Properties

Label 7803.2.a.cg.1.14
Level $7803$
Weight $2$
Character 7803.1
Self dual yes
Analytic conductor $62.307$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7803,2,Mod(1,7803)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7803.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7803 = 3^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7803.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,24,20,0,0,0,0,0,8,0,4,16,0,24,0,0,4,48,0,0,36,0,28,0, 0,0,64,0,0,0,0,0,0,0,0,0,0,0,36,0,4,16,0,0,0,0,24,0,0,16,0,0,20,80,0,0, 0,0,0,-16,0,-24,72,0,16,0,0,-48,72,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(73)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.3072686972\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 459)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Character \(\chi\) \(=\) 7803.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.313123 q^{2} -1.90195 q^{4} -0.0595634 q^{5} +2.67689 q^{7} -1.22179 q^{8} -0.0186507 q^{10} -5.42825 q^{11} -0.468997 q^{13} +0.838195 q^{14} +3.42134 q^{16} -6.86939 q^{19} +0.113287 q^{20} -1.69971 q^{22} -5.26114 q^{23} -4.99645 q^{25} -0.146854 q^{26} -5.09133 q^{28} +2.40874 q^{29} +3.15540 q^{31} +3.51488 q^{32} -0.159445 q^{35} -7.50219 q^{37} -2.15096 q^{38} +0.0727740 q^{40} +2.22712 q^{41} -4.51587 q^{43} +10.3243 q^{44} -1.64738 q^{46} +9.24764 q^{47} +0.165753 q^{49} -1.56450 q^{50} +0.892011 q^{52} +12.9263 q^{53} +0.323325 q^{55} -3.27060 q^{56} +0.754230 q^{58} +9.43019 q^{59} -1.82014 q^{61} +0.988026 q^{62} -5.74209 q^{64} +0.0279351 q^{65} -3.18673 q^{67} -0.0499258 q^{70} -4.32016 q^{71} +11.9409 q^{73} -2.34910 q^{74} +13.0653 q^{76} -14.5308 q^{77} +10.6746 q^{79} -0.203787 q^{80} +0.697360 q^{82} +8.70940 q^{83} -1.41402 q^{86} +6.63217 q^{88} -15.9437 q^{89} -1.25545 q^{91} +10.0065 q^{92} +2.89564 q^{94} +0.409164 q^{95} -3.48884 q^{97} +0.0519011 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} + 20 q^{5} + 8 q^{11} + 4 q^{13} + 16 q^{14} + 24 q^{16} + 4 q^{19} + 48 q^{20} + 36 q^{23} + 28 q^{25} + 64 q^{29} + 36 q^{41} + 4 q^{43} + 16 q^{44} + 24 q^{49} + 16 q^{52} + 20 q^{55}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.313123 0.221411 0.110706 0.993853i \(-0.464689\pi\)
0.110706 + 0.993853i \(0.464689\pi\)
\(3\) 0 0
\(4\) −1.90195 −0.950977
\(5\) −0.0595634 −0.0266376 −0.0133188 0.999911i \(-0.504240\pi\)
−0.0133188 + 0.999911i \(0.504240\pi\)
\(6\) 0 0
\(7\) 2.67689 1.01177 0.505885 0.862601i \(-0.331166\pi\)
0.505885 + 0.862601i \(0.331166\pi\)
\(8\) −1.22179 −0.431968
\(9\) 0 0
\(10\) −0.0186507 −0.00589786
\(11\) −5.42825 −1.63668 −0.818339 0.574736i \(-0.805105\pi\)
−0.818339 + 0.574736i \(0.805105\pi\)
\(12\) 0 0
\(13\) −0.468997 −0.130076 −0.0650382 0.997883i \(-0.520717\pi\)
−0.0650382 + 0.997883i \(0.520717\pi\)
\(14\) 0.838195 0.224017
\(15\) 0 0
\(16\) 3.42134 0.855335
\(17\) 0 0
\(18\) 0 0
\(19\) −6.86939 −1.57595 −0.787973 0.615710i \(-0.788869\pi\)
−0.787973 + 0.615710i \(0.788869\pi\)
\(20\) 0.113287 0.0253317
\(21\) 0 0
\(22\) −1.69971 −0.362378
\(23\) −5.26114 −1.09702 −0.548512 0.836143i \(-0.684806\pi\)
−0.548512 + 0.836143i \(0.684806\pi\)
\(24\) 0 0
\(25\) −4.99645 −0.999290
\(26\) −0.146854 −0.0288003
\(27\) 0 0
\(28\) −5.09133 −0.962170
\(29\) 2.40874 0.447291 0.223646 0.974670i \(-0.428204\pi\)
0.223646 + 0.974670i \(0.428204\pi\)
\(30\) 0 0
\(31\) 3.15540 0.566726 0.283363 0.959013i \(-0.408550\pi\)
0.283363 + 0.959013i \(0.408550\pi\)
\(32\) 3.51488 0.621348
\(33\) 0 0
\(34\) 0 0
\(35\) −0.159445 −0.0269511
\(36\) 0 0
\(37\) −7.50219 −1.23335 −0.616676 0.787217i \(-0.711521\pi\)
−0.616676 + 0.787217i \(0.711521\pi\)
\(38\) −2.15096 −0.348932
\(39\) 0 0
\(40\) 0.0727740 0.0115066
\(41\) 2.22712 0.347817 0.173909 0.984762i \(-0.444360\pi\)
0.173909 + 0.984762i \(0.444360\pi\)
\(42\) 0 0
\(43\) −4.51587 −0.688664 −0.344332 0.938848i \(-0.611895\pi\)
−0.344332 + 0.938848i \(0.611895\pi\)
\(44\) 10.3243 1.55644
\(45\) 0 0
\(46\) −1.64738 −0.242893
\(47\) 9.24764 1.34891 0.674453 0.738317i \(-0.264379\pi\)
0.674453 + 0.738317i \(0.264379\pi\)
\(48\) 0 0
\(49\) 0.165753 0.0236791
\(50\) −1.56450 −0.221254
\(51\) 0 0
\(52\) 0.892011 0.123700
\(53\) 12.9263 1.77557 0.887784 0.460260i \(-0.152244\pi\)
0.887784 + 0.460260i \(0.152244\pi\)
\(54\) 0 0
\(55\) 0.323325 0.0435971
\(56\) −3.27060 −0.437052
\(57\) 0 0
\(58\) 0.754230 0.0990353
\(59\) 9.43019 1.22771 0.613853 0.789421i \(-0.289619\pi\)
0.613853 + 0.789421i \(0.289619\pi\)
\(60\) 0 0
\(61\) −1.82014 −0.233045 −0.116522 0.993188i \(-0.537175\pi\)
−0.116522 + 0.993188i \(0.537175\pi\)
\(62\) 0.988026 0.125479
\(63\) 0 0
\(64\) −5.74209 −0.717761
\(65\) 0.0279351 0.00346492
\(66\) 0 0
\(67\) −3.18673 −0.389321 −0.194661 0.980871i \(-0.562361\pi\)
−0.194661 + 0.980871i \(0.562361\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −0.0499258 −0.00596727
\(71\) −4.32016 −0.512708 −0.256354 0.966583i \(-0.582521\pi\)
−0.256354 + 0.966583i \(0.582521\pi\)
\(72\) 0 0
\(73\) 11.9409 1.39757 0.698786 0.715331i \(-0.253724\pi\)
0.698786 + 0.715331i \(0.253724\pi\)
\(74\) −2.34910 −0.273078
\(75\) 0 0
\(76\) 13.0653 1.49869
\(77\) −14.5308 −1.65594
\(78\) 0 0
\(79\) 10.6746 1.20098 0.600491 0.799631i \(-0.294972\pi\)
0.600491 + 0.799631i \(0.294972\pi\)
\(80\) −0.203787 −0.0227840
\(81\) 0 0
\(82\) 0.697360 0.0770106
\(83\) 8.70940 0.955981 0.477990 0.878365i \(-0.341365\pi\)
0.477990 + 0.878365i \(0.341365\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.41402 −0.152478
\(87\) 0 0
\(88\) 6.63217 0.706992
\(89\) −15.9437 −1.69003 −0.845017 0.534740i \(-0.820410\pi\)
−0.845017 + 0.534740i \(0.820410\pi\)
\(90\) 0 0
\(91\) −1.25545 −0.131607
\(92\) 10.0065 1.04324
\(93\) 0 0
\(94\) 2.89564 0.298663
\(95\) 0.409164 0.0419794
\(96\) 0 0
\(97\) −3.48884 −0.354238 −0.177119 0.984189i \(-0.556678\pi\)
−0.177119 + 0.984189i \(0.556678\pi\)
\(98\) 0.0519011 0.00524280
\(99\) 0 0
\(100\) 9.50302 0.950302
\(101\) 4.40807 0.438619 0.219310 0.975655i \(-0.429620\pi\)
0.219310 + 0.975655i \(0.429620\pi\)
\(102\) 0 0
\(103\) 0.977534 0.0963192 0.0481596 0.998840i \(-0.484664\pi\)
0.0481596 + 0.998840i \(0.484664\pi\)
\(104\) 0.573016 0.0561888
\(105\) 0 0
\(106\) 4.04752 0.393130
\(107\) 17.5401 1.69567 0.847834 0.530261i \(-0.177906\pi\)
0.847834 + 0.530261i \(0.177906\pi\)
\(108\) 0 0
\(109\) −11.5439 −1.10570 −0.552851 0.833280i \(-0.686460\pi\)
−0.552851 + 0.833280i \(0.686460\pi\)
\(110\) 0.101240 0.00965289
\(111\) 0 0
\(112\) 9.15856 0.865402
\(113\) −4.55658 −0.428647 −0.214323 0.976763i \(-0.568755\pi\)
−0.214323 + 0.976763i \(0.568755\pi\)
\(114\) 0 0
\(115\) 0.313372 0.0292221
\(116\) −4.58131 −0.425364
\(117\) 0 0
\(118\) 2.95280 0.271828
\(119\) 0 0
\(120\) 0 0
\(121\) 18.4658 1.67871
\(122\) −0.569926 −0.0515987
\(123\) 0 0
\(124\) −6.00142 −0.538944
\(125\) 0.595423 0.0532563
\(126\) 0 0
\(127\) −5.54664 −0.492184 −0.246092 0.969246i \(-0.579147\pi\)
−0.246092 + 0.969246i \(0.579147\pi\)
\(128\) −8.82773 −0.780269
\(129\) 0 0
\(130\) 0.00874710 0.000767172 0
\(131\) −6.29120 −0.549665 −0.274832 0.961492i \(-0.588622\pi\)
−0.274832 + 0.961492i \(0.588622\pi\)
\(132\) 0 0
\(133\) −18.3886 −1.59450
\(134\) −0.997837 −0.0862000
\(135\) 0 0
\(136\) 0 0
\(137\) −8.44606 −0.721595 −0.360798 0.932644i \(-0.617495\pi\)
−0.360798 + 0.932644i \(0.617495\pi\)
\(138\) 0 0
\(139\) 5.53570 0.469532 0.234766 0.972052i \(-0.424568\pi\)
0.234766 + 0.972052i \(0.424568\pi\)
\(140\) 0.303257 0.0256299
\(141\) 0 0
\(142\) −1.35274 −0.113519
\(143\) 2.54583 0.212893
\(144\) 0 0
\(145\) −0.143473 −0.0119148
\(146\) 3.73895 0.309438
\(147\) 0 0
\(148\) 14.2688 1.17289
\(149\) 22.6720 1.85736 0.928680 0.370882i \(-0.120945\pi\)
0.928680 + 0.370882i \(0.120945\pi\)
\(150\) 0 0
\(151\) −12.7231 −1.03539 −0.517696 0.855565i \(-0.673210\pi\)
−0.517696 + 0.855565i \(0.673210\pi\)
\(152\) 8.39295 0.680758
\(153\) 0 0
\(154\) −4.54993 −0.366644
\(155\) −0.187946 −0.0150962
\(156\) 0 0
\(157\) 2.50104 0.199605 0.0998023 0.995007i \(-0.468179\pi\)
0.0998023 + 0.995007i \(0.468179\pi\)
\(158\) 3.34245 0.265911
\(159\) 0 0
\(160\) −0.209358 −0.0165512
\(161\) −14.0835 −1.10994
\(162\) 0 0
\(163\) −10.7483 −0.841870 −0.420935 0.907091i \(-0.638298\pi\)
−0.420935 + 0.907091i \(0.638298\pi\)
\(164\) −4.23587 −0.330766
\(165\) 0 0
\(166\) 2.72711 0.211665
\(167\) 9.22508 0.713858 0.356929 0.934131i \(-0.383824\pi\)
0.356929 + 0.934131i \(0.383824\pi\)
\(168\) 0 0
\(169\) −12.7800 −0.983080
\(170\) 0 0
\(171\) 0 0
\(172\) 8.58899 0.654904
\(173\) 1.58189 0.120269 0.0601345 0.998190i \(-0.480847\pi\)
0.0601345 + 0.998190i \(0.480847\pi\)
\(174\) 0 0
\(175\) −13.3750 −1.01105
\(176\) −18.5719 −1.39991
\(177\) 0 0
\(178\) −4.99235 −0.374192
\(179\) −6.65124 −0.497137 −0.248569 0.968614i \(-0.579960\pi\)
−0.248569 + 0.968614i \(0.579960\pi\)
\(180\) 0 0
\(181\) 17.0736 1.26907 0.634534 0.772895i \(-0.281192\pi\)
0.634534 + 0.772895i \(0.281192\pi\)
\(182\) −0.393111 −0.0291393
\(183\) 0 0
\(184\) 6.42801 0.473879
\(185\) 0.446856 0.0328535
\(186\) 0 0
\(187\) 0 0
\(188\) −17.5886 −1.28278
\(189\) 0 0
\(190\) 0.128119 0.00929470
\(191\) 4.76822 0.345016 0.172508 0.985008i \(-0.444813\pi\)
0.172508 + 0.985008i \(0.444813\pi\)
\(192\) 0 0
\(193\) 7.73014 0.556427 0.278214 0.960519i \(-0.410258\pi\)
0.278214 + 0.960519i \(0.410258\pi\)
\(194\) −1.09243 −0.0784321
\(195\) 0 0
\(196\) −0.315255 −0.0225182
\(197\) 1.90035 0.135395 0.0676973 0.997706i \(-0.478435\pi\)
0.0676973 + 0.997706i \(0.478435\pi\)
\(198\) 0 0
\(199\) 8.57114 0.607592 0.303796 0.952737i \(-0.401746\pi\)
0.303796 + 0.952737i \(0.401746\pi\)
\(200\) 6.10461 0.431661
\(201\) 0 0
\(202\) 1.38027 0.0971151
\(203\) 6.44793 0.452556
\(204\) 0 0
\(205\) −0.132655 −0.00926501
\(206\) 0.306088 0.0213261
\(207\) 0 0
\(208\) −1.60460 −0.111259
\(209\) 37.2887 2.57932
\(210\) 0 0
\(211\) 19.7013 1.35629 0.678147 0.734926i \(-0.262783\pi\)
0.678147 + 0.734926i \(0.262783\pi\)
\(212\) −24.5853 −1.68852
\(213\) 0 0
\(214\) 5.49221 0.375440
\(215\) 0.268981 0.0183444
\(216\) 0 0
\(217\) 8.44666 0.573397
\(218\) −3.61465 −0.244815
\(219\) 0 0
\(220\) −0.614949 −0.0414599
\(221\) 0 0
\(222\) 0 0
\(223\) −21.4095 −1.43368 −0.716842 0.697235i \(-0.754413\pi\)
−0.716842 + 0.697235i \(0.754413\pi\)
\(224\) 9.40895 0.628662
\(225\) 0 0
\(226\) −1.42677 −0.0949071
\(227\) −8.17670 −0.542707 −0.271353 0.962480i \(-0.587471\pi\)
−0.271353 + 0.962480i \(0.587471\pi\)
\(228\) 0 0
\(229\) 20.4392 1.35066 0.675329 0.737517i \(-0.264002\pi\)
0.675329 + 0.737517i \(0.264002\pi\)
\(230\) 0.0981238 0.00647009
\(231\) 0 0
\(232\) −2.94297 −0.193216
\(233\) 14.8774 0.974653 0.487326 0.873220i \(-0.337972\pi\)
0.487326 + 0.873220i \(0.337972\pi\)
\(234\) 0 0
\(235\) −0.550821 −0.0359316
\(236\) −17.9358 −1.16752
\(237\) 0 0
\(238\) 0 0
\(239\) −21.0979 −1.36471 −0.682356 0.731020i \(-0.739045\pi\)
−0.682356 + 0.731020i \(0.739045\pi\)
\(240\) 0 0
\(241\) 11.6366 0.749579 0.374790 0.927110i \(-0.377715\pi\)
0.374790 + 0.927110i \(0.377715\pi\)
\(242\) 5.78207 0.371686
\(243\) 0 0
\(244\) 3.46182 0.221620
\(245\) −0.00987284 −0.000630753 0
\(246\) 0 0
\(247\) 3.22172 0.204993
\(248\) −3.85523 −0.244808
\(249\) 0 0
\(250\) 0.186440 0.0117915
\(251\) 25.8214 1.62983 0.814915 0.579580i \(-0.196784\pi\)
0.814915 + 0.579580i \(0.196784\pi\)
\(252\) 0 0
\(253\) 28.5588 1.79547
\(254\) −1.73678 −0.108975
\(255\) 0 0
\(256\) 8.72002 0.545001
\(257\) 12.5634 0.783683 0.391842 0.920033i \(-0.371838\pi\)
0.391842 + 0.920033i \(0.371838\pi\)
\(258\) 0 0
\(259\) −20.0825 −1.24787
\(260\) −0.0531312 −0.00329506
\(261\) 0 0
\(262\) −1.96992 −0.121702
\(263\) −6.42202 −0.395999 −0.197999 0.980202i \(-0.563444\pi\)
−0.197999 + 0.980202i \(0.563444\pi\)
\(264\) 0 0
\(265\) −0.769937 −0.0472968
\(266\) −5.75789 −0.353039
\(267\) 0 0
\(268\) 6.06102 0.370236
\(269\) 24.9360 1.52038 0.760188 0.649703i \(-0.225107\pi\)
0.760188 + 0.649703i \(0.225107\pi\)
\(270\) 0 0
\(271\) 8.88651 0.539817 0.269909 0.962886i \(-0.413007\pi\)
0.269909 + 0.962886i \(0.413007\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −2.64465 −0.159769
\(275\) 27.1220 1.63552
\(276\) 0 0
\(277\) 13.8281 0.830853 0.415426 0.909627i \(-0.363632\pi\)
0.415426 + 0.909627i \(0.363632\pi\)
\(278\) 1.73335 0.103960
\(279\) 0 0
\(280\) 0.194808 0.0116420
\(281\) −16.9209 −1.00941 −0.504707 0.863290i \(-0.668400\pi\)
−0.504707 + 0.863290i \(0.668400\pi\)
\(282\) 0 0
\(283\) −25.2209 −1.49923 −0.749614 0.661875i \(-0.769761\pi\)
−0.749614 + 0.661875i \(0.769761\pi\)
\(284\) 8.21674 0.487574
\(285\) 0 0
\(286\) 0.797157 0.0471369
\(287\) 5.96175 0.351911
\(288\) 0 0
\(289\) 0 0
\(290\) −0.0449246 −0.00263806
\(291\) 0 0
\(292\) −22.7110 −1.32906
\(293\) 1.93377 0.112972 0.0564859 0.998403i \(-0.482010\pi\)
0.0564859 + 0.998403i \(0.482010\pi\)
\(294\) 0 0
\(295\) −0.561694 −0.0327031
\(296\) 9.16609 0.532768
\(297\) 0 0
\(298\) 7.09910 0.411240
\(299\) 2.46746 0.142697
\(300\) 0 0
\(301\) −12.0885 −0.696770
\(302\) −3.98389 −0.229247
\(303\) 0 0
\(304\) −23.5025 −1.34796
\(305\) 0.108414 0.00620775
\(306\) 0 0
\(307\) −0.791215 −0.0451570 −0.0225785 0.999745i \(-0.507188\pi\)
−0.0225785 + 0.999745i \(0.507188\pi\)
\(308\) 27.6370 1.57476
\(309\) 0 0
\(310\) −0.0588503 −0.00334247
\(311\) 31.0352 1.75985 0.879923 0.475115i \(-0.157594\pi\)
0.879923 + 0.475115i \(0.157594\pi\)
\(312\) 0 0
\(313\) 9.18268 0.519036 0.259518 0.965738i \(-0.416436\pi\)
0.259518 + 0.965738i \(0.416436\pi\)
\(314\) 0.783132 0.0441947
\(315\) 0 0
\(316\) −20.3025 −1.14211
\(317\) 20.0230 1.12461 0.562303 0.826931i \(-0.309915\pi\)
0.562303 + 0.826931i \(0.309915\pi\)
\(318\) 0 0
\(319\) −13.0752 −0.732072
\(320\) 0.342019 0.0191194
\(321\) 0 0
\(322\) −4.40987 −0.245752
\(323\) 0 0
\(324\) 0 0
\(325\) 2.34332 0.129984
\(326\) −3.36553 −0.186399
\(327\) 0 0
\(328\) −2.72107 −0.150246
\(329\) 24.7549 1.36478
\(330\) 0 0
\(331\) −24.6835 −1.35673 −0.678363 0.734727i \(-0.737310\pi\)
−0.678363 + 0.734727i \(0.737310\pi\)
\(332\) −16.5649 −0.909116
\(333\) 0 0
\(334\) 2.88858 0.158056
\(335\) 0.189813 0.0103706
\(336\) 0 0
\(337\) 27.5408 1.50024 0.750121 0.661301i \(-0.229995\pi\)
0.750121 + 0.661301i \(0.229995\pi\)
\(338\) −4.00172 −0.217665
\(339\) 0 0
\(340\) 0 0
\(341\) −17.1283 −0.927548
\(342\) 0 0
\(343\) −18.2945 −0.987812
\(344\) 5.51745 0.297481
\(345\) 0 0
\(346\) 0.495326 0.0266289
\(347\) 23.0283 1.23622 0.618111 0.786091i \(-0.287898\pi\)
0.618111 + 0.786091i \(0.287898\pi\)
\(348\) 0 0
\(349\) −19.0768 −1.02116 −0.510580 0.859830i \(-0.670569\pi\)
−0.510580 + 0.859830i \(0.670569\pi\)
\(350\) −4.18800 −0.223858
\(351\) 0 0
\(352\) −19.0796 −1.01695
\(353\) −7.27281 −0.387093 −0.193546 0.981091i \(-0.561999\pi\)
−0.193546 + 0.981091i \(0.561999\pi\)
\(354\) 0 0
\(355\) 0.257323 0.0136573
\(356\) 30.3243 1.60718
\(357\) 0 0
\(358\) −2.08265 −0.110072
\(359\) −26.5753 −1.40259 −0.701296 0.712870i \(-0.747395\pi\)
−0.701296 + 0.712870i \(0.747395\pi\)
\(360\) 0 0
\(361\) 28.1885 1.48361
\(362\) 5.34612 0.280986
\(363\) 0 0
\(364\) 2.38782 0.125156
\(365\) −0.711239 −0.0372279
\(366\) 0 0
\(367\) 29.2010 1.52428 0.762139 0.647414i \(-0.224149\pi\)
0.762139 + 0.647414i \(0.224149\pi\)
\(368\) −18.0002 −0.938323
\(369\) 0 0
\(370\) 0.139921 0.00727413
\(371\) 34.6024 1.79647
\(372\) 0 0
\(373\) 16.7965 0.869689 0.434844 0.900506i \(-0.356803\pi\)
0.434844 + 0.900506i \(0.356803\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −11.2987 −0.582684
\(377\) −1.12969 −0.0581821
\(378\) 0 0
\(379\) 9.67958 0.497206 0.248603 0.968605i \(-0.420028\pi\)
0.248603 + 0.968605i \(0.420028\pi\)
\(380\) −0.778212 −0.0399214
\(381\) 0 0
\(382\) 1.49304 0.0763904
\(383\) −5.22295 −0.266880 −0.133440 0.991057i \(-0.542602\pi\)
−0.133440 + 0.991057i \(0.542602\pi\)
\(384\) 0 0
\(385\) 0.865506 0.0441103
\(386\) 2.42048 0.123199
\(387\) 0 0
\(388\) 6.63561 0.336872
\(389\) −1.34027 −0.0679545 −0.0339772 0.999423i \(-0.510817\pi\)
−0.0339772 + 0.999423i \(0.510817\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.202516 −0.0102286
\(393\) 0 0
\(394\) 0.595043 0.0299778
\(395\) −0.635814 −0.0319913
\(396\) 0 0
\(397\) 12.8974 0.647301 0.323650 0.946177i \(-0.395090\pi\)
0.323650 + 0.946177i \(0.395090\pi\)
\(398\) 2.68382 0.134528
\(399\) 0 0
\(400\) −17.0946 −0.854728
\(401\) 12.5291 0.625676 0.312838 0.949807i \(-0.398720\pi\)
0.312838 + 0.949807i \(0.398720\pi\)
\(402\) 0 0
\(403\) −1.47987 −0.0737177
\(404\) −8.38395 −0.417117
\(405\) 0 0
\(406\) 2.01899 0.100201
\(407\) 40.7237 2.01860
\(408\) 0 0
\(409\) −0.156286 −0.00772787 −0.00386393 0.999993i \(-0.501230\pi\)
−0.00386393 + 0.999993i \(0.501230\pi\)
\(410\) −0.0415372 −0.00205138
\(411\) 0 0
\(412\) −1.85922 −0.0915974
\(413\) 25.2436 1.24216
\(414\) 0 0
\(415\) −0.518762 −0.0254650
\(416\) −1.64847 −0.0808228
\(417\) 0 0
\(418\) 11.6759 0.571089
\(419\) 26.5208 1.29563 0.647814 0.761799i \(-0.275683\pi\)
0.647814 + 0.761799i \(0.275683\pi\)
\(420\) 0 0
\(421\) −26.6269 −1.29772 −0.648859 0.760909i \(-0.724753\pi\)
−0.648859 + 0.760909i \(0.724753\pi\)
\(422\) 6.16893 0.300299
\(423\) 0 0
\(424\) −15.7933 −0.766988
\(425\) 0 0
\(426\) 0 0
\(427\) −4.87231 −0.235788
\(428\) −33.3605 −1.61254
\(429\) 0 0
\(430\) 0.0842240 0.00406164
\(431\) −31.8546 −1.53438 −0.767191 0.641419i \(-0.778346\pi\)
−0.767191 + 0.641419i \(0.778346\pi\)
\(432\) 0 0
\(433\) 34.1585 1.64155 0.820776 0.571249i \(-0.193541\pi\)
0.820776 + 0.571249i \(0.193541\pi\)
\(434\) 2.64484 0.126956
\(435\) 0 0
\(436\) 21.9559 1.05150
\(437\) 36.1408 1.72885
\(438\) 0 0
\(439\) −29.6909 −1.41707 −0.708534 0.705677i \(-0.750643\pi\)
−0.708534 + 0.705677i \(0.750643\pi\)
\(440\) −0.395035 −0.0188326
\(441\) 0 0
\(442\) 0 0
\(443\) −15.6384 −0.743002 −0.371501 0.928432i \(-0.621157\pi\)
−0.371501 + 0.928432i \(0.621157\pi\)
\(444\) 0 0
\(445\) 0.949664 0.0450184
\(446\) −6.70379 −0.317434
\(447\) 0 0
\(448\) −15.3710 −0.726210
\(449\) −8.43301 −0.397978 −0.198989 0.980002i \(-0.563766\pi\)
−0.198989 + 0.980002i \(0.563766\pi\)
\(450\) 0 0
\(451\) −12.0893 −0.569265
\(452\) 8.66640 0.407633
\(453\) 0 0
\(454\) −2.56031 −0.120161
\(455\) 0.0747792 0.00350570
\(456\) 0 0
\(457\) −23.8380 −1.11509 −0.557547 0.830145i \(-0.688257\pi\)
−0.557547 + 0.830145i \(0.688257\pi\)
\(458\) 6.39996 0.299051
\(459\) 0 0
\(460\) −0.596019 −0.0277895
\(461\) −3.64094 −0.169576 −0.0847878 0.996399i \(-0.527021\pi\)
−0.0847878 + 0.996399i \(0.527021\pi\)
\(462\) 0 0
\(463\) −20.7505 −0.964359 −0.482180 0.876072i \(-0.660155\pi\)
−0.482180 + 0.876072i \(0.660155\pi\)
\(464\) 8.24111 0.382584
\(465\) 0 0
\(466\) 4.65846 0.215799
\(467\) 36.2856 1.67910 0.839549 0.543284i \(-0.182819\pi\)
0.839549 + 0.543284i \(0.182819\pi\)
\(468\) 0 0
\(469\) −8.53054 −0.393904
\(470\) −0.172475 −0.00795566
\(471\) 0 0
\(472\) −11.5217 −0.530329
\(473\) 24.5133 1.12712
\(474\) 0 0
\(475\) 34.3226 1.57483
\(476\) 0 0
\(477\) 0 0
\(478\) −6.60624 −0.302162
\(479\) 25.3038 1.15616 0.578079 0.815981i \(-0.303802\pi\)
0.578079 + 0.815981i \(0.303802\pi\)
\(480\) 0 0
\(481\) 3.51850 0.160430
\(482\) 3.64368 0.165965
\(483\) 0 0
\(484\) −35.1212 −1.59642
\(485\) 0.207807 0.00943603
\(486\) 0 0
\(487\) −20.6946 −0.937763 −0.468881 0.883261i \(-0.655343\pi\)
−0.468881 + 0.883261i \(0.655343\pi\)
\(488\) 2.22383 0.100668
\(489\) 0 0
\(490\) −0.00309141 −0.000139656 0
\(491\) −16.5956 −0.748949 −0.374474 0.927237i \(-0.622177\pi\)
−0.374474 + 0.927237i \(0.622177\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 1.00879 0.0453878
\(495\) 0 0
\(496\) 10.7957 0.484741
\(497\) −11.5646 −0.518743
\(498\) 0 0
\(499\) −28.5717 −1.27905 −0.639523 0.768772i \(-0.720868\pi\)
−0.639523 + 0.768772i \(0.720868\pi\)
\(500\) −1.13247 −0.0506455
\(501\) 0 0
\(502\) 8.08525 0.360862
\(503\) −11.9774 −0.534044 −0.267022 0.963690i \(-0.586040\pi\)
−0.267022 + 0.963690i \(0.586040\pi\)
\(504\) 0 0
\(505\) −0.262560 −0.0116838
\(506\) 8.94240 0.397538
\(507\) 0 0
\(508\) 10.5494 0.468056
\(509\) 24.8636 1.10206 0.551031 0.834485i \(-0.314235\pi\)
0.551031 + 0.834485i \(0.314235\pi\)
\(510\) 0 0
\(511\) 31.9644 1.41402
\(512\) 20.3859 0.900938
\(513\) 0 0
\(514\) 3.93388 0.173516
\(515\) −0.0582253 −0.00256571
\(516\) 0 0
\(517\) −50.1984 −2.20773
\(518\) −6.28830 −0.276292
\(519\) 0 0
\(520\) −0.0341308 −0.00149673
\(521\) −25.5726 −1.12036 −0.560178 0.828373i \(-0.689267\pi\)
−0.560178 + 0.828373i \(0.689267\pi\)
\(522\) 0 0
\(523\) 15.9637 0.698043 0.349022 0.937115i \(-0.386514\pi\)
0.349022 + 0.937115i \(0.386514\pi\)
\(524\) 11.9656 0.522719
\(525\) 0 0
\(526\) −2.01088 −0.0876784
\(527\) 0 0
\(528\) 0 0
\(529\) 4.67963 0.203462
\(530\) −0.241085 −0.0104720
\(531\) 0 0
\(532\) 34.9743 1.51633
\(533\) −1.04451 −0.0452428
\(534\) 0 0
\(535\) −1.04475 −0.0451685
\(536\) 3.89351 0.168174
\(537\) 0 0
\(538\) 7.80803 0.336628
\(539\) −0.899750 −0.0387550
\(540\) 0 0
\(541\) 24.4814 1.05254 0.526268 0.850319i \(-0.323591\pi\)
0.526268 + 0.850319i \(0.323591\pi\)
\(542\) 2.78257 0.119521
\(543\) 0 0
\(544\) 0 0
\(545\) 0.687593 0.0294532
\(546\) 0 0
\(547\) 37.3240 1.59586 0.797929 0.602752i \(-0.205929\pi\)
0.797929 + 0.602752i \(0.205929\pi\)
\(548\) 16.0640 0.686221
\(549\) 0 0
\(550\) 8.49250 0.362121
\(551\) −16.5466 −0.704907
\(552\) 0 0
\(553\) 28.5747 1.21512
\(554\) 4.32990 0.183960
\(555\) 0 0
\(556\) −10.5287 −0.446514
\(557\) 13.6266 0.577378 0.288689 0.957423i \(-0.406781\pi\)
0.288689 + 0.957423i \(0.406781\pi\)
\(558\) 0 0
\(559\) 2.11793 0.0895789
\(560\) −0.545515 −0.0230522
\(561\) 0 0
\(562\) −5.29831 −0.223496
\(563\) 38.6768 1.63003 0.815017 0.579437i \(-0.196727\pi\)
0.815017 + 0.579437i \(0.196727\pi\)
\(564\) 0 0
\(565\) 0.271405 0.0114181
\(566\) −7.89724 −0.331946
\(567\) 0 0
\(568\) 5.27832 0.221473
\(569\) −11.7660 −0.493257 −0.246629 0.969110i \(-0.579323\pi\)
−0.246629 + 0.969110i \(0.579323\pi\)
\(570\) 0 0
\(571\) −12.8135 −0.536230 −0.268115 0.963387i \(-0.586401\pi\)
−0.268115 + 0.963387i \(0.586401\pi\)
\(572\) −4.84205 −0.202456
\(573\) 0 0
\(574\) 1.86676 0.0779170
\(575\) 26.2871 1.09625
\(576\) 0 0
\(577\) −30.7966 −1.28208 −0.641040 0.767508i \(-0.721497\pi\)
−0.641040 + 0.767508i \(0.721497\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0.272879 0.0113307
\(581\) 23.3141 0.967233
\(582\) 0 0
\(583\) −70.1673 −2.90603
\(584\) −14.5892 −0.603706
\(585\) 0 0
\(586\) 0.605506 0.0250132
\(587\) 18.8429 0.777731 0.388865 0.921295i \(-0.372867\pi\)
0.388865 + 0.921295i \(0.372867\pi\)
\(588\) 0 0
\(589\) −21.6757 −0.893130
\(590\) −0.175879 −0.00724083
\(591\) 0 0
\(592\) −25.6675 −1.05493
\(593\) −28.3421 −1.16387 −0.581936 0.813235i \(-0.697705\pi\)
−0.581936 + 0.813235i \(0.697705\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −43.1210 −1.76631
\(597\) 0 0
\(598\) 0.772617 0.0315947
\(599\) −20.3955 −0.833339 −0.416669 0.909058i \(-0.636803\pi\)
−0.416669 + 0.909058i \(0.636803\pi\)
\(600\) 0 0
\(601\) −26.9498 −1.09931 −0.549653 0.835393i \(-0.685240\pi\)
−0.549653 + 0.835393i \(0.685240\pi\)
\(602\) −3.78518 −0.154273
\(603\) 0 0
\(604\) 24.1988 0.984634
\(605\) −1.09989 −0.0447169
\(606\) 0 0
\(607\) 37.1072 1.50613 0.753067 0.657944i \(-0.228574\pi\)
0.753067 + 0.657944i \(0.228574\pi\)
\(608\) −24.1451 −0.979211
\(609\) 0 0
\(610\) 0.0339468 0.00137446
\(611\) −4.33711 −0.175461
\(612\) 0 0
\(613\) −43.2999 −1.74887 −0.874433 0.485147i \(-0.838766\pi\)
−0.874433 + 0.485147i \(0.838766\pi\)
\(614\) −0.247747 −0.00999827
\(615\) 0 0
\(616\) 17.7536 0.715314
\(617\) −5.84686 −0.235386 −0.117693 0.993050i \(-0.537550\pi\)
−0.117693 + 0.993050i \(0.537550\pi\)
\(618\) 0 0
\(619\) 4.58413 0.184252 0.0921259 0.995747i \(-0.470634\pi\)
0.0921259 + 0.995747i \(0.470634\pi\)
\(620\) 0.357465 0.0143562
\(621\) 0 0
\(622\) 9.71783 0.389650
\(623\) −42.6797 −1.70993
\(624\) 0 0
\(625\) 24.9468 0.997872
\(626\) 2.87530 0.114920
\(627\) 0 0
\(628\) −4.75686 −0.189819
\(629\) 0 0
\(630\) 0 0
\(631\) 42.2599 1.68234 0.841170 0.540771i \(-0.181868\pi\)
0.841170 + 0.540771i \(0.181868\pi\)
\(632\) −13.0421 −0.518786
\(633\) 0 0
\(634\) 6.26967 0.249000
\(635\) 0.330377 0.0131106
\(636\) 0 0
\(637\) −0.0777378 −0.00308009
\(638\) −4.09415 −0.162089
\(639\) 0 0
\(640\) 0.525810 0.0207845
\(641\) 36.7738 1.45248 0.726239 0.687442i \(-0.241266\pi\)
0.726239 + 0.687442i \(0.241266\pi\)
\(642\) 0 0
\(643\) −21.9041 −0.863812 −0.431906 0.901919i \(-0.642159\pi\)
−0.431906 + 0.901919i \(0.642159\pi\)
\(644\) 26.7862 1.05552
\(645\) 0 0
\(646\) 0 0
\(647\) 13.3204 0.523681 0.261840 0.965111i \(-0.415671\pi\)
0.261840 + 0.965111i \(0.415671\pi\)
\(648\) 0 0
\(649\) −51.1894 −2.00936
\(650\) 0.733747 0.0287799
\(651\) 0 0
\(652\) 20.4427 0.800599
\(653\) 10.2684 0.401832 0.200916 0.979608i \(-0.435608\pi\)
0.200916 + 0.979608i \(0.435608\pi\)
\(654\) 0 0
\(655\) 0.374726 0.0146417
\(656\) 7.61972 0.297500
\(657\) 0 0
\(658\) 7.75133 0.302178
\(659\) 22.3839 0.871954 0.435977 0.899958i \(-0.356403\pi\)
0.435977 + 0.899958i \(0.356403\pi\)
\(660\) 0 0
\(661\) 31.3766 1.22041 0.610204 0.792245i \(-0.291088\pi\)
0.610204 + 0.792245i \(0.291088\pi\)
\(662\) −7.72895 −0.300394
\(663\) 0 0
\(664\) −10.6411 −0.412953
\(665\) 1.09529 0.0424735
\(666\) 0 0
\(667\) −12.6727 −0.490690
\(668\) −17.5457 −0.678863
\(669\) 0 0
\(670\) 0.0594346 0.00229616
\(671\) 9.88015 0.381419
\(672\) 0 0
\(673\) −9.91808 −0.382314 −0.191157 0.981559i \(-0.561224\pi\)
−0.191157 + 0.981559i \(0.561224\pi\)
\(674\) 8.62363 0.332170
\(675\) 0 0
\(676\) 24.3071 0.934887
\(677\) −1.21290 −0.0466157 −0.0233078 0.999728i \(-0.507420\pi\)
−0.0233078 + 0.999728i \(0.507420\pi\)
\(678\) 0 0
\(679\) −9.33924 −0.358407
\(680\) 0 0
\(681\) 0 0
\(682\) −5.36325 −0.205369
\(683\) 30.8740 1.18136 0.590681 0.806905i \(-0.298859\pi\)
0.590681 + 0.806905i \(0.298859\pi\)
\(684\) 0 0
\(685\) 0.503076 0.0192216
\(686\) −5.72843 −0.218713
\(687\) 0 0
\(688\) −15.4503 −0.589038
\(689\) −6.06241 −0.230959
\(690\) 0 0
\(691\) 25.7685 0.980281 0.490140 0.871643i \(-0.336945\pi\)
0.490140 + 0.871643i \(0.336945\pi\)
\(692\) −3.00869 −0.114373
\(693\) 0 0
\(694\) 7.21067 0.273713
\(695\) −0.329726 −0.0125072
\(696\) 0 0
\(697\) 0 0
\(698\) −5.97339 −0.226096
\(699\) 0 0
\(700\) 25.4386 0.961488
\(701\) 25.4354 0.960683 0.480342 0.877081i \(-0.340513\pi\)
0.480342 + 0.877081i \(0.340513\pi\)
\(702\) 0 0
\(703\) 51.5354 1.94370
\(704\) 31.1695 1.17474
\(705\) 0 0
\(706\) −2.27728 −0.0857066
\(707\) 11.7999 0.443782
\(708\) 0 0
\(709\) 40.1810 1.50903 0.754515 0.656283i \(-0.227872\pi\)
0.754515 + 0.656283i \(0.227872\pi\)
\(710\) 0.0805737 0.00302388
\(711\) 0 0
\(712\) 19.4799 0.730040
\(713\) −16.6010 −0.621712
\(714\) 0 0
\(715\) −0.151638 −0.00567096
\(716\) 12.6504 0.472766
\(717\) 0 0
\(718\) −8.32133 −0.310549
\(719\) 19.9051 0.742334 0.371167 0.928566i \(-0.378958\pi\)
0.371167 + 0.928566i \(0.378958\pi\)
\(720\) 0 0
\(721\) 2.61675 0.0974529
\(722\) 8.82645 0.328487
\(723\) 0 0
\(724\) −32.4732 −1.20686
\(725\) −12.0351 −0.446974
\(726\) 0 0
\(727\) 3.61240 0.133977 0.0669883 0.997754i \(-0.478661\pi\)
0.0669883 + 0.997754i \(0.478661\pi\)
\(728\) 1.53390 0.0568502
\(729\) 0 0
\(730\) −0.222705 −0.00824267
\(731\) 0 0
\(732\) 0 0
\(733\) 8.52916 0.315032 0.157516 0.987516i \(-0.449651\pi\)
0.157516 + 0.987516i \(0.449651\pi\)
\(734\) 9.14347 0.337492
\(735\) 0 0
\(736\) −18.4923 −0.681634
\(737\) 17.2984 0.637193
\(738\) 0 0
\(739\) 22.1784 0.815846 0.407923 0.913016i \(-0.366253\pi\)
0.407923 + 0.913016i \(0.366253\pi\)
\(740\) −0.849900 −0.0312429
\(741\) 0 0
\(742\) 10.8348 0.397758
\(743\) −25.8967 −0.950057 −0.475029 0.879970i \(-0.657562\pi\)
−0.475029 + 0.879970i \(0.657562\pi\)
\(744\) 0 0
\(745\) −1.35042 −0.0494756
\(746\) 5.25935 0.192559
\(747\) 0 0
\(748\) 0 0
\(749\) 46.9530 1.71563
\(750\) 0 0
\(751\) 4.24257 0.154813 0.0774067 0.997000i \(-0.475336\pi\)
0.0774067 + 0.997000i \(0.475336\pi\)
\(752\) 31.6393 1.15377
\(753\) 0 0
\(754\) −0.353732 −0.0128821
\(755\) 0.757832 0.0275803
\(756\) 0 0
\(757\) 7.87822 0.286339 0.143169 0.989698i \(-0.454271\pi\)
0.143169 + 0.989698i \(0.454271\pi\)
\(758\) 3.03089 0.110087
\(759\) 0 0
\(760\) −0.499913 −0.0181337
\(761\) 45.9699 1.66641 0.833205 0.552965i \(-0.186504\pi\)
0.833205 + 0.552965i \(0.186504\pi\)
\(762\) 0 0
\(763\) −30.9017 −1.11872
\(764\) −9.06893 −0.328102
\(765\) 0 0
\(766\) −1.63542 −0.0590903
\(767\) −4.42273 −0.159695
\(768\) 0 0
\(769\) 17.5627 0.633328 0.316664 0.948538i \(-0.397437\pi\)
0.316664 + 0.948538i \(0.397437\pi\)
\(770\) 0.271009 0.00976650
\(771\) 0 0
\(772\) −14.7024 −0.529150
\(773\) −17.5276 −0.630422 −0.315211 0.949022i \(-0.602075\pi\)
−0.315211 + 0.949022i \(0.602075\pi\)
\(774\) 0 0
\(775\) −15.7658 −0.566324
\(776\) 4.26262 0.153019
\(777\) 0 0
\(778\) −0.419669 −0.0150459
\(779\) −15.2989 −0.548141
\(780\) 0 0
\(781\) 23.4509 0.839138
\(782\) 0 0
\(783\) 0 0
\(784\) 0.567098 0.0202535
\(785\) −0.148971 −0.00531699
\(786\) 0 0
\(787\) 32.0204 1.14141 0.570703 0.821157i \(-0.306671\pi\)
0.570703 + 0.821157i \(0.306671\pi\)
\(788\) −3.61438 −0.128757
\(789\) 0 0
\(790\) −0.199088 −0.00708322
\(791\) −12.1975 −0.433692
\(792\) 0 0
\(793\) 0.853639 0.0303136
\(794\) 4.03846 0.143320
\(795\) 0 0
\(796\) −16.3019 −0.577806
\(797\) −5.33744 −0.189062 −0.0945310 0.995522i \(-0.530135\pi\)
−0.0945310 + 0.995522i \(0.530135\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −17.5619 −0.620908
\(801\) 0 0
\(802\) 3.92316 0.138532
\(803\) −64.8179 −2.28737
\(804\) 0 0
\(805\) 0.838863 0.0295660
\(806\) −0.463381 −0.0163219
\(807\) 0 0
\(808\) −5.38573 −0.189469
\(809\) 40.5854 1.42691 0.713454 0.700702i \(-0.247130\pi\)
0.713454 + 0.700702i \(0.247130\pi\)
\(810\) 0 0
\(811\) −21.6764 −0.761161 −0.380581 0.924748i \(-0.624276\pi\)
−0.380581 + 0.924748i \(0.624276\pi\)
\(812\) −12.2637 −0.430371
\(813\) 0 0
\(814\) 12.7515 0.446940
\(815\) 0.640204 0.0224254
\(816\) 0 0
\(817\) 31.0213 1.08530
\(818\) −0.0489368 −0.00171104
\(819\) 0 0
\(820\) 0.252303 0.00881081
\(821\) −3.03504 −0.105924 −0.0529619 0.998597i \(-0.516866\pi\)
−0.0529619 + 0.998597i \(0.516866\pi\)
\(822\) 0 0
\(823\) −6.08315 −0.212045 −0.106023 0.994364i \(-0.533812\pi\)
−0.106023 + 0.994364i \(0.533812\pi\)
\(824\) −1.19434 −0.0416068
\(825\) 0 0
\(826\) 7.90434 0.275027
\(827\) 22.8467 0.794456 0.397228 0.917720i \(-0.369972\pi\)
0.397228 + 0.917720i \(0.369972\pi\)
\(828\) 0 0
\(829\) 5.37918 0.186827 0.0934133 0.995627i \(-0.470222\pi\)
0.0934133 + 0.995627i \(0.470222\pi\)
\(830\) −0.162436 −0.00563823
\(831\) 0 0
\(832\) 2.69302 0.0933638
\(833\) 0 0
\(834\) 0 0
\(835\) −0.549478 −0.0190155
\(836\) −70.9215 −2.45287
\(837\) 0 0
\(838\) 8.30427 0.286866
\(839\) −1.52790 −0.0527490 −0.0263745 0.999652i \(-0.508396\pi\)
−0.0263745 + 0.999652i \(0.508396\pi\)
\(840\) 0 0
\(841\) −23.1980 −0.799930
\(842\) −8.33749 −0.287329
\(843\) 0 0
\(844\) −37.4710 −1.28981
\(845\) 0.761223 0.0261869
\(846\) 0 0
\(847\) 49.4311 1.69847
\(848\) 44.2254 1.51870
\(849\) 0 0
\(850\) 0 0
\(851\) 39.4701 1.35302
\(852\) 0 0
\(853\) 21.3280 0.730257 0.365129 0.930957i \(-0.381025\pi\)
0.365129 + 0.930957i \(0.381025\pi\)
\(854\) −1.52563 −0.0522060
\(855\) 0 0
\(856\) −21.4304 −0.732474
\(857\) −4.61715 −0.157719 −0.0788595 0.996886i \(-0.525128\pi\)
−0.0788595 + 0.996886i \(0.525128\pi\)
\(858\) 0 0
\(859\) 37.1599 1.26788 0.633939 0.773383i \(-0.281437\pi\)
0.633939 + 0.773383i \(0.281437\pi\)
\(860\) −0.511590 −0.0174451
\(861\) 0 0
\(862\) −9.97439 −0.339729
\(863\) −32.4840 −1.10577 −0.552884 0.833258i \(-0.686473\pi\)
−0.552884 + 0.833258i \(0.686473\pi\)
\(864\) 0 0
\(865\) −0.0942229 −0.00320368
\(866\) 10.6958 0.363458
\(867\) 0 0
\(868\) −16.0652 −0.545287
\(869\) −57.9442 −1.96562
\(870\) 0 0
\(871\) 1.49457 0.0506415
\(872\) 14.1042 0.477628
\(873\) 0 0
\(874\) 11.3165 0.382787
\(875\) 1.59388 0.0538831
\(876\) 0 0
\(877\) 2.78388 0.0940050 0.0470025 0.998895i \(-0.485033\pi\)
0.0470025 + 0.998895i \(0.485033\pi\)
\(878\) −9.29688 −0.313754
\(879\) 0 0
\(880\) 1.10620 0.0372901
\(881\) −50.9155 −1.71539 −0.857694 0.514161i \(-0.828103\pi\)
−0.857694 + 0.514161i \(0.828103\pi\)
\(882\) 0 0
\(883\) −36.5258 −1.22919 −0.614596 0.788842i \(-0.710681\pi\)
−0.614596 + 0.788842i \(0.710681\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −4.89673 −0.164509
\(887\) −26.1442 −0.877835 −0.438918 0.898527i \(-0.644638\pi\)
−0.438918 + 0.898527i \(0.644638\pi\)
\(888\) 0 0
\(889\) −14.8477 −0.497978
\(890\) 0.297361 0.00996757
\(891\) 0 0
\(892\) 40.7198 1.36340
\(893\) −63.5256 −2.12580
\(894\) 0 0
\(895\) 0.396171 0.0132425
\(896\) −23.6309 −0.789453
\(897\) 0 0
\(898\) −2.64056 −0.0881168
\(899\) 7.60053 0.253492
\(900\) 0 0
\(901\) 0 0
\(902\) −3.78544 −0.126041
\(903\) 0 0
\(904\) 5.56718 0.185162
\(905\) −1.01696 −0.0338049
\(906\) 0 0
\(907\) −47.6037 −1.58065 −0.790327 0.612686i \(-0.790089\pi\)
−0.790327 + 0.612686i \(0.790089\pi\)
\(908\) 15.5517 0.516102
\(909\) 0 0
\(910\) 0.0234151 0.000776201 0
\(911\) −36.3037 −1.20280 −0.601398 0.798949i \(-0.705389\pi\)
−0.601398 + 0.798949i \(0.705389\pi\)
\(912\) 0 0
\(913\) −47.2767 −1.56463
\(914\) −7.46421 −0.246894
\(915\) 0 0
\(916\) −38.8744 −1.28444
\(917\) −16.8409 −0.556135
\(918\) 0 0
\(919\) −1.14473 −0.0377611 −0.0188806 0.999822i \(-0.506010\pi\)
−0.0188806 + 0.999822i \(0.506010\pi\)
\(920\) −0.382874 −0.0126230
\(921\) 0 0
\(922\) −1.14006 −0.0375459
\(923\) 2.02614 0.0666912
\(924\) 0 0
\(925\) 37.4843 1.23248
\(926\) −6.49746 −0.213520
\(927\) 0 0
\(928\) 8.46642 0.277924
\(929\) 44.2349 1.45130 0.725649 0.688065i \(-0.241540\pi\)
0.725649 + 0.688065i \(0.241540\pi\)
\(930\) 0 0
\(931\) −1.13862 −0.0373169
\(932\) −28.2962 −0.926873
\(933\) 0 0
\(934\) 11.3618 0.371771
\(935\) 0 0
\(936\) 0 0
\(937\) 4.81714 0.157369 0.0786846 0.996900i \(-0.474928\pi\)
0.0786846 + 0.996900i \(0.474928\pi\)
\(938\) −2.67110 −0.0872146
\(939\) 0 0
\(940\) 1.04764 0.0341701
\(941\) −50.4375 −1.64422 −0.822108 0.569331i \(-0.807202\pi\)
−0.822108 + 0.569331i \(0.807202\pi\)
\(942\) 0 0
\(943\) −11.7172 −0.381564
\(944\) 32.2639 1.05010
\(945\) 0 0
\(946\) 7.67566 0.249557
\(947\) −22.9599 −0.746097 −0.373049 0.927812i \(-0.621688\pi\)
−0.373049 + 0.927812i \(0.621688\pi\)
\(948\) 0 0
\(949\) −5.60023 −0.181791
\(950\) 10.7472 0.348684
\(951\) 0 0
\(952\) 0 0
\(953\) 22.2611 0.721108 0.360554 0.932738i \(-0.382588\pi\)
0.360554 + 0.932738i \(0.382588\pi\)
\(954\) 0 0
\(955\) −0.284011 −0.00919040
\(956\) 40.1273 1.29781
\(957\) 0 0
\(958\) 7.92318 0.255986
\(959\) −22.6092 −0.730089
\(960\) 0 0
\(961\) −21.0435 −0.678821
\(962\) 1.10172 0.0355210
\(963\) 0 0
\(964\) −22.1323 −0.712833
\(965\) −0.460434 −0.0148219
\(966\) 0 0
\(967\) −40.5446 −1.30383 −0.651913 0.758294i \(-0.726033\pi\)
−0.651913 + 0.758294i \(0.726033\pi\)
\(968\) −22.5614 −0.725150
\(969\) 0 0
\(970\) 0.0650691 0.00208924
\(971\) 7.46199 0.239467 0.119733 0.992806i \(-0.461796\pi\)
0.119733 + 0.992806i \(0.461796\pi\)
\(972\) 0 0
\(973\) 14.8185 0.475059
\(974\) −6.47995 −0.207631
\(975\) 0 0
\(976\) −6.22731 −0.199331
\(977\) 1.73790 0.0556002 0.0278001 0.999614i \(-0.491150\pi\)
0.0278001 + 0.999614i \(0.491150\pi\)
\(978\) 0 0
\(979\) 86.5466 2.76604
\(980\) 0.0187777 0.000599831 0
\(981\) 0 0
\(982\) −5.19645 −0.165826
\(983\) −54.0188 −1.72293 −0.861466 0.507815i \(-0.830454\pi\)
−0.861466 + 0.507815i \(0.830454\pi\)
\(984\) 0 0
\(985\) −0.113192 −0.00360658
\(986\) 0 0
\(987\) 0 0
\(988\) −6.12757 −0.194944
\(989\) 23.7587 0.755481
\(990\) 0 0
\(991\) −6.96503 −0.221251 −0.110626 0.993862i \(-0.535285\pi\)
−0.110626 + 0.993862i \(0.535285\pi\)
\(992\) 11.0908 0.352135
\(993\) 0 0
\(994\) −3.62113 −0.114855
\(995\) −0.510526 −0.0161848
\(996\) 0 0
\(997\) −46.6989 −1.47897 −0.739484 0.673174i \(-0.764930\pi\)
−0.739484 + 0.673174i \(0.764930\pi\)
\(998\) −8.94645 −0.283195
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7803.2.a.cg.1.14 24
3.2 odd 2 7803.2.a.cd.1.11 24
17.11 odd 16 459.2.l.a.325.7 yes 48
17.14 odd 16 459.2.l.a.298.7 yes 48
17.16 even 2 7803.2.a.cd.1.14 24
51.11 even 16 459.2.l.a.325.6 yes 48
51.14 even 16 459.2.l.a.298.6 48
51.50 odd 2 inner 7803.2.a.cg.1.11 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.l.a.298.6 48 51.14 even 16
459.2.l.a.298.7 yes 48 17.14 odd 16
459.2.l.a.325.6 yes 48 51.11 even 16
459.2.l.a.325.7 yes 48 17.11 odd 16
7803.2.a.cd.1.11 24 3.2 odd 2
7803.2.a.cd.1.14 24 17.16 even 2
7803.2.a.cg.1.11 24 51.50 odd 2 inner
7803.2.a.cg.1.14 24 1.1 even 1 trivial