L(s) = 1 | + (−1.12 + 1.40i)2-s + (−0.277 − 1.21i)4-s + (−1.27 + 1.60i)5-s + (−0.599 + 2.62i)7-s + (−1.22 − 0.588i)8-s + (−0.821 − 3.59i)10-s + (−3.82 + 1.84i)11-s + (−0.0990 + 0.0476i)13-s + (−3.02 − 3.79i)14-s + (4.44 − 2.14i)16-s + 1.10·17-s + (−0.291 − 1.27i)19-s + (2.30 + 1.10i)20-s + (1.70 − 7.46i)22-s + (−1.74 − 2.19i)23-s + ⋯ |
L(s) = 1 | + (−0.794 + 0.996i)2-s + (−0.138 − 0.607i)4-s + (−0.571 + 0.716i)5-s + (−0.226 + 0.991i)7-s + (−0.432 − 0.208i)8-s + (−0.259 − 1.13i)10-s + (−1.15 + 0.555i)11-s + (−0.0274 + 0.0132i)13-s + (−0.808 − 1.01i)14-s + (1.11 − 0.535i)16-s + 0.269·17-s + (−0.0667 − 0.292i)19-s + (0.514 + 0.247i)20-s + (0.363 − 1.59i)22-s + (−0.364 − 0.456i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.270 + 0.962i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.270 + 0.962i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.120846 - 0.0915952i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.120846 - 0.0915952i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 + (-2.97 - 4.48i)T \) |
good | 2 | \( 1 + (1.12 - 1.40i)T + (-0.445 - 1.94i)T^{2} \) |
| 5 | \( 1 + (1.27 - 1.60i)T + (-1.11 - 4.87i)T^{2} \) |
| 7 | \( 1 + (0.599 - 2.62i)T + (-6.30 - 3.03i)T^{2} \) |
| 11 | \( 1 + (3.82 - 1.84i)T + (6.85 - 8.60i)T^{2} \) |
| 13 | \( 1 + (0.0990 - 0.0476i)T + (8.10 - 10.1i)T^{2} \) |
| 17 | \( 1 - 1.10T + 17T^{2} \) |
| 19 | \( 1 + (0.291 + 1.27i)T + (-17.1 + 8.24i)T^{2} \) |
| 23 | \( 1 + (1.74 + 2.19i)T + (-5.11 + 22.4i)T^{2} \) |
| 31 | \( 1 + (-2.77 + 3.48i)T + (-6.89 - 30.2i)T^{2} \) |
| 37 | \( 1 + (8.32 + 4.00i)T + (23.0 + 28.9i)T^{2} \) |
| 41 | \( 1 + 6.19T + 41T^{2} \) |
| 43 | \( 1 + (2.28 + 2.86i)T + (-9.56 + 41.9i)T^{2} \) |
| 47 | \( 1 + (-6.49 + 3.12i)T + (29.3 - 36.7i)T^{2} \) |
| 53 | \( 1 + (-7.09 + 8.90i)T + (-11.7 - 51.6i)T^{2} \) |
| 59 | \( 1 + 6.10T + 59T^{2} \) |
| 61 | \( 1 + (2.02 - 8.86i)T + (-54.9 - 26.4i)T^{2} \) |
| 67 | \( 1 + (1.96 + 0.948i)T + (41.7 + 52.3i)T^{2} \) |
| 71 | \( 1 + (-4.57 + 2.20i)T + (44.2 - 55.5i)T^{2} \) |
| 73 | \( 1 + (5.57 + 6.99i)T + (-16.2 + 71.1i)T^{2} \) |
| 79 | \( 1 + (7.70 + 3.71i)T + (49.2 + 61.7i)T^{2} \) |
| 83 | \( 1 + (0.900 + 3.94i)T + (-74.7 + 36.0i)T^{2} \) |
| 89 | \( 1 + (6.64 - 8.33i)T + (-19.8 - 86.7i)T^{2} \) |
| 97 | \( 1 + (-2.53 - 11.1i)T + (-87.3 + 42.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.62272370743619102764596924534, −10.04011534362419660475974657673, −8.954013447089394817277965774414, −8.391776448016823916153426032293, −7.45152442807206075479101394264, −6.95158795704247035944906205938, −5.92980660864872619223864132841, −5.06222464688342987449959705107, −3.44789437724004994845068043411, −2.45533564198015254465635371955,
0.10676608236265841023268603049, 1.23671864804845127172890714645, 2.78411844196195788020739694965, 3.78578402956783684336031327905, 4.93277471260519742556623665527, 6.04401155095522824917022368219, 7.38641809491165792923965396779, 8.234653094930167949740130729815, 8.725653539922016905761860014999, 10.02788254635625454112815174751