Defining parameters
| Level: | \( N \) | \(=\) | \( 7803 = 3^{3} \cdot 17^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 7803.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 59 \) | ||
| Sturm bound: | \(1836\) | ||
| Trace bound: | \(73\) | ||
| Distinguishing \(T_p\): | \(2\), \(5\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7803))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 972 | 361 | 611 |
| Cusp forms | 865 | 361 | 504 |
| Eisenstein series | 107 | 0 | 107 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(234\) | \(84\) | \(150\) | \(208\) | \(84\) | \(124\) | \(26\) | \(0\) | \(26\) | |||
| \(+\) | \(-\) | \(-\) | \(252\) | \(96\) | \(156\) | \(225\) | \(96\) | \(129\) | \(27\) | \(0\) | \(27\) | |||
| \(-\) | \(+\) | \(-\) | \(252\) | \(96\) | \(156\) | \(225\) | \(96\) | \(129\) | \(27\) | \(0\) | \(27\) | |||
| \(-\) | \(-\) | \(+\) | \(234\) | \(85\) | \(149\) | \(207\) | \(85\) | \(122\) | \(27\) | \(0\) | \(27\) | |||
| Plus space | \(+\) | \(468\) | \(169\) | \(299\) | \(415\) | \(169\) | \(246\) | \(53\) | \(0\) | \(53\) | ||||
| Minus space | \(-\) | \(504\) | \(192\) | \(312\) | \(450\) | \(192\) | \(258\) | \(54\) | \(0\) | \(54\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7803))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7803))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(7803)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(153))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(459))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(867))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2601))\)\(^{\oplus 2}\)