Properties

Label 783.2.k.a
Level $783$
Weight $2$
Character orbit 783.k
Analytic conductor $6.252$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(82,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.k (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-2,0,-2,-8,0,-8,-7,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{14}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{14}^{5} - \zeta_{14}^{4} + \cdots - 1) q^{2} + ( - \zeta_{14}^{5} + \zeta_{14}^{4}) q^{4} + (\zeta_{14}^{5} + \zeta_{14}^{3} + \cdots - 2) q^{5} + (2 \zeta_{14}^{5} - \zeta_{14}^{4} + \cdots - 2) q^{7}+ \cdots + ( - \zeta_{14}^{3} - \zeta_{14}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - 2 q^{4} - 8 q^{5} - 8 q^{7} - 7 q^{8} - 9 q^{10} - 5 q^{11} - 5 q^{13} - 9 q^{14} + 4 q^{16} + 8 q^{17} + 4 q^{19} + 5 q^{20} - 3 q^{22} - q^{23} - 3 q^{25} + 4 q^{26} + 12 q^{28} + 27 q^{29}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(-\zeta_{14}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
82.1
0.222521 0.974928i
−0.623490 + 0.781831i
−0.623490 0.781831i
0.900969 + 0.433884i
0.222521 + 0.974928i
0.900969 0.433884i
−1.12349 1.40881i 0 −0.277479 + 1.21572i −1.27748 1.60191i 0 −0.599031 2.62453i −1.22252 + 0.588735i 0 −0.821552 + 3.59945i
136.1 0.400969 0.193096i 0 −1.12349 + 1.40881i −2.12349 + 1.02262i 0 −1.27748 1.60191i −0.376510 + 1.64960i 0 −0.653989 + 0.820077i
190.1 0.400969 + 0.193096i 0 −1.12349 1.40881i −2.12349 1.02262i 0 −1.27748 + 1.60191i −0.376510 1.64960i 0 −0.653989 0.820077i
460.1 −0.277479 + 1.21572i 0 0.400969 + 0.193096i −0.599031 + 2.62453i 0 −2.12349 + 1.02262i −1.90097 + 2.38374i 0 −3.02446 1.45650i
487.1 −1.12349 + 1.40881i 0 −0.277479 1.21572i −1.27748 + 1.60191i 0 −0.599031 + 2.62453i −1.22252 0.588735i 0 −0.821552 3.59945i
703.1 −0.277479 1.21572i 0 0.400969 0.193096i −0.599031 2.62453i 0 −2.12349 1.02262i −1.90097 2.38374i 0 −3.02446 + 1.45650i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 82.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.d even 7 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 783.2.k.a 6
3.b odd 2 1 783.2.k.b yes 6
29.d even 7 1 inner 783.2.k.a 6
87.j odd 14 1 783.2.k.b yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
783.2.k.a 6 1.a even 1 1 trivial
783.2.k.a 6 29.d even 7 1 inner
783.2.k.b yes 6 3.b odd 2 1
783.2.k.b yes 6 87.j odd 14 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 2T_{2}^{5} + 4T_{2}^{4} + T_{2}^{3} + 2T_{2}^{2} - 3T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(783, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 2 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 8 T^{5} + \cdots + 169 \) Copy content Toggle raw display
$7$ \( T^{6} + 8 T^{5} + \cdots + 169 \) Copy content Toggle raw display
$11$ \( T^{6} + 5 T^{5} + \cdots + 169 \) Copy content Toggle raw display
$13$ \( T^{6} + 5 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( (T^{3} - 4 T^{2} - 4 T + 8)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} - 4 T^{5} + \cdots + 169 \) Copy content Toggle raw display
$23$ \( T^{6} + T^{5} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{6} - 27 T^{5} + \cdots + 24389 \) Copy content Toggle raw display
$31$ \( T^{6} - 17 T^{5} + \cdots + 28561 \) Copy content Toggle raw display
$37$ \( T^{6} + 13 T^{5} + \cdots + 1849 \) Copy content Toggle raw display
$41$ \( (T^{3} + 23 T^{2} + \cdots + 433)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + 11 T^{5} + \cdots + 78961 \) Copy content Toggle raw display
$47$ \( T^{6} - 20 T^{5} + \cdots + 4096 \) Copy content Toggle raw display
$53$ \( T^{6} - 6 T^{5} + \cdots + 53824 \) Copy content Toggle raw display
$59$ \( (T^{3} + 19 T^{2} + \cdots + 197)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} + 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{6} + 2 T^{5} + \cdots + 841 \) Copy content Toggle raw display
$71$ \( T^{6} + 63 T^{4} + \cdots + 35721 \) Copy content Toggle raw display
$73$ \( T^{6} + 25 T^{5} + \cdots + 175561 \) Copy content Toggle raw display
$79$ \( T^{6} + 30 T^{5} + \cdots + 1225449 \) Copy content Toggle raw display
$83$ \( T^{6} + T^{5} + 15 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$89$ \( T^{6} + 29 T^{5} + \cdots + 2247001 \) Copy content Toggle raw display
$97$ \( T^{6} - 19 T^{5} + \cdots + 7912969 \) Copy content Toggle raw display
show more
show less