0.247474\pi\)
\(192\) 0 0
\(193\) −1.80529 + 7.90949i −0.129948 + 0.569338i 0.867468 + 0.497493i \(0.165746\pi\)
−0.997416 + 0.0718451i \(0.977111\pi\)
\(194\) 18.5015 8.90985i 1.32833 0.639690i
\(195\) 0 0
\(196\) −0.0685317 0.300257i −0.00489512 0.0214469i
\(197\) 6.44049 8.07612i 0.458866 0.575400i −0.497540 0.867441i \(-0.665763\pi\)
0.956406 + 0.292041i \(0.0943345\pi\)
\(198\) 0 0
\(199\) 2.69441 11.8050i 0.191002 0.836834i −0.785074 0.619403i \(-0.787375\pi\)
0.976076 0.217432i \(-0.0697680\pi\)
\(200\) −0.242135 1.06086i −0.0171215 0.0750144i
\(201\) 0 0
\(202\) 1.46681 0.103205
\(203\) 13.5625 + 5.12067i 0.951900 + 0.359400i
\(204\) 0 0
\(205\) 7.91789 + 9.92873i 0.553010 + 0.693452i
\(206\) 6.05765 + 26.5403i 0.422056 + 1.84915i
\(207\) 0 0
\(208\) −0.338478 0.424438i −0.0234692 0.0294295i
\(209\) −3.46346 + 4.34304i −0.239573 + 0.300414i
\(210\) 0 0
\(211\) 12.4330 5.98740i 0.855920 0.412189i 0.0461486 0.998935i \(-0.485305\pi\)
0.809772 + 0.586745i \(0.199591\pi\)
\(212\) 12.7899 6.15927i 0.878411 0.423020i
\(213\) 0 0
\(214\) −8.07338 3.88793i −0.551885 0.265774i
\(215\) −7.52004 −0.512863
\(216\) 0 0
\(217\) 7.47703 9.37590i 0.507574 0.636478i
\(218\) 10.0843 12.6453i 0.682992 0.856445i
\(219\) 0 0
\(220\) −10.8509 −0.731564
\(221\) 0.109916 + 0.0529329i 0.00739377 + 0.00356065i
\(222\) 0 0
\(223\) −17.1516 + 8.25977i −1.14856 + 0.553115i −0.908600 0.417668i \(-0.862847\pi\)
−0.239956 + 0.970784i \(0.577133\pi\)
\(224\) 15.0036 7.22538i 1.00247 0.482766i
\(225\) 0 0
\(226\) 14.3802 18.0321i 0.956554 1.19948i
\(227\) 1.17092 + 1.46828i 0.0777164 + 0.0974532i 0.819170 0.573551i \(-0.194435\pi\)
−0.741453 + 0.671004i \(0.765863\pi\)
\(228\) 0 0
\(229\) 0.769282 + 3.37045i 0.0508356 + 0.222725i 0.993965 0.109702i \(-0.0349896\pi\)
−0.943129 + 0.332427i \(0.892132\pi\)
\(230\) 6.44989 + 8.08790i 0.425293 + 0.533300i
\(231\) 0 0
\(232\) −0.995156 + 7.23903i −0.0653352 + 0.475265i
\(233\) 0.567040 0.0371480 0.0185740 0.999827i \(-0.494087\pi\)
0.0185740 + 0.999827i \(0.494087\pi\)
\(234\) 0 0
\(235\) −3.28621 14.3978i −0.214369 0.939210i
\(236\) −1.69537 + 7.42792i −0.110359 + 0.483516i
\(237\) 0 0
\(238\) −3.35690 + 4.20941i −0.217595 + 0.272856i
\(239\) 2.05161 + 8.98867i 0.132707 + 0.581429i 0.996929 + 0.0783168i \(0.0249546\pi\)
−0.864221 + 0.503112i \(0.832188\pi\)
\(240\) 0 0
\(241\) 11.9025 5.73192i 0.766705 0.369226i −0.00929651 0.999957i \(-0.502959\pi\)
0.776001 + 0.630731i \(0.217245\pi\)
\(242\) −2.82155 + 12.3620i −0.181376 + 0.794661i
\(243\) 0 0
\(244\) 11.3448 0.726277
\(245\) −0.455927 0.219563i −0.0291281 0.0140274i
\(246\) 0 0
\(247\) 0.0896380 0.112402i 0.00570353 0.00715200i
\(248\) 5.44600 + 2.62266i 0.345821 + 0.166539i
\(249\) 0 0
\(250\) 19.2995 + 9.29417i 1.22061 + 0.587815i
\(251\) 0.0864171 0.378618i 0.00545460 0.0238982i −0.972127 0.234453i \(-0.924670\pi\)
0.977582 + 0.210555i \(0.0675272\pi\)
\(252\) 0 0
\(253\) 10.7213 5.16312i 0.674044 0.324602i
\(254\) −6.12833 26.8500i −0.384526 1.68472i
\(255\) 0 0
\(256\) 12.9133 + 16.1928i 0.807084 + 1.01205i
\(257\) −2.32520 + 10.1874i −0.145042 + 0.635470i 0.849178 + 0.528107i \(0.177098\pi\)
−0.994220 + 0.107363i \(0.965759\pi\)
\(258\) 0 0
\(259\) 15.5003 + 19.4368i 0.963141 + 1.20774i
\(260\) 0.280831 0.0174164
\(261\) 0 0
\(262\) 17.0368 1.05254
\(263\) 7.31886 + 9.17756i 0.451300 + 0.565913i 0.954482 0.298268i \(-0.0964088\pi\)
−0.503182 + 0.864181i \(0.667837\pi\)
\(264\) 0 0
\(265\) 5.19029 22.7402i 0.318837 1.39692i
\(266\) 3.95593 + 4.96058i 0.242553 + 0.304152i
\(267\) 0 0
\(268\) −0.606564 2.65753i −0.0370518 0.162334i
\(269\) −18.0673 + 8.70077i −1.10158 + 0.530495i −0.894156 0.447755i \(-0.852224\pi\)
−0.207429 + 0.978250i \(0.566509\pi\)
\(270\) 0 0
\(271\) −4.62445 + 20.2610i −0.280915 + 1.23077i 0.615707 + 0.787975i \(0.288870\pi\)
−0.896623 + 0.442795i \(0.853987\pi\)
\(272\) −4.93900 2.37850i −0.299471 0.144218i
\(273\) 0 0
\(274\) −31.1042 14.9790i −1.87907 0.904913i
\(275\) 2.12349 2.66277i 0.128051 0.160571i
\(276\) 0 0
\(277\) −7.87047 3.79022i −0.472891 0.227732i 0.182231 0.983256i \(-0.441668\pi\)
−0.655121 + 0.755524i \(0.727383\pi\)
\(278\) 8.56033 0.513415
\(279\) 0 0
\(280\) 1.66541 7.29662i 0.0995271 0.436057i
\(281\) −11.2349 + 5.41044i −0.670218 + 0.322760i −0.737864 0.674949i \(-0.764165\pi\)
0.0676461 + 0.997709i \(0.478451\pi\)
\(282\) 0 0
\(283\) 2.52930 + 11.0816i 0.150351 + 0.658733i 0.992783 + 0.119929i \(0.0382666\pi\)
−0.842431 + 0.538804i \(0.818876\pi\)
\(284\) 3.94653 4.94880i 0.234184 0.293657i
\(285\) 0 0
\(286\) 0.187177 0.820077i 0.0110680 0.0484921i
\(287\) −3.71283 16.2670i −0.219162 0.960210i
\(288\) 0 0
\(289\) −15.7681 −0.927534
\(290\) −13.7114 14.3978i −0.805161 0.845469i
\(291\) 0 0
\(292\) −6.95742 8.72433i −0.407152 0.510553i
\(293\) −1.50053 6.57426i −0.0876620 0.384073i 0.911997 0.410198i \(-0.134540\pi\)
−0.999659 + 0.0261252i \(0.991683\pi\)
\(294\) 0 0
\(295\) 7.80529 + 9.78752i 0.454442 + 0.569852i
\(296\) −7.81282 + 9.79697i −0.454111 + 0.569437i
\(297\) 0 0
\(298\) 6.02930 2.90356i 0.349268 0.168199i
\(299\) −0.277479 + 0.133627i −0.0160470 + 0.00772784i
\(300\) 0 0
\(301\) 8.90193 + 4.28694i 0.513099 + 0.247095i
\(302\) −33.6112 −1.93411
\(303\) 0 0
\(304\) −4.02781 + 5.05072i −0.231011 + 0.289678i
\(305\) 11.6223 14.5739i 0.665491 0.834499i
\(306\) 0 0
\(307\) −4.59956 −0.262511 −0.131255 0.991349i \(-0.541901\pi\)
−0.131255 + 0.991349i \(0.541901\pi\)
\(308\) 12.8448 + 6.18574i 0.731901 + 0.352465i
\(309\) 0 0
\(310\) −14.8182 + 7.13607i −0.841617 + 0.405301i
\(311\) −26.2838 + 12.6576i −1.49042 + 0.717748i −0.989063 0.147494i \(-0.952879\pi\)
−0.501355 + 0.865241i \(0.667165\pi\)
\(312\) 0 0
\(313\) −8.12833 + 10.1926i −0.459441 + 0.576120i −0.956550 0.291567i \(-0.905823\pi\)
0.497110 + 0.867688i \(0.334395\pi\)
\(314\) −23.1151 28.9854i −1.30446 1.63574i
\(315\) 0 0
\(316\) −2.37316 10.3975i −0.133501 0.584904i
\(317\) 18.9494 + 23.7617i 1.06430 + 1.33459i 0.939553 + 0.342404i \(0.111241\pi\)
0.124749 + 0.992188i \(0.460187\pi\)
\(318\) 0 0
\(319\) −19.6564 + 11.6916i −1.10055 + 0.654602i
\(320\) −2.59956 −0.145320
\(321\) 0 0
\(322\) −3.02446 13.2510i −0.168546 0.738450i
\(323\) 0.323044 1.41535i 0.0179747 0.0787521i
\(324\) 0 0
\(325\) −0.0549581 + 0.0689153i −0.00304853 + 0.00382273i
\(326\) −5.18545 22.7189i −0.287195 1.25829i
\(327\) 0 0
\(328\) 7.57726 3.64902i 0.418384 0.201483i
\(329\) −4.31767 + 18.9169i −0.238041 + 1.04292i
\(330\) 0 0
\(331\) −18.4655 −1.01495 −0.507477 0.861665i \(-0.669422\pi\)
−0.507477 + 0.861665i \(0.669422\pi\)
\(332\) 4.54892 + 2.19064i 0.249654 + 0.120227i
\(333\) 0 0
\(334\) −18.8802 + 23.6750i −1.03308 + 1.29544i
\(335\) −4.03534 1.94332i −0.220474 0.106175i
\(336\) 0 0
\(337\) 29.3904 + 14.1537i 1.60100 + 0.770999i 0.999609 0.0279589i \(-0.00890076\pi\)
0.601387 + 0.798958i \(0.294615\pi\)
\(338\) 5.20775 22.8166i 0.283264 1.24106i
\(339\) 0 0
\(340\) 2.55496 1.23040i 0.138562 0.0667280i
\(341\) 4.20991 + 18.4448i 0.227979 + 0.998842i
\(342\) 0 0
\(343\) −11.3346 14.2131i −0.612011 0.767437i
\(344\) −1.10819 + 4.85529i −0.0597495 + 0.261779i
\(345\) 0 0
\(346\) 22.8497 + 28.6526i 1.22841 + 1.54037i
\(347\) −8.29829 −0.445476 −0.222738 0.974878i \(-0.571499\pi\)
−0.222738 + 0.974878i \(0.571499\pi\)
\(348\) 0 0
\(349\) 28.0127 1.49948 0.749742 0.661730i \(-0.230178\pi\)
0.749742 + 0.661730i \(0.230178\pi\)
\(350\) −2.42543 3.04139i −0.129645 0.162569i
\(351\) 0 0
\(352\) −5.84601 + 25.6130i −0.311593 + 1.36518i
\(353\) −5.14340 6.44962i −0.273756 0.343279i 0.625881 0.779919i \(-0.284740\pi\)
−0.899636 + 0.436640i \(0.856168\pi\)
\(354\) 0 0
\(355\) −2.31431 10.1397i −0.122831 0.538158i
\(356\) −11.9743 + 5.76654i −0.634639 + 0.305626i
\(357\) 0 0
\(358\) −2.06369 + 9.04160i −0.109069 + 0.477864i
\(359\) −13.1489 6.33218i −0.693973 0.334200i 0.0534293 0.998572i \(-0.482985\pi\)
−0.747402 + 0.664372i \(0.768699\pi\)
\(360\) 0 0
\(361\) 15.5770 + 7.50150i 0.819843 + 0.394816i
\(362\) 29.5737 37.0842i 1.55436 1.94910i
\(363\) 0 0
\(364\) −0.332437 0.160093i −0.0174244 0.00839117i
\(365\) −18.3351 −0.959704
\(366\) 0 0
\(367\) −6.44869 + 28.2536i −0.336619 + 1.47482i 0.469427 + 0.882971i \(0.344460\pi\)
−0.806046 + 0.591853i \(0.798397\pi\)
\(368\) 12.4683 6.00442i 0.649955 0.313002i
\(369\) 0 0
\(370\) −7.58695 33.2406i −0.394427 1.72810i
\(371\) −19.1075 + 23.9601i −0.992013 + 1.24395i
\(372\) 0 0
\(373\) 4.77844 20.9357i 0.247418 1.08401i −0.686671 0.726969i \(-0.740928\pi\)
0.934089 0.357041i \(-0.116214\pi\)
\(374\) −1.89008 8.28100i −0.0977339 0.428200i
\(375\) 0 0
\(376\) −9.78017 −0.504374
\(377\) 0.508729 0.302590i 0.0262009 0.0155842i
\(378\) 0 0
\(379\) 14.1746 + 17.7743i 0.728098 + 0.913007i 0.998766 0.0496664i \(-0.0158158\pi\)
−0.270667 + 0.962673i \(0.587244\pi\)
\(380\) −0.743627 3.25804i −0.0381473 0.167134i
\(381\) 0 0
\(382\) 22.1320 + 27.7526i 1.13237 + 1.41995i
\(383\) 2.16003 2.70859i 0.110372 0.138403i −0.723577 0.690244i \(-0.757503\pi\)
0.833949 + 0.551841i \(0.186075\pi\)
\(384\) 0 0
\(385\) 21.1054 10.1638i 1.07563 0.517996i
\(386\) −13.1712 + 6.34292i −0.670397 + 0.322846i
\(387\) 0 0
\(388\) 12.8034 + 6.16581i 0.649996 + 0.313021i
\(389\) −8.49635 −0.430782 −0.215391 0.976528i \(-0.569103\pi\)
−0.215391 + 0.976528i \(0.569103\pi\)
\(390\) 0 0
\(391\) −1.93900 + 2.43143i −0.0980595 + 0.122963i
\(392\) −0.208947 + 0.262012i −0.0105534 + 0.0132336i
\(393\) 0 0
\(394\) 18.6136 0.937738
\(395\) −15.7881 7.60316i −0.794387 0.382557i
\(396\) 0 0
\(397\) −25.1356 + 12.1047i −1.26152 + 0.607517i −0.940577 0.339581i \(-0.889715\pi\)
−0.320944 + 0.947098i \(0.604000\pi\)
\(398\) 19.6582 9.46688i 0.985375 0.474532i
\(399\) 0 0
\(400\) 2.46950 3.09666i 0.123475 0.154833i
\(401\) −11.5565 14.4913i −0.577102 0.723662i 0.404514 0.914532i \(-0.367441\pi\)
−0.981615 + 0.190869i \(0.938869\pi\)
\(402\) 0 0
\(403\) −0.108957 0.477371i −0.00542752 0.0237795i
\(404\) 0.632883 + 0.793610i 0.0314871 + 0.0394836i
\(405\) 0 0
\(406\) 8.02326 + 24.8600i 0.398188 + 1.23378i
\(407\) −39.2204 −1.94408
\(408\) 0 0
\(409\) −7.90485 34.6334i −0.390870 1.71251i −0.661600 0.749857i \(-0.730122\pi\)
0.270730 0.962655i \(-0.412735\pi\)
\(410\) −5.09203 + 22.3096i −0.251477 + 1.10179i
\(411\) 0 0
\(412\) −11.7458 + 14.7287i −0.578673 + 0.725633i
\(413\) −3.66003 16.0356i −0.180098 0.789062i
\(414\) 0 0
\(415\) 7.47434 3.59945i 0.366901 0.176690i
\(416\) 0.151301 0.662892i 0.00741813 0.0325010i
\(417\) 0 0
\(418\) −10.0097 −0.489590
\(419\) −0.825437 0.397509i −0.0403252 0.0194196i 0.413612 0.910453i \(-0.364267\pi\)
−0.453938 + 0.891033i \(0.649981\pi\)
\(420\) 0 0
\(421\) −11.5395 + 14.4701i −0.562402 + 0.705230i −0.979000 0.203861i \(-0.934651\pi\)
0.416598 + 0.909091i \(0.363222\pi\)
\(422\) 22.4034 + 10.7889i 1.09058 + 0.525196i
\(423\) 0 0
\(424\) −13.9172 6.70219i −0.675880 0.325487i
\(425\) −0.198062 + 0.867767i −0.00960743 + 0.0420929i
\(426\) 0 0
\(427\) −22.0661 + 10.6265i −1.06786 + 0.514252i
\(428\) −1.37986 6.04557i −0.0666982 0.292224i
\(429\) 0 0
\(430\) −8.44869 10.5943i −0.407432 0.510904i
\(431\) −7.08844 + 31.0565i −0.341438 + 1.49594i 0.454602 + 0.890695i \(0.349782\pi\)
−0.796040 + 0.605244i \(0.793076\pi\)
\(432\) 0 0
\(433\) 10.9227 + 13.6967i 0.524913 + 0.658221i 0.971644 0.236448i \(-0.0759833\pi\)
−0.446731 + 0.894668i \(0.647412\pi\)
\(434\) 21.6093 1.03728
\(435\) 0 0
\(436\) 11.1927 0.536032
\(437\) 2.28501 + 2.86531i 0.109307 + 0.137067i
\(438\) 0 0
\(439\) −2.20828 + 9.67512i −0.105396 + 0.461768i 0.894496 + 0.447075i \(0.147534\pi\)
−0.999892 + 0.0146933i \(0.995323\pi\)
\(440\) 7.36174 + 9.23133i 0.350957 + 0.440086i
\(441\) 0 0
\(442\) 0.0489173 + 0.214321i 0.00232676 + 0.0101942i
\(443\) 29.0819 14.0051i 1.38172 0.665402i 0.412355 0.911023i \(-0.364706\pi\)
0.969366 + 0.245621i \(0.0789919\pi\)
\(444\) 0 0
\(445\) −4.85935 + 21.2902i −0.230355 + 1.00925i
\(446\) −30.9061 14.8836i −1.46345 0.704759i
\(447\) 0 0
\(448\) 3.07726 + 1.48193i 0.145387 + 0.0700146i
\(449\) −3.09568 + 3.88186i −0.146094 + 0.183196i −0.849494 0.527598i \(-0.823093\pi\)
0.703400 + 0.710794i \(0.251664\pi\)
\(450\) 0 0
\(451\) 23.7162 + 11.4211i 1.11675 + 0.537801i
\(452\) 15.9608 0.750732
\(453\) 0 0
\(454\) −0.753020 + 3.29920i −0.0353410 + 0.154839i
\(455\) −0.546229 + 0.263050i −0.0256076 + 0.0123320i
\(456\) 0 0
\(457\) −8.19806 35.9181i −0.383489 1.68018i −0.686453 0.727174i \(-0.740833\pi\)
0.302964 0.953002i \(-0.402024\pi\)
\(458\) −3.88404 + 4.87044i −0.181489 + 0.227581i
\(459\) 0 0
\(460\) −1.59299 + 6.97935i −0.0742736 + 0.325414i
\(461\) 2.78783 + 12.2143i 0.129842 + 0.568876i 0.997434 + 0.0715982i \(0.0228099\pi\)
−0.867591 + 0.497278i \(0.834333\pi\)
\(462\) 0 0
\(463\) 20.6396 0.959206 0.479603 0.877486i \(-0.340781\pi\)
0.479603 + 0.877486i \(0.340781\pi\)
\(464\) −22.8593 + 13.5966i −1.06122 + 0.631208i
\(465\) 0 0
\(466\) 0.637063 + 0.798852i 0.0295114 + 0.0370061i
\(467\) −3.59664 15.7579i −0.166433 0.729189i −0.987404 0.158219i \(-0.949425\pi\)
0.820971 0.570969i \(-0.193432\pi\)
\(468\) 0 0
\(469\) 3.66905 + 4.60085i 0.169421 + 0.212447i
\(470\) 16.5918 20.8055i 0.765322 0.959684i
\(471\) 0 0
\(472\) 7.46950 3.59712i 0.343812 0.165571i
\(473\) −14.0438 + 6.76315i −0.645736 + 0.310970i
\(474\) 0 0
\(475\) 0.945042 + 0.455108i 0.0433615 + 0.0208818i
\(476\) −3.72587 −0.170775
\(477\) 0 0
\(478\) −10.3584 + 12.9890i −0.473782 + 0.594103i
\(479\) 15.8014 19.8143i 0.721985 0.905340i −0.276464 0.961024i \(-0.589163\pi\)
0.998448 + 0.0556842i \(0.0177340\pi\)
\(480\) 0 0
\(481\) 1.01507 0.0462830
\(482\) 21.4475 + 10.3286i 0.976907 + 0.470453i
\(483\) 0 0
\(484\) −7.90581 + 3.80724i −0.359355 + 0.173056i
\(485\) 21.0374 10.1311i 0.955258 0.460028i
\(486\) 0 0
\(487\) −13.9973 + 17.5521i −0.634279 + 0.795360i −0.990275 0.139127i \(-0.955570\pi\)
0.355996 + 0.934488i \(0.384142\pi\)
\(488\) −7.69687 9.65156i −0.348421 0.436906i
\(489\) 0 0
\(490\) −0.202907 0.888992i −0.00916639 0.0401606i
\(491\) 0.682628 + 0.855989i 0.0308066 + 0.0386302i 0.796996 0.603984i \(-0.206421\pi\)
−0.766190 + 0.642615i \(0.777850\pi\)
\(492\) 0 0
\(493\) 3.30260 4.98180i 0.148742 0.224369i
\(494\) 0.259061 0.0116557
\(495\) 0 0
\(496\) 4.89589 + 21.4503i 0.219832 + 0.963146i
\(497\) −3.04072 + 13.3223i −0.136395 + 0.597585i
\(498\) 0 0
\(499\) −7.16786 + 8.98821i −0.320877 + 0.402368i −0.915942 0.401310i \(-0.868555\pi\)
0.595065 + 0.803678i \(0.297126\pi\)
\(500\) 3.29859 + 14.4520i 0.147517 + 0.646315i
\(501\) 0 0
\(502\) 0.630490 0.303628i 0.0281401 0.0135516i
\(503\) 5.67898 24.8812i 0.253213 1.10940i −0.675137 0.737693i \(-0.735915\pi\)
0.928350 0.371707i \(-0.121227\pi\)
\(504\) 0 0
\(505\) 1.66786 0.0742187
\(506\) 19.3192 + 9.30362i 0.858841 + 0.413596i
\(507\) 0 0
\(508\) 11.8828 14.9006i 0.527216 0.661108i
\(509\) 35.2923 + 16.9959i 1.56430 + 0.753329i 0.997510 0.0705302i \(-0.0224691\pi\)
0.566794 + 0.823859i \(0.308183\pi\)
\(510\) 0 0
\(511\) 21.7044 + 10.4523i 0.960146 + 0.462382i
\(512\) −3.81604 + 16.7192i −0.168647 + 0.738890i
\(513\) 0 0
\(514\) −16.9644 + 8.16963i −0.748268 + 0.360347i
\(515\) 6.88793 + 30.1780i 0.303518 + 1.32980i
\(516\) 0 0
\(517\) −19.0858 23.9328i −0.839390 1.05256i
\(518\) −9.96830 + 43.6740i −0.437982 + 1.91893i
\(519\) 0 0
\(520\) −0.190530 0.238916i −0.00835527 0.0104772i
\(521\) 20.1142 0.881220 0.440610 0.897699i \(-0.354762\pi\)
0.440610 + 0.897699i \(0.354762\pi\)
\(522\) 0 0
\(523\) 22.2295 0.972029 0.486015 0.873951i \(-0.338450\pi\)
0.486015 + 0.873951i \(0.338450\pi\)
\(524\) 7.35086 + 9.21768i 0.321124 + 0.402676i
\(525\) 0 0
\(526\) −4.70679 + 20.6218i −0.205226 + 0.899153i
\(527\) −3.08277 3.86567i −0.134288 0.168391i
\(528\) 0 0
\(529\) 3.37100 + 14.7693i 0.146565 + 0.642145i
\(530\) 37.8678 18.2362i 1.64487 0.792129i
\(531\) 0 0
\(532\) −0.977033 + 4.28066i −0.0423598 + 0.185590i
\(533\) −0.613801 0.295591i −0.0265867 0.0128035i
\(534\) 0 0
\(535\) −9.17994 4.42083i −0.396883 0.191129i
\(536\) −1.84936 + 2.31903i −0.0798803 + 0.100167i
\(537\) 0 0
\(538\) −32.5562 15.6782i −1.40360 0.675937i
\(539\) −1.04892 −0.0451801
\(540\) 0 0
\(541\) 5.05161 22.1325i 0.217185 0.951552i −0.742361 0.670000i \(-0.766294\pi\)
0.959546 0.281551i \(-0.0908490\pi\)
\(542\) −33.7395 + 16.2481i −1.44924 + 0.697915i
\(543\) 0 0
\(544\) −1.52781 6.69378i −0.0655044 0.286993i
\(545\) 11.4664 14.3785i 0.491168 0.615906i
\(546\) 0 0
\(547\) 2.30367 10.0930i 0.0984977 0.431547i −0.901502 0.432776i \(-0.857534\pi\)
0.999999 + 0.00122932i \(0.000391306\pi\)
\(548\) −5.31618 23.2917i −0.227096 0.994971i
\(549\) 0 0
\(550\) 6.13706 0.261685
\(551\) −4.85756 5.10074i −0.206939 0.217299i
\(552\) 0 0
\(553\) 14.3550 + 18.0006i 0.610438 + 0.765465i
\(554\) −3.50269 15.3463i −0.148815 0.652001i
\(555\) 0 0
\(556\) 3.69351 + 4.63152i 0.156640 + 0.196420i
\(557\) 1.89948 2.38187i 0.0804834 0.100923i −0.739960 0.672651i \(-0.765155\pi\)
0.820443 + 0.571728i \(0.193727\pi\)
\(558\) 0 0
\(559\) 0.363469 0.175038i 0.0153731 0.00740330i
\(560\) 24.5444 11.8199i 1.03719 0.499484i
\(561\) 0 0
\(562\) −20.2446 9.74928i −0.853966 0.411249i
\(563\) 6.08144 0.256302 0.128151 0.991755i \(-0.459096\pi\)
0.128151 + 0.991755i \(0.459096\pi\)
\(564\) 0 0
\(565\) 16.3512 20.5037i 0.687898 0.862597i
\(566\) −12.7702 + 16.0134i −0.536773 + 0.673092i
\(567\) 0 0
\(568\) −6.88769 −0.289001
\(569\) 31.3245 + 15.0851i 1.31319 + 0.632400i 0.953703 0.300749i \(-0.0972366\pi\)
0.359489 + 0.933149i \(0.382951\pi\)
\(570\) 0 0
\(571\) −1.53534 + 0.739383i −0.0642521 + 0.0309422i −0.465734 0.884925i \(-0.654210\pi\)
0.401482 + 0.915867i \(0.368495\pi\)
\(572\) 0.524459 0.252566i 0.0219287 0.0105603i
\(573\) 0 0
\(574\) 18.7458 23.5065i 0.782434 0.981141i
\(575\) −1.40097 1.75676i −0.0584244 0.0732619i
\(576\) 0 0
\(577\) 5.98374 + 26.2165i 0.249106 + 1.09141i 0.932447 + 0.361306i \(0.117669\pi\)
−0.683341 + 0.730099i \(0.739474\pi\)
\(578\) −17.7153 22.2143i −0.736859 0.923992i
\(579\) 0 0
\(580\) 1.87382 13.6307i 0.0778062 0.565983i
\(581\) −10.8998 −0.452199
\(582\) 0 0
\(583\) −10.7584 47.1356i −0.445567 1.95216i
\(584\) −2.70195 + 11.8380i −0.111807 + 0.489860i
\(585\) 0 0
\(586\) 7.57606 9.50008i 0.312964 0.392445i
\(587\) −2.24794 9.84886i −0.0927824 0.406506i 0.907114 0.420884i \(-0.138280\pi\)
−0.999897 + 0.0143783i \(0.995423\pi\)
\(588\) 0 0
\(589\) −5.24967 + 2.52811i −0.216309 + 0.104169i
\(590\) −5.01961 + 21.9924i −0.206654 + 0.905411i
\(591\) 0 0
\(592\) −45.6112 −1.87461
\(593\) 29.7681 + 14.3356i 1.22243 + 0.588691i 0.929987 0.367593i \(-0.119818\pi\)
0.292442 + 0.956283i \(0.405532\pi\)
\(594\) 0 0
\(595\) −3.81700 + 4.78637i −0.156482 + 0.196222i
\(596\) 4.17241 + 2.00933i 0.170908 + 0.0823052i
\(597\) 0 0
\(598\) −0.500000 0.240787i −0.0204465 0.00984653i
\(599\) 1.70267 7.45988i 0.0695692 0.304803i −0.928158 0.372187i \(-0.878608\pi\)
0.997727 + 0.0673841i \(0.0214653\pi\)
\(600\) 0 0
\(601\) 26.5698 12.7953i 1.08380 0.521933i 0.195273 0.980749i \(-0.437441\pi\)
0.888531 + 0.458816i \(0.151726\pi\)
\(602\) 3.96173 + 17.3575i 0.161468 + 0.707438i
\(603\) 0 0
\(604\) −14.5022 18.1851i −0.590084 0.739942i
\(605\) −3.20828 + 14.0564i −0.130435 + 0.571474i
\(606\) 0 0
\(607\) 9.38703 + 11.7710i 0.381008 + 0.477769i 0.934946 0.354789i \(-0.115447\pi\)
−0.553939 + 0.832557i \(0.686876\pi\)
\(608\) −8.09113 −0.328139
\(609\) 0 0
\(610\) 33.5894 1.36000
\(611\) 0.493959 + 0.619405i 0.0199835 + 0.0250585i
\(612\) 0 0
\(613\) 3.26122 14.2883i 0.131719 0.577100i −0.865389 0.501101i \(-0.832928\pi\)
0.997108 0.0759987i \(-0.0242145\pi\)
\(614\) −5.16756 6.47992i −0.208546 0.261508i
\(615\) 0 0
\(616\) −3.45204 15.1244i −0.139087 0.609379i
\(617\) −31.6521 + 15.2429i −1.27427 + 0.613655i −0.943910 0.330202i \(-0.892883\pi\)
−0.330356 + 0.943856i \(0.607169\pi\)
\(618\) 0 0
\(619\) 8.46668 37.0950i 0.340305 1.49097i −0.458127 0.888887i \(-0.651480\pi\)
0.798432 0.602085i \(-0.205663\pi\)
\(620\) −10.2545 4.93831i −0.411831 0.198327i
\(621\) 0 0
\(622\) −47.3618 22.8082i −1.89904 0.914527i
\(623\) 17.8892 22.4323i 0.716715 0.898732i
\(624\) 0 0
\(625\) 18.3322 + 8.82832i 0.733288 + 0.353133i
\(626\) −23.4916 −0.938912
\(627\) 0 0
\(628\) 5.70895 25.0125i 0.227812 0.998109i
\(629\) 9.23490 4.44729i 0.368219 0.177325i
\(630\) 0 0
\(631\) 5.09269 + 22.3126i 0.202737 + 0.888249i 0.969261 + 0.246033i \(0.0791273\pi\)
−0.766524 + 0.642215i \(0.778016\pi\)
\(632\) −7.23556 + 9.07311i −0.287815 + 0.360909i
\(633\) 0 0
\(634\) −12.1864 + 53.3921i −0.483984 + 2.12047i
\(635\) −6.96830 30.5301i −0.276529 1.21155i
\(636\) 0 0
\(637\) 0.0271471 0.00107561
\(638\) −38.5550 14.5569i −1.52641 0.576312i
\(639\) 0 0
\(640\) 12.8843 + 16.1564i 0.509298 + 0.638640i
\(641\) 6.10358 + 26.7415i 0.241077 + 1.05623i 0.940039 + 0.341068i \(0.110789\pi\)
−0.698962 + 0.715159i \(0.746354\pi\)
\(642\) 0 0
\(643\) 7.56853 + 9.49064i 0.298474 + 0.374274i 0.908342 0.418229i \(-0.137349\pi\)
−0.609868 + 0.792503i \(0.708778\pi\)
\(644\) 5.86443 7.35376i 0.231091 0.289779i
\(645\) 0 0
\(646\) 2.35690 1.13502i 0.0927308 0.0446568i
\(647\) 33.9502 16.3495i 1.33472 0.642767i 0.375867 0.926673i \(-0.377345\pi\)
0.958852 + 0.283906i \(0.0916305\pi\)
\(648\) 0 0
\(649\) 23.3790 + 11.2587i 0.917705 + 0.441943i
\(650\) −0.158834 −0.00622997
\(651\) 0 0
\(652\) 10.0546 12.6081i 0.393768 0.493770i
\(653\) 1.12498 1.41068i 0.0440239 0.0552043i −0.759332 0.650703i \(-0.774474\pi\)
0.803356 + 0.595499i \(0.203046\pi\)
\(654\) 0 0
\(655\) 19.3720 0.756925
\(656\) 27.5807 + 13.2822i 1.07684 + 0.518581i
\(657\) 0 0
\(658\) −31.5013 + 15.1702i −1.22805 + 0.591396i
\(659\) 38.1863 18.3895i 1.48753 0.716355i 0.498888 0.866667i \(-0.333742\pi\)
0.988639 + 0.150312i \(0.0480278\pi\)
\(660\) 0 0
\(661\) 23.8391 29.8932i 0.927232 1.16271i −0.0591509 0.998249i \(-0.518839\pi\)
0.986383 0.164463i \(-0.0525893\pi\)
\(662\) −20.7458 26.0144i −0.806308 1.01108i
\(663\) 0 0
\(664\) −1.22252 5.35621i −0.0474430 0.207861i
\(665\) 4.49814 + 5.64049i 0.174430 + 0.218729i
\(666\) 0 0
\(667\) 4.63437 + 14.3596i 0.179444 + 0.556005i
\(668\) −20.9554 −0.810789
\(669\) 0 0
\(670\) −1.79590 7.86834i −0.0693816 0.303980i
\(671\) 8.59783 37.6696i 0.331916 1.45422i
\(672\) 0 0
\(673\) 17.0843 21.4230i 0.658550 0.825795i −0.334635 0.942348i \(-0.608613\pi\)
0.993185 + 0.116553i \(0.0371843\pi\)
\(674\) 13.0799 + 57.3070i 0.503821 + 2.20738i
\(675\) 0 0
\(676\) 14.5918 7.02704i 0.561223 0.270271i
\(677\) 7.06920 30.9722i 0.271691 1.19036i −0.636325 0.771421i \(-0.719546\pi\)
0.908016 0.418936i \(-0.137597\pi\)
\(678\) 0 0
\(679\) −30.6786 −1.17734
\(680\) −2.78017 1.33886i −0.106615 0.0513429i
\(681\) 0 0
\(682\) −21.2555 + 26.6535i −0.813914 + 1.02062i
\(683\) −12.3509 5.94786i −0.472592 0.227588i 0.182399 0.983225i \(-0.441614\pi\)
−0.654992 + 0.755636i \(0.727328\pi\)
\(684\) 0 0
\(685\) −35.3674 17.0320i −1.35132 0.650761i
\(686\) 7.28932 31.9366i 0.278308 1.21935i
\(687\) 0 0
\(688\) −16.3322 + 7.86517i −0.622659 + 0.299857i
\(689\) 0.278439 + 1.21992i 0.0106077 + 0.0464752i
\(690\) 0 0
\(691\) −1.38822 1.74078i −0.0528105 0.0662223i 0.754725 0.656042i \(-0.227770\pi\)
−0.807535 + 0.589819i \(0.799199\pi\)
\(692\) −5.64340 + 24.7253i −0.214530 + 0.939917i
\(693\) 0 0
\(694\) −9.32304 11.6907i −0.353898 0.443774i
\(695\) 9.73364 0.369218
\(696\) 0 0
\(697\) −6.87933 −0.260573
\(698\) 31.4720 + 39.4646i 1.19123 + 1.49376i
\(699\) 0 0
\(700\) 0.599031 2.62453i 0.0226412 0.0991978i
\(701\) −10.4426 13.0947i −0.394413 0.494579i 0.544486 0.838770i \(-0.316725\pi\)
−0.938900 + 0.344191i \(0.888153\pi\)
\(702\) 0 0
\(703\) −2.68784 11.7762i −0.101374 0.444148i
\(704\) −4.85474 + 2.33792i −0.182970 + 0.0881137i
\(705\) 0 0
\(706\) 3.30774 14.4922i 0.124488 0.545420i
\(707\) −1.97434 0.950794i −0.0742529 0.0357583i
\(708\) 0 0
\(709\) −27.0824 13.0422i −1.01710 0.489810i −0.150393 0.988626i \(-0.548054\pi\)
−0.866708 + 0.498816i \(0.833768\pi\)
\(710\) 11.6848 14.6523i 0.438522 0.549889i
\(711\) 0 0
\(712\) 13.0298 + 6.27484i 0.488314 + 0.235159i
\(713\) 12.4819 0.467450
\(714\) 0 0
\(715\) 0.212832 0.932479i 0.00795948 0.0348727i
\(716\) −5.78232 + 2.78462i −0.216096 + 0.104066i
\(717\) 0 0
\(718\) −5.85181 25.6385i −0.218388 0.956819i
\(719\) −25.1719 + 31.5645i −0.938753 + 1.17716i 0.0452449 + 0.998976i \(0.485593\pi\)
−0.983997 + 0.178183i \(0.942978\pi\)
\(720\) 0 0
\(721\) 9.04988 39.6501i 0.337035 1.47665i
\(722\) 6.93243 + 30.3730i 0.257998 + 1.13036i
\(723\) 0 0
\(724\) 32.8243 1.21991
\(725\) 2.97823 + 3.12733i 0.110609 + 0.116146i
\(726\) 0 0
\(727\) 17.4291 + 21.8554i 0.646409 + 0.810571i 0.991788 0.127892i \(-0.0408212\pi\)
−0.345379 + 0.938463i \(0.612250\pi\)
\(728\) 0.0893425 + 0.391435i 0.00331125 + 0.0145075i
\(729\) 0 0
\(730\) −20.5993 25.8307i −0.762415 0.956039i
\(731\) 2.53989 3.18492i 0.0939413 0.117799i
\(732\) 0 0
\(733\) −1.28932 + 0.620906i −0.0476223 + 0.0229337i −0.457543 0.889187i \(-0.651271\pi\)
0.409921 + 0.912121i \(0.365556\pi\)
\(734\) −47.0490 + 22.6576i −1.73661 + 0.836307i
\(735\) 0 0
\(736\) 15.6163 + 7.52039i 0.575623 + 0.277205i
\(737\) −9.28382 −0.341974
\(738\) 0 0
\(739\) −20.9483 + 26.2684i −0.770596 + 0.966297i −0.999975 0.00703985i \(-0.997759\pi\)
0.229379 + 0.973337i \(0.426331\pi\)
\(740\) 14.7111 18.4471i 0.540791 0.678130i
\(741\) 0 0
\(742\) −55.2223 −2.02728
\(743\) 23.2150 + 11.1798i 0.851677 + 0.410146i 0.808200 0.588908i \(-0.200442\pi\)
0.0434775 + 0.999054i \(0.486156\pi\)
\(744\) 0 0
\(745\) 6.85570 3.30153i 0.251173 0.120959i
\(746\) 34.8630 16.7891i 1.27642 0.614694i
\(747\) 0 0
\(748\) 3.66487 4.59561i 0.134001 0.168032i
\(749\) 8.34667 + 10.4664i 0.304981 + 0.382434i
\(750\) 0 0
\(751\) 5.88955 + 25.8038i 0.214913 + 0.941594i 0.961174 + 0.275942i \(0.0889897\pi\)
−0.746262 + 0.665653i \(0.768153\pi\)
\(752\) −22.1957 27.8325i −0.809393 1.01495i
\(753\) 0 0
\(754\) 0.997844 + 0.376747i 0.0363393 + 0.0137203i
\(755\) −38.2180 −1.39090
\(756\) 0 0
\(757\) −4.67187 20.4688i −0.169802 0.743952i −0.986077 0.166288i \(-0.946822\pi\)
0.816275 0.577664i \(-0.196035\pi\)
\(758\) −9.11572 + 39.9386i −0.331098 + 1.45063i
\(759\) 0 0
\(760\) −2.26726 + 2.84305i −0.0822421 + 0.103128i
\(761\) 7.85019 + 34.3939i 0.284569 + 1.24678i 0.891864 + 0.452303i \(0.149397\pi\)
−0.607295 + 0.794476i \(0.707745\pi\)
\(762\) 0 0
\(763\) −21.7702 + 10.4840i −0.788136 + 0.379546i
\(764\) −5.46615 + 23.9488i −0.197758 + 0.866436i
\(765\) 0 0
\(766\) 6.24267 0.225557
\(767\) −0.605072 0.291387i −0.0218479 0.0105214i
\(768\) 0 0
\(769\) −15.7860 + 19.7950i −0.569257 + 0.713825i −0.980239 0.197818i \(-0.936614\pi\)
0.410982 + 0.911643i \(0.365186\pi\)
\(770\) 38.0306 + 18.3146i 1.37053 + 0.660011i
\(771\) 0 0
\(772\) −9.11476 4.38944i −0.328047 0.157979i
\(773\) 5.06949 22.2109i 0.182337 0.798870i −0.798177 0.602423i \(-0.794202\pi\)
0.980514 0.196448i \(-0.0629406\pi\)
\(774\) 0 0
\(775\) 3.21864 1.55001i 0.115617 0.0556781i
\(776\) −3.44092 15.0757i −0.123522 0.541185i
\(777\) 0 0
\(778\) −9.54556 11.9698i −0.342225 0.429137i
\(779\) −1.80396 + 7.90367i −0.0646337 + 0.283179i
\(780\) 0 0
\(781\) −13.4412 16.8547i −0.480962 0.603108i
\(782\) −5.60388 −0.200394
\(783\) 0 0
\(784\) −1.21983 −0.0435654
\(785\) −26.2833 32.9582i −0.938091 1.17633i
\(786\) 0 0
\(787\) 3.15010 13.8015i 0.112289 0.491971i −0.887241 0.461307i \(-0.847381\pi\)
0.999530 0.0306638i \(-0.00976213\pi\)
\(788\) 8.03116 + 10.0708i 0.286098 + 0.358756i
\(789\) 0 0
\(790\) −7.02638 30.7846i −0.249987 1.09527i
\(791\) −31.0444 + 14.9502i −1.10381 + 0.531567i
\(792\) 0 0
\(793\) −0.222521 + 0.974928i −0.00790195 + 0.0346207i
\(794\) −45.2928 21.8119i −1.60738 0.774075i
\(795\) 0 0
\(796\) 13.6039 + 6.55128i 0.482177 + 0.232204i
\(797\) 1.79523 2.25115i 0.0635904 0.0797399i −0.749019 0.662548i \(-0.769475\pi\)
0.812609 + 0.582809i \(0.198046\pi\)
\(798\) 0 0
\(799\) 7.20775 + 3.47107i 0.254992 + 0.122798i
\(800\) 4.96077 0.175390
\(801\) 0 0
\(802\) 7.43200 32.5617i 0.262433 1.14979i
\(803\) −34.2412 + 16.4897i −1.20835 + 0.581909i
\(804\) 0 0
\(805\) −3.43900 15.0672i −0.121209 0.531051i
\(806\) 0.550114 0.689821i 0.0193769 0.0242979i
\(807\) 0 0
\(808\) 0.245783 1.07685i 0.00864662 0.0378833i
\(809\) −0.254749 1.11613i −0.00895651 0.0392410i 0.970252 0.242096i \(-0.0778350\pi\)
−0.979209 + 0.202855i \(0.934978\pi\)
\(810\) 0 0
\(811\) 40.1021 1.40818 0.704088 0.710112i \(-0.251356\pi\)
0.704088 + 0.710112i \(0.251356\pi\)
\(812\) −9.98858 + 15.0672i −0.350531 + 0.528757i
\(813\) 0 0
\(814\) −44.0637 55.2542i −1.54443 1.93666i
\(815\) −5.89618 25.8329i −0.206534 0.904886i
\(816\) 0 0
\(817\) −2.99313 3.75327i −0.104716 0.131310i
\(818\) 39.9110 50.0468i 1.39545 1.74984i
\(819\) 0 0
\(820\) −14.2676 + 6.87089i −0.498245 + 0.239942i
\(821\) 31.4654 15.1529i 1.09815 0.528841i 0.205073 0.978747i \(-0.434257\pi\)
0.893076 + 0.449906i \(0.148542\pi\)
\(822\) 0 0
\(823\) 40.4834 + 19.4958i 1.41116 + 0.679580i 0.975392 0.220479i \(-0.0707619\pi\)
0.435770 + 0.900058i \(0.356476\pi\)
\(824\) 20.4993 0.714128
\(825\) 0 0
\(826\) 18.4792 23.1722i 0.642973 0.806263i
\(827\) −5.62751 + 7.05667i −0.195688 + 0.245384i −0.869988 0.493072i \(-0.835874\pi\)
0.674301 + 0.738457i \(0.264445\pi\)
\(828\) 0 0
\(829\) 41.5362 1.44261 0.721305 0.692617i \(-0.243542\pi\)
0.721305 + 0.692617i \(0.243542\pi\)
\(830\) 13.4683 + 6.48599i 0.467492 + 0.225132i
\(831\) 0 0
\(832\) 0.125646 0.0605078i 0.00435598 0.00209773i
\(833\) 0.246980 0.118939i 0.00855734 0.00412100i
\(834\) 0 0
\(835\) −21.4679 + 26.9199i −0.742929 + 0.931603i
\(836\) −4.31886 5.41568i −0.149371 0.187305i
\(837\) 0 0
\(838\) −0.367354 1.60948i −0.0126900 0.0555987i
\(839\) 30.5604 + 38.3215i 1.05506 + 1.32301i 0.944274 + 0.329162i \(0.106766\pi\)
0.110788 + 0.993844i \(0.464662\pi\)
\(840\) 0 0
\(841\) −11.2923 26.7111i −0.389390 0.921073i
\(842\) −33.3502 −1.14932
\(843\) 0 0
\(844\) 3.82908 + 16.7763i 0.131803 + 0.577465i
\(845\) 5.92154 25.9440i 0.203707 0.892500i
\(846\) 0 0
\(847\) 11.8110 14.8105i 0.405829 0.508894i
\(848\) −12.5114 54.8161i −0.429644 1.88239i
\(849\) 0 0
\(850\) −1.44504 + 0.695895i −0.0495645 + 0.0238690i
\(851\) −5.75786 + 25.2269i −0.197377 + 0.864765i
\(852\) 0 0
\(853\) −57.0974 −1.95498 −0.977488 0.210990i \(-0.932331\pi\)
−0.977488 + 0.210990i \(0.932331\pi\)
\(854\) −39.7618 19.1483i −1.36062 0.655241i
\(855\) 0 0
\(856\) −4.20709 + 5.27552i −0.143795 + 0.180314i
\(857\) −50.5250 24.3316i −1.72590 0.831151i −0.987659 0.156616i \(-0.949941\pi\)
−0.738243 0.674534i \(-0.764344\pi\)
\(858\) 0 0
\(859\) −5.70506 2.74741i −0.194654 0.0937405i 0.334018 0.942567i \(-0.391595\pi\)
−0.528672 + 0.848826i \(0.677310\pi\)
\(860\) 2.08665 9.14223i 0.0711543 0.311747i
\(861\) 0 0
\(862\) −51.7165 + 24.9054i −1.76147 + 0.848280i
\(863\) −12.6667 55.4963i −0.431178 1.88912i −0.457034 0.889449i \(-0.651088\pi\)
0.0258555 0.999666i \(-0.491769\pi\)
\(864\) 0 0
\(865\) 25.9815 + 32.5798i 0.883398 + 1.10775i
\(866\) −7.02446 + 30.7762i −0.238701 + 1.04582i
\(867\) 0 0
\(868\) 9.32371 + 11.6916i 0.316467 + 0.396837i
\(869\) −36.3226 −1.23216
\(870\) 0 0
\(871\) 0.240275 0.00814140
\(872\) −7.59365 9.52214i −0.257154 0.322460i
\(873\) 0 0
\(874\) −1.46950 + 6.43830i −0.0497066 + 0.217779i
\(875\) −19.9529 25.0201i −0.674530 0.845834i
\(876\) 0 0
\(877\) −9.94414 43.5681i −0.335790 1.47119i −0.807726 0.589558i \(-0.799302\pi\)
0.471936 0.881633i \(-0.343555\pi\)
\(878\) −16.1114 + 7.75885i −0.543734 + 0.261848i
\(879\) 0 0
\(880\) −9.56345 + 41.9002i −0.322384 + 1.41246i
\(881\) 5.57218 + 2.68342i 0.187731 + 0.0904067i 0.525388 0.850863i \(-0.323920\pi\)
−0.337657 + 0.941269i \(0.609634\pi\)
\(882\) 0 0
\(883\) −33.5100 16.1376i −1.12770 0.543072i −0.225437 0.974258i \(-0.572381\pi\)
−0.902263 + 0.431186i \(0.858095\pi\)
\(884\) −0.0948508 + 0.118939i −0.00319018 + 0.00400036i
\(885\) 0 0
\(886\) 52.4037 + 25.2363i 1.76054 + 0.847830i
\(887\) 58.1651 1.95299 0.976496 0.215536i \(-0.0691499\pi\)
0.976496 + 0.215536i \(0.0691499\pi\)
\(888\) 0 0
\(889\) −9.15548 + 40.1128i −0.307065 + 1.34534i
\(890\) −35.4533 + 17.0734i −1.18840 + 0.572302i
\(891\) 0 0
\(892\) −5.28232 23.1434i −0.176865 0.774897i
\(893\) 5.87800 7.37078i 0.196700 0.246654i
\(894\) 0 0
\(895\) −2.34654 + 10.2809i −0.0784363 + 0.343652i
\(896\) −6.04168 26.4703i −0.201838 0.884312i
\(897\) 0 0
\(898\) −8.94677 −0.298558
\(899\) −23.8971 + 2.10321i −0.797012 + 0.0701459i
\(900\) 0 0
\(901\) 7.87800 + 9.87870i 0.262454 + 0.329107i
\(902\) 10.5547 + 46.2433i 0.351434 + 1.53973i
\(903\) 0 0
\(904\) −10.8286 13.5786i −0.360152 0.451617i
\(905\) 33.6271 42.1671i 1.11780 1.40168i
\(906\) 0 0
\(907\) 39.8935 19.2117i 1.32464 0.637914i 0.368175 0.929756i \(-0.379983\pi\)
0.956466 + 0.291843i \(0.0942683\pi\)
\(908\) −2.10992 + 1.01608i −0.0700200 + 0.0337199i
\(909\) 0 0
\(910\) −0.984271 0.474000i −0.0326283 0.0157129i
\(911\) −50.6886 −1.67939 −0.839694 0.543061i \(-0.817265\pi\)
−0.839694 + 0.543061i \(0.817265\pi\)
\(912\) 0 0
\(913\) 10.7213 13.4441i 0.354824 0.444935i
\(914\) 41.3913 51.9031i 1.36910 1.71680i
\(915\) 0 0
\(916\) −4.31096 −0.142438
\(917\) −22.9318 11.0434i −0.757274 0.364684i
\(918\) 0 0
\(919\) 11.8029 5.68398i 0.389342 0.187497i −0.228964 0.973435i \(-0.573534\pi\)
0.618305 + 0.785938i \(0.287819\pi\)
\(920\) 7.01842 3.37989i 0.231390 0.111432i
\(921\) 0 0
\(922\) −14.0755 + 17.6502i −0.463553 + 0.581277i
\(923\) 0.347871 + 0.436217i 0.0114503 + 0.0143582i
\(924\) 0 0
\(925\) 1.64795 + 7.22013i 0.0541842 + 0.237397i
\(926\) 23.1884 + 29.0774i 0.762019 + 0.955542i
\(927\) 0 0
\(928\) −31.1652 11.7668i −1.02305 0.386263i
\(929\) 8.04759 0.264033 0.132016 0.991248i \(-0.457855\pi\)
0.132016 + 0.991248i \(0.457855\pi\)
\(930\) 0 0
\(931\) −0.0718841 0.314945i −0.00235590 0.0103219i
\(932\) −0.157342 + 0.689359i −0.00515390 + 0.0225807i
\(933\) 0 0
\(934\) 18.1591 22.7708i 0.594185 0.745084i
\(935\) −2.14914 9.41602i −0.0702846 0.307937i
\(936\) 0 0
\(937\) −2.46585 + 1.18749i −0.0805559 + 0.0387937i −0.473728 0.880671i \(-0.657092\pi\)
0.393172 + 0.919465i \(0.371378\pi\)
\(938\) −2.35958 + 10.3380i −0.0770432 + 0.337548i
\(939\) 0 0
\(940\) 18.4155 0.600647
\(941\) −38.9816 18.7726i −1.27077 0.611968i −0.327765 0.944759i \(-0.606295\pi\)
−0.943001 + 0.332791i \(0.892010\pi\)
\(942\) 0 0
\(943\) 10.8279 13.5777i 0.352605 0.442152i
\(944\) 27.1884 + 13.0933i 0.884908 + 0.426149i
\(945\) 0 0
\(946\) −25.3061 12.1868i −0.822773 0.396227i
\(947\) −2.63946 + 11.5642i −0.0857708 + 0.375786i −0.999536 0.0304561i \(-0.990304\pi\)
0.913765 + 0.406243i \(0.133161\pi\)
\(948\) 0 0
\(949\) 0.886199 0.426771i 0.0287672 0.0138536i
\(950\) 0.420583 + 1.84270i 0.0136455 + 0.0597849i
\(951\) 0 0
\(952\) 2.52781 + 3.16977i 0.0819268 + 0.102733i
\(953\) −2.81647 + 12.3398i −0.0912344 + 0.399724i −0.999839 0.0179328i \(-0.994291\pi\)
0.908605 + 0.417657i \(0.137149\pi\)
\(954\) 0 0
\(955\) 25.1655 + 31.5565i 0.814335 + 1.02114i
\(956\) −11.4969 −0.371838
\(957\) 0 0
\(958\) 45.6674 1.47545
\(959\) 32.1571 + 40.3237i 1.03841 + 1.30212i
\(960\) 0 0
\(961\) 2.48230 10.8757i 0.0800743 0.350829i
\(962\) 1.14042 + 1.43004i 0.0367685 + 0.0461062i
\(963\) 0 0
\(964\) 3.66570 + 16.0605i 0.118064 + 0.517274i
\(965\) −14.9765 + 7.21230i −0.482111 + 0.232172i
\(966\) 0 0
\(967\) −2.42357 + 10.6183i −0.0779367 + 0.341463i −0.998830 0.0483508i \(-0.984603\pi\)
0.920894 + 0.389814i \(0.127461\pi\)
\(968\) 8.60268 + 4.14283i 0.276501 + 0.133156i
\(969\) 0 0
\(970\) 37.9080 + 18.2555i 1.21715 + 0.586150i
\(971\) −6.70626 + 8.40938i −0.215214 + 0.269870i −0.877706 0.479199i \(-0.840927\pi\)
0.662492 + 0.749069i \(0.269499\pi\)
\(972\) 0 0
\(973\) −11.5223 5.54885i −0.369388 0.177888i
\(974\) −40.4534 −1.29621
\(975\) 0 0
\(976\) 9.99880 43.8076i 0.320054 1.40225i
\(977\) −37.5388 + 18.0777i −1.20097 + 0.578357i −0.923952 0.382507i \(-0.875061\pi\)
−0.277019 + 0.960865i \(0.589346\pi\)
\(978\) 0 0
\(979\) 10.0724 + 44.1301i 0.321916 + 1.41041i
\(980\) 0.393436 0.493353i 0.0125679 0.0157596i
\(981\) 0 0
\(982\) −0.439001 + 1.92339i −0.0140091 + 0.0613778i
\(983\) 5.82616 + 25.5261i 0.185826 + 0.814155i 0.978787 + 0.204883i \(0.0656813\pi\)
−0.792961 + 0.609273i \(0.791462\pi\)
\(984\) 0 0
\(985\) 21.1648 0.674367
\(986\) 10.7289 0.944258i 0.341676 0.0300713i
\(987\) 0 0
\(988\) 0.111777 + 0.140164i 0.00355609 + 0.00445920i
\(989\) 2.28836 + 10.0260i 0.0727657 + 0.318808i
\(990\) 0 0
\(991\) −28.4983 35.7357i −0.905277 1.13518i −0.990320 0.138805i \(-0.955674\pi\)
0.0850424 0.996377i \(-0.472897\pi\)
\(992\) −17.1814 + 21.5448i −0.545511 + 0.684049i
\(993\) 0 0
\(994\) −22.1848 + 10.6836i −0.703659 + 0.338864i
\(995\) 22.3526 10.7644i 0.708625 0.341256i
\(996\) 0 0
\(997\) −14.4753 6.97094i −0.458437 0.220772i 0.190388 0.981709i \(-0.439025\pi\)
−0.648826 + 0.760937i \(0.724740\pi\)
\(998\) −20.7157 −0.655744
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.k.b.82.1 yes 6
3.2 odd 2 783.2.k.a.82.1 6
29.23 even 7 inner 783.2.k.b.487.1 yes 6
87.23 odd 14 783.2.k.a.487.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
783.2.k.a.82.1 6 3.2 odd 2
783.2.k.a.487.1 yes 6 87.23 odd 14
783.2.k.b.82.1 yes 6 1.1 even 1 trivial
783.2.k.b.487.1 yes 6 29.23 even 7 inner